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The elastic scattering of electrons by lithium atoms is considered in the Glauber approximation us-
ing Franco’s method for reducing the (3Z + 2)-dimensional integral occurring in the amplitude for
the scattering of charged particles by a Z -electron atom. It is found that the involvement of the in-
ner electrons (those in the 1s state) causes very little change over the frozen-core Glauber calcula-

tions.

I. INTRODUCTION

The Glauber approximation' has been used exten-
sively to study scattering by hydrogen atoms.?~8
These calculations involve the numerical evalua-
tion of a relatively simple one-dimensional inte-
gral. Closed-form expressions have also been
obtained in this case.®!® For the helium-target,
Glauber calculations of elastic and inelastic scat-
tering of electrons have been performed using
three- and two-dimensional integral representa-
tions obtained by reducing the initial eight-dimen-
sional (8D) integral.'***2 In the case of electron—
alkali-atom collisions, Glauber calculations have
been done only in the frozen-core approximation
which reduces the target to an effective one-elec-
tron system.!3-!5 Thus all the applications of the
Glauber approximation in atomic scattering have
been restricted to the scattering by atoms having
one or two “effective” electrons. The reason is
that the scattering amplitude in the Glauber ap-
proximation for the scattering from a target of
atomic number Z involves a (3Z +2)-dimensional
integral which must first be reduced sufficiently
before attempting any numerical calculation.

Franco'® has proposed a method for reducing
this (3Z +2)-dimensional integral to a 1D integral
for the elastic and inelastic scattering of charged
particles by arbitrary neutral atoms. His method
is based (i) on the assumption that the product of
the initial @; and the final ®; wave functions of the
target can be written in the form
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where »;, 6,, and ¢; are the spherical coordinates
of the jth electron, and the Y,, are the normalized
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spherical harmonics; and (ii) on carrying out the
integrations over the coordinates of the target
electrons without involving the impact parameter
b. This procedure differs from the one followed
in Refs. 11 and 12 for e-He scattering. There,
the impact parameter is mixed with the coordi-
nates T,(§, z,) and %,(8,, 2,) of the target electrons
to generate a new set of variables R, &, and ¢ in
place of b, s,, and s,. This mixing is not feasible
for more than two electrons in the target. The as-
sumption regarding the form, Eq. (1), of ®rQ; is
really no restriction since the wave functions
usually employed in describing the atoms can al-
ways be put in that form. The result is that the
final expression involves just a 1D integral over
b. The only problems with this method are the
evaluation of the integrand which involves the cal-
culation of the differences between strongly diver-
gent functions and the numerical calculation of the
6 functions whenever elastic scattering is con-
sidered.!” Thomas and Chan'” have recently modi-
fied this procedure to eliminate these difficulties
by using the properties of the modified Lommel
functions, and have reported calculations for the
elastic and inelastic e-He scattering.!’-*® Fran-
c0,%° on the other hand, has used his original pre-
scription'® without any modifications to obtain
1S-2'S excitation cross section in e-He scattering.
In the present work we have avoided the encount-
er with the divergent functions appearing in Fran-
co’s final expression'® by stopping a step earlier
(Sec. II). The concealed 6 function in the momen-
tum transfer ¢ presents no numerical problem.
The price to be paid for this simplification is that
our final expression is a 2D integral, irrespective
of the atomic number of the target, against Fran-
co’s 1D integral. Thomas and Chan'” have also
pointed out this possibility but did not pursue it.
To illustrate this procedure, we consider the
elastic scattering of electrons by lithium atoms.
In Sec. II we outline Franco’s method. Section
IIT contains the details of the calculation. The re-
sults are presented in Sec. IV.
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II. METHOD
In the Glauber approximation, the amplitude
F;;(@) of a particle with momentum #k; by a Z-
electron atom, which undergoes a transition from
an initial state ¢ with wave function &; to a final
state f with wave function &,, is given by'*?
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where % =7%(k; ~k,) is the momentum transfer
which the incident particle imparts to the target,
and T, ..., T, are the coordinates of target elec-

trons relative to the nucleus. The momentum
—
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The contribution of the first term in curly brack-
ets in Eq. (4), though proportional to the 2D § func-
tion §%(4), cannot be ignored, for otherwise the
integrand over b would not tend to zero, as it
should, for large values of the impact parameter
b, and would create numerical difficulties.

