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A recently developed variational formalism for the determination of the reduced single-particle density
matrix, correct to second order, is applied to the ground state of the helium isoelectronic sequence, For
a Slater-determinant-type trial wave function the method requires the initial determination of either the
charge density or equivalently its cosine Fourier transform for spherically symmetric systems. The trial
wave function employed is a one-parameter Hartree product of hydrogenic functions and use is made of
the highly accurate analytic expressions derived elsewhere for the Fourier transform of the charge density
for the helium sequence. Analytic expressions for the single-particle density matrix are obtained and the
internal self-consistency of the technique with regard to the Kato cusp condition is discussed. These ex
pressions are then employed to obtain closed form analytic expressions for the momentum density valid
for the entire isoelectronic, sequence. These results are subsequently employed to obtain expressions for
the expectation values of the operators p", ps p~, and p ~

' and the Compton profile in the impulse ap-
proximation. Analytic Hartree-Pock calculations for these properties are also performed, and the results

of the variational calculation are compared with these results and those of many-parameter correlated
wave-function calculations wherever possible. It is observed that the results of the single-parameter vari-
ational calculation for helium are highly accurate and improve further for each heavier element of the
isoelectronic sequence.

I. INTRODUCTION T, (i)(I((r„... . , r, , , r~) = ((r„.. . , r, +i, . . . , r„)

In a recent paper' we extended a variational for-
malism' ' for obtaining expectation values, correct
to second order, of Hermitian operators which may
be written as a sum of single-particle operators,
to the determination of the reduced single-particle
density matrix, y(r, r'), for an interacting many-
electron system. The generalized reduced single-
particle density matrix yr(rg, r'g') is defined' as

yz(r , (' r)r=N Y J ( (F(, r („.. . , r„( )

4(r K s r~s&s' ' ' t ((4)(

x 2p y dr@

where ( is the spin coordinate. The spinless form
y(r, r') is given as

y(r, r') = Qy, (rK, r'K).

The expectation value of the operator

Y= P Y, = P W(r, )T,.(a),

where W(r,.) =5(r,. —r), T, (a) is a translation op-
erator such that

and where a=r' —r is y(r, r'). The operator Yde-
fined above, however, is not Hermitian, and no
Hermitian operator exists whose expectation value
yields y(r, r'). ' However, the expectation value of
the complex operator X, defined as

X= Y+iZ,
is the reduced single-particle density matrix,
where the Hermitian operators Y and Z are de-
fined as

Y= —P [W(r,.)T&(i) + W(r,'-)T&(-i)]

and

Z = —— W r j T,. a —W r,'. T,. -a
j

Thus in order to obtain y (r, r') by the variational
method we are required to calculate the expectation
value of two Hermitian operators.

In general for a given choice of a, Slater-deter-
minant-type trial wave function, the determination
of y(r, r') within this formalism requires the initial
determination of either the electron charge density
for the system or equivalently its cosine Fourier
transform for spherically symmetric systems.
These latter quantities are, however, derived by
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12 VARIATIONAL CALCULATION OF THE SINGLE- PARTICLE. . .

the variational methods mentioned above for deter-
mining single-particle expectation values, as the
expectations of the operators W=g,. 5(r,. r—) and

U=+,. cos(k r, ), respectively. The details of the
technique in both the Hartree and Hartree-Fock
approximations have recently been published. ' In
the present paper we present the results of an ap-
plication of this formalism.

In Sec. II we apply this variational method to ob-
tain expressions for the reduced single-particle
density matrix correct to second order in the so-
called two decoupling approximations3'4 as applied
to the helium ground-state isoelectronic sequence.
The trial wave function employed is a one-param-
eter Hartree product of hydrogenic functions and
use is made of the highly accurate analytic ex-
pressions derived elsewhere' ' for the Fourier
transform of the charge density for the helium se-
quence. The internal self-consistency of the varia-
tional formalisms for obtaining single-particle ex-
pectation values and the single-particle density
matrix is then discussed with regard to the satis-
faction of the Kato cusp condition' ' for the exact
ground-state wave function of a two-electron sys-
tem in the limit of coalescence of one electron
with the nucleus.

Employing these expressions for the single-par-
ticle density matrix we derive in Sec. III closed-
form analytic expressions for the momentum den-
sity valid for the entire isoelectronic sequence,
and the results are compared with those of a six-
parameter analytic Hartree-Fock wave function"
calculation. The results for the momentum density
are then used to obtain closed-form analytic ex-
pressions for the expectation values of the opera-
tors f&', P', and ~P ~

and a non-closed-form expres-
sion for the expectation value of ~P ~

', and these
results are presented and compared with analytic
Hartree-Fock calculations and correlated wave-
function calculations due to Pekeris" wherever
possible. Finally we calculate Compton profiles
in the impulse approximation and compare our re-
sults for the helium ground state with those due to
Hartree-Pock and a multiconfigurational self -con-
sistent-field wave-function calculation. " In each
of the above calculations the choice for the varia-
tional parameter is governed either by the energy-
minimization criteria or by extremizing the pro-
perty of interest.

II. APPLICATION TO THE HELIUM GROUND-STATE

ISOELECTRONIC SEQUENCE

where

H, = —V', —V', —2Z, /r, —2Z, /r,
and

H' =2(Z, Z—)/r, +2(Z, Z)—/r, +2/r„
and choose the trial wave function („rto be a sin-
gle-parameter product of hydrogenic functions:

II-y,. (r,. ) = (z,'/m)e-'~'"~'"",

so that

odor= 040r.

The Fourier transform of the charge density, or
form factor, for the spherically symmetric two-
electron system is the expectation value of the op-
erator

U= g U(f, r, )= g.
i=a i=a

In the second decoupling approximation the form
factor to second order is obtained by evaluating

(U) —= E(k) = U+(2/D) Re(g', g~) iH —E i g, r),

where U is the first-order expectation value

U= (C., l UI y. ,&

and'

D=1+(0', , IH -&14»)
= 1+3[(Z, —Z)/Z, ] + (2/Z, )(g ——,

' ln2),

and where $0»&~~ and P,'r are the auxiliary functions
in the correction term. The additional subscript
(U) in the auxiliary function, g»&~& is used to indi-
cate that it is the auxiliary function obtained spe-
cifically for the operator U. The function g', r is
independent of the operator whose expectation val-
ue is being obtained. ' ' In all the results to follow
if the factor D is set equal to unity we obtain the
results in the first decoupling approximation.

In terms of the individual particle contributions
to the total expectation value we rewrite (U) as

2

(U& = g [U;(&)+(2/D)&;(&)],

For the nonrelativistic two-electron system we
write the Hamiltonian in atomic units as

H =Ho+H',

U,. (k) = (g, r ~
U(k, r, ) ~ P, r) = 16Z', /(4Z,'+0')',

and where I",(k) is the contributio. n of the ith par-
ticle to the correction term to U (Ref. 7):
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+;(k) = (f; ~(k, r, )(&». I
H —h

l $0»)

1 1

32Z'(BZ' —k') 4Z'(4Z' —k') 6Z' 32Z' 96Z' 9Z' 10Z'(4ZI —k')
g Jg

k4 = (4Z +k ) gg= (16ZI+k )

f, ~(k, r, )$» is the ith component of the auxiliary
function ()(0»~~& . With the variational parameter Z,
being chosen as the value which minimizes the en-
ergy, the results of the above analytic expression
for the Fourier transform of the charge density
are observed to be equivalent to the results of a
120-parameter configuration-interaction wave-
function calculation, "the maximum error over the
entire momentum transfer range considered being
1.2% in the second decoupling approximation. The
results also have an accuracy equivalent to that of
an analytic Hartree-Fock wave-function calcula-
tion. '4 It is expected therefore, owing to the uni-
tary property of the Fourier transform, that the
results for the single-particle density matrix, the
momentum density, and properties in momentum
space should prove to be quite accurate.

In terms of the components of the form factor,
the single-particle density matrix correct to sec-
ond order in the second decoupling approximation
is given as'

K(r) = (Z —Z)r+ 'r —-— e 'I&'
8Z 4Z

3 (e Ikk —1)
16Z,r 8

The results in the first decoupling approximation
are again obtained by setting the factor D equal to
unity. "

The overall internal self-consistency of the vari-
ational formalism is most aptly demonstrated by
the results of the second decoupling approximation.
Since the charge density p(r) =y(r, r), it is possible
to obtain from the above expression both the charge
density at the nucleus p(0) and its derivative at the
nucleus lim(dp/dr) as r -0. It is then observed
that the Kato cusp condition written in terms of
these quantities and the atomic number

lim = -2Zp(0),dp(r)
r 0 &'

y(r, r') =y, (r, r') +y, (r, r')

= g y,*. (r)@,.(r')

is exactly satisfied and is independent of the pa-
rameter Z, . This result may also be demonstrated
by obtaining p(0) as the expectation value of the op-
erator

1 J,(r'), JP(r)+—,+r ', +,. r' W= g 5(r, )
i= 1

where

Z(r(=, J k&(k)cosk r dk

and the derivative of the density at the origin from
the infinite-momentum-transfer limit of the form
factor

is the cosine Fourier transform of the contribution
of the jth particle to the correction term for the
form factor E&(k) defined earlier. The results are

y (r ri) (2Z /7()e-Ik(r+r')

y, r, r' Z-Z
y, (r, r') = ' ' — K(r) +K(r') —3

D Z

where

km''(k) = (—Btr-dp 1

I,- dr i„=, &' '

provided of course the same trial wave function
is used in the calculation of these expectation val-
ues.

Since the results of the calculation of the expec-
tation value of operators in configuration space via
the density-matrix expressions derived above are
equivalent to those obtained by calculating these
expectations directly by the variational method, we
now proceed to determine the momentum density
and momentum-space expectation values.
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III. CALCULATION OF MOMENTUM DENSITIES,

EXPECTATION VALUES, AND COMPTON PROFILES

A. Momentum densities

In terms of the single-particle density matrix
z(r, r'), the density in momentum space is de-
fined" as

2

p(k) = e'~ 'y(r, r')e '"'" dr dj',

(p=)ft, 8=1).

On substitution of the expressions derived earlier
for y(r, r') and on performing the above integration,
the results for the momentum density in the second
decoupling approximation are obtained as

p(k) = p (k) + pi(k),

where p, (k) and p, (k) are the first-order and cor-
rection terms, respectively, and where

p, (k) = 64Zi5k'/wR

and

128Zgk 4Zy 1 5Z 9 3 3
~R ' R' R' 2R' 8R' 4Q' 2RQ

3 (Z —k } 2kZ 3 R 1
16 Z,kR 3Z2+k2+16R, ln

Q
—

R
—[—'(Z, —Z)+g —,' ln2]

R=Z~+k' Q=9Z,'+k'.

We note that the above is a one-parameter closed-
form analytic expression for the momentum density
correct to second order valid for the entire iso-
electronic sequence.

In Table I we present the results of the following
calculations: p, (k), the first-order momentum dis-
tribution; p'(k) and p(k), the momentum densities
in the first and second decoupling approximations,
respectively, for the energy-minimized value of
Z„viz. Z, =Z —t5-„and p„„(k), the results of a
six-parameter analytic Har tree- Pock wave-func-
tion" calculation.

We observe that our results in the two decoupling
approximations are essentially equivalent to those
due to analytic Hartree-Fock results for all values
of the momentum k. This can be explained on the
basis of the Brillouin-Moiler-Plesset theorem"
as extended to the single-particle density matrix, "
thus leading to Hartree-Pock momentum densities
and expectation values being correct to second or-
der, as are our results, and hence the equivalence.

The improvement over the first-order momentum
distribution p, (k) due to the addition of the correc-
tion term in the decoupling approximations is,
however, substantial. In comparison with the
Hartree-Fock results, for small values of momen-
tum, say at k = 0.3, p, (k) is in error by 20'%%uo while

p(k) differs from p~(k) by 1.5%. At k=0.5, p, (k)
is in error by 15.8%%uq whereas p(k) differs from
p„„(k) by only 0.03%. The momentum distribution

p, (k) does intersect the p„„(k) distribution at ap-
proximately 4' =1 and k' =3.4, the error increasing
between these values to 12.4% at k =2, whereas
p'(k) differs from p „(k}at this value by only 0.2%.
With increasing momentum, this error in p, (k) is
observed to increase further. Typically, at 4' = 6,

p, (k) is in error by 23.3%.
It is possible to determine the degree of ac-

curacy of these different momentum distribution
functions by calculating various expectation values
of interest and comparing them to results of cal-
culations of a many-parameter correlated wave-
function calculation wherever possible.

B. Expectation values

With the momentum densities determined above
we present analytical expressions for the expecta-
tion values (W) of the operators P', P', ~P ~, and

~P ~

' in the second decoupling approximation. The
first term on the right-hand side of the expression
for (W) below corresponds to W, the first-order
term, and the second to the correction term. The
results reduce to those of the first decoupling ap-
proximation (W), if we set the factor D equal to
unity. Since the expectation value is stationary' '
with respect to arbitrary variations in the exact
functions g, and tfi„we also present below expres-
sions for the variational parameter Z, which ex-
tremizes the expectation value in each decoupling
approximation.

(a) For W =$4+$4,

(W) = 10Z,'+ (128Z', /D) [-&(Z, —Z) —~3'8+ & in2] .

The extremum of (k'), occurs at

Z, =Z —h('-,' —ln2) .
The extremum of (k') occurs at

Z, =Z ——',(g --', ln2) .

(b) For W =P,'+p',

(W) = 2Z,'+ (1/D) [-4Z, (Z, —Z) -&Z, ) .
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k (a.u. ) p„, (&) '

TABLE I. Momentum distributions for helium ground
state. Here p 0(0 ) is the first-order momentum distri-
bution, and p (& ) and p (4 ) the momentum densities in
the first and second decoupling approximations, respec-
tively. The variational parameter Z~ is chosen such
thatZ~=Z-~. p». (k) are analytic Hartree-Fock re-
sults.

Zi=H3Z —
I +[Z'+(-') -4&)Z+~) (4J3-) )]"'),

where

p =~6 —41n2,19

P = 3rry/1 6,

y s ln3 4ln2 6.

0.1
0.2
0.3
p,4
0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1,3
1.4
1.5
1.6
1.7
1.S
1.9

0.041 803
0.160 37
0.336 89
0 ~ 545 07
'0.756 93
0.947 98
1.1007
1.2059
1.2616

1.2719
1.2443
1.1878
1.1112
1.0228
0.928 86
0.834 55
0.743 38
0.657 65
0.578 70

0.051225
0.195 02
0.404 62
0.643 84
0.876 13
1.0722
1.2140
1.2955
1.3198

1.2962
1.2368
1.1535
1.0568
0.954 95
0.85390
0.757 60
0.668 37
0.587 34
0.514 80

0.053 019
0,201 62
0.417 51
0.662 64
0.898 82
1.0958
1.2356
1.3125
1,3308

1.3009
1.2354
1.1470
1.0464
0.942 04
0.839 63
0.742 96
0.654 10
0 ~ 573 95
0.502 63

0.054 284
0.205 64
0.423 37
0.667 25
0 ~ 898 48
1.0880
1.2201
1.2913
1.3071

1.2782
1.2166
1.1338
1.0394
0.940 79
0.843 30
0.750 35
0.663 99
0.585 23
0.514 39

(d) For w= lp, l-'+lp, l-',

32 1 85 32(Z -Z, )
3«, D «2 3«2

where

5 =4-,'+ln2 —
87& ln3 —~3

and

1 1
(2/p „'2 22))+1

The extremum of (W), occurs at

Z, =Z —45

and the extremum of (W) occurs at

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.0
3.2
3.4
3.6
3.8
4 p

4 5
5.0
5.5
6.0

0.507 16
0.443 10
0.386 29
0.336 28
0.292 50
0.254 34
0.221 17
0.192 41
0.167 51
0.145 97

0.127 34
0.097 297
0.074 788
0.057 861
0.045 068
0.035 346
0.019 S34
0.011589
0.007 027 2
0.004 406 5

0.45054
0.394 04
0.344 60
0.301 50
0.264 01
0.23141
0.203 10
0.178 50
0.157 11
0.13849

0.122 28
0.095 772
0.075 491
0.059877
0.047 782
0.038 355
0.022 690
0.013866
0.008 727 8
0.005 644 2

0.439 76
0.384 70
0.336 67
0.294 88
0.258 58
0.227 05
0.199 66
0.175 85
0.155 13
0.137 07

0.12131
0.095 482
0.075 625
0.060 261
0.048 299
0.038 928
0.023 233
0.014 299
0.009 051 6
0.005 879 9

0.451 32
0.395 58
0.346 58
0.303 68
0.266 21
0.233 54
0.205 09
0 ~ 180 31
0.158 73
0.13994

0.123 54
0.096 739
0.076 226
0.060 441
0.048 223
0.038 709
0.022 917
0.014 031
0.008 855 9
0.005 745 7

'See Hef. 10.

The extremum of (W), occurs at Z, =Z —& which
is the same value as that which minimizes the en-
ergy. The extremum of (W) occurs at

Z, =-',Z —(4)i + 35)/20 +,[16Z'+ (12p, —515)Z

+95'+9 p, 5 —4y, ']~'.
Table II comprises results of the various calcu-

lations of the expectation value of the operators
p', p', lpl, and lpl ' for the ground state of the
helium atom. Included in this table are results due
to (i) Pekeris, "'"(ii) a six-parameter analytic
Hartree-Fock wave-function calculation (HF), ' (iii)
W employing the trial wave function )1),r for the en-
ergy-extremized value of Z, (viz. Z, =Z —z), (iv)
the results (W), of the first decoupling approxima-

TABLE II. Expectation values of the operators p', p,
lpl, and lp )l for the helium ground state. Here, $P is
the first-order expectation value; (W))) and (P) are the
expectations in the first and second decoupling approxi-
mations with the value of the variational. parameter Z&

chosen to beZf=Z -~; (W)0 and (e are the results
obtained by extremizing the analytic expressions for the
expectations in the first and second decoupling approxi-
mations with respect to the variational parameter Z&.

Z, =,—', [44Z + 5 —20 p, + (405Z'+ 288 y Z —112p,
'

+120'), —520Z +25)' ']
where

3
p = ——g ln2.16

(c) F» w= lp, l
+ lp, l,

16Z, 1 16 1
())') = ' ~ — —(& —z )+ —('-'+4)n2 —"-')n3)) .

3& D 37t n

In this case (W), is independent of Z, . The ex-
tremum of (W) occurs at

Cal.culation

Pekeris ~

W

(w),((„
See Ref. 11.
See Ref. 10.

108.177
105.865
81.0915

101.840
105.790
103~ 917
103.856

Operator
p2

5.8074
5.7234
5.6953
5.6953
5.6953
5.6953
5.6646

I pl

2.7990
2.8648
2.8002
2.7879
2.8002
2.7864

Ipl '

2.1410
2.0120
2.1224
2.1434
2.1288
2.1472
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tion for Z, =Z —„(v) the results of the second
decoupling approximation (W) for Z, =Z —i5„(vi)
and (vii) the results of the first and second decou-
pling approximations (W)„and (W)„respectively,
for the value of Z, obtained by extremizing with
respect to Z, the appropriate expressions (W), and

(W&.

Wherever possible we compare our results to
those due to Pekeris. For the operator P4, we ob-
serve that for helium an error of 25% in W is re-
duced to an error of 2.2/o in (W) and that (W)„and
(W), are in error by 4%. The analytic Hartree-
Fock result is in error by 2.1'%%uo in this case. The

essential equivalence of our results to those due to
Hartree-Fock may, as described earlier, be un-
derstood on the basis of Brillouin's theorem. With
each increase in atomic number this error is fur-
ther decreased as expected. It is observed that for
Z =8, the error in (W) is reduced to 0.14% where-
as W is still in error by 5.4%. This improvement
over the results of F is also demonstrated for the
case of the negative ion of atomic hydrogen H

(Z =1). In this case W is in error by 54.6% where-
as (W) is in error by only 7.8%%uz. This is all the
more interesting since with the same energy-mi-
nimized wave function a negative value is obtained
for the electron affinity which we know must be
positive since H is known to be stable.

For the kinetic energy operator P', the correc-
tion term to F vanishes for Z, =Z —&. Thus F
= (W), = (W) = (W)„where the last equivalence is
due to the fact that the value of Z, obtained by ex-
tremizing (W), is equivalent to that obtained by
minimizing the energy. The vanishing of the cor-
rection term for Z, =Z —& may be explained on the
basis of the virial theorem, "which states that for
particles interacting through a Coulomb-force law,

where (T) is the average kinetic energy Thus t.he
error in the kinetic energy must be the same as
that of the total energy obtained using an energy-
minimized Har tree -product hydr ogenic -type wave
function, viz. 2/0 for helium.

The results due to Pekeris for the average value
of the operators Ip I

and Ip I

' are unavailable and
quantitative statements regarding the accuracy of
our results cannot be made for these operators ex-
cept that they are correct to second order. How-
ever, the trend of improvement of results for the
expectation values as one lowers the power of the
operator P would tend to lead to the conclusion that
our results for the average values of Ip I

and Ip I

are highly accurate. In comparison with the Har-
tree-Pock results for helium, W for the operator
IP I differs by 2. 3%%u&, whereas (W), differs by 0.04%

and (W) by 0.4%. For Ip I
', W differs from the

Hartree-Fock results by 6%, whereas typically
(W) differs by 0.1% and (W), by 0.3%. It is also ex-
pected that these results improve further for each
higher element of the isoelectronic sequence as
was the case for the other operators. This cer-
tainly is borne out for the operator Ip I

' in com-
parison with a Hartree-Fock" calculation for the
isoelectronic sequence where the latter results are
obtained from Hartree-Fock calculations of the
Compton profile function J(q) (discussed in Sec.
III C) since

The results (IPI ')„„for the isoelectronic se-
quence are as follows:

«lpI '&HF «Ipl '&HF

1 6.1328 5 0.7396

2 2.1424 6 0.6072

3 1.3112 7 0.5152

4 0.9460 8 0.4472

In comparison with (IP I ')„„we observe that our
results for (W) and (W,) for Z &1 are the same to
three and four significant figures, the accuracy
improving for the higher elements of the isoelec-
tronic sequence. It is again interesting to note that
in this case the results (W) for H differ by only
1.6'%%uo. Thus we do expect our results for the aver-
age value of IP I

' to be highly accurate. Typical
experimental results for J(0) for He are: x-ray
scattering, "1.066+ 0.7%; y-ray scattering, "
1.071 a 1.5%; electron scattering, "1.070+ 0.8'/q.

C. Compton profiles

Recently there has been a resurgence of interest
in Compton scattering since it proves to be an ef-
fective microscopic probe of the momentum density
of electronic systems. " In the so-called impulse
approximation it is assumed that the interaction
between the photon and electrons in the atoms takes
place rapidly so that the electrons do not see a
variable potential during the interaction. The
Compton cross section from an atom containing
many electrons in this approximation is given as"

do' dg (di

dAdE dQ

where (do/dQ)» is the Thomson cross section,
and ~, the incident and scattered