For the product <I>}*<I>i, we prefer the form
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which can be obtained by regrouping the terms in

Eq. (1). For elastic scattering by lithium atoms
J
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transfer § is assumed to lie in the plane of the
impact parameter b. The profile function I is
given by
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where n=e?/fv=1/k; (using Rydberg atomic units),
v is the initial speed of the incident electron in

the lab system (same as the center-of-mass sys-
tem in our case), and s is the projection of T T;

onto the plane of b. Combmmg Egs. (2) and (3 )

the expression for the scattering amplitude Fy;(q)
takes the form
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only s states are involved, i.e., I;=1]=m;=m;=0
for all j. Thus
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Using Eq. (6b) in Eq. (4), and carrying out the in-
tegration over ¢,, gives
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It is worth mentioning here that the limit as -« of the second term in Eq. ('7) is unity. The integral in
Eq. (8) can be performed by introducing cylindrical coordinates §;,z; for ¥; and following the methods of

Franco' and Thomas and Gerjuoy,® to give
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where
i T(1+in) )
- 1+2i7
E@n)=-72 (I‘(l —n) - (10)
Franco'® integrates Eq. (9) by parts, to get*
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where Both the terms in Eq. (13) for &;®;, with ¥’s of
E,() 4T (=in)T(L + in) form (14) lead to expression (6a) with
and N;=21
r(-1-in) 0, k<3
E,() = ssrsrarre iy - ’
2 F(2+in) nk,j: 1, 3<kS]~1
The hypergeometric functions appearing in Eq. (11) 2, ll<ps<2l.

are themselves divergent functions of a, ;b al-
though their combination as appearing in Eq. (11)
is convergent. This can be clearly seen by carry-
ing out the differentiation indicated in Eq. (9).
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The integral in Eq. (12) can be easily evaluated
numerically. We have used this form to avoid the
problems associated with the calculation of the dif-
ferences between strongly divergent functions ap-
pearing in Franco’s expression [Eq. (11)].

The differentiations of I with respect to @, ; in
Eq. (7) can be done analytically.

III. CALCULATION

For elastic scattering by lithium atoms we need
only &; where the electrons are in (1s)?(2s)' con-
figuration. We have taken these orbitals of the
form given by Clementi,?? and ®; is obtained by
taking their antisymmetric combination. This
leads to

®fd;=(1/31)] det(¥y,,, ¥y, , ¥y0)l*
=] Wy (D)W (2)%,(3)]
= (DI (20, (2)¥,,(3)T55(3) . (13)
The orbitals ¥ are of the form (Ref. 22)
Y(r)=R@)Y3(4, ¢), (14a)

with

2
R(r)=Z:A,~e'§i'+ i:A;re'Ei' . (14p)
i=1 i=3

The values of the constants ¢, ; and @, ; are ob-
tained from the values of the parameters A; and £;
given by Clementi.??

The integrals in Eqs. (7) and (12) were done by
the Filon?® method. The oscillations of the Bes-
sel functions were accurately accounted for by
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FIG. 1. Differential cross sections (doe/d®)(al) vs
scattering angle 6 up to 80° at electron laboratory energy
54.38 eV (k=2 a.u.). Curvea, frozen-core Glauber ap-
proximation without core potential; curve b, with core
potential included; curve ¢, present calculation.
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FIG. 2. Calculated total elastic cross sections o (naﬁ)
for energies up to 200 eV. Notation is same as in Fig. 1.

combining the Simpson rule with the standard
Bessel-function integrals.?

The differential cross section for elastic scat-
tering is obtained by means of the relation

doe(q)/d2 =| Fsi(q))®. (15)

The total integrated cross section for elastic
scattering is given by the expression

o __2— 2k dUeI

3 NP T9)

g dq. (16)

IV. RESULTS

In Fig. 1 we have plotted the differential cross
sections against the scattering angle 6 up to 80°
at an electron laboratory energy of 54.38 eV (k=2
a.u.). The curves a and b correspond to the cal-
culation in the frozen-core Glauber approximation
without and with core potential, respectively.
These are similar to those in Refs. 13—-15. The
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TABLE 1. Elastic differential cross sections in units
of a} at k=2 a.u.

Frozen-core
Glauber approximation
Without With

Scattering angle Present

(in deg) core potential core potential calculation
10 27.11 27.06 26.90
20 5.59 5.52 5.01
30 1.58 1.57 1.37
40 0.61 0.63 0.54
50 0.29 0.31 0.27
60 0.16 0.18 0.16
70 0.10 0.12 0.10
80 0.06 0.08 0.06

curve ¢ corresponds to the present calculation.
Clementi wave functions have been used in all the
calculations. All the curves show almost identical
variation indicating that the inner electrons (those
in the 1s state) are not very active. A more
quantitative picture is given by Table I. The slight
increase in cross section when the core potential
is included is in agreement with the findings of
Walters.!'® The differential cross sections with
the present calculation differ little from those in
the frozen-core approximation. Similar is the
case with the total cross section for energies up
to 200 eV.

It appears that nothing much is gained by includ-
ing the inner electrons and the frozen-core
Glauber calculation is good enough. It is expected
that the same will be true in other systems.

On the procedural side, our calculations have
further confirmed that Franco’s procedure is nu-
merically tractable.
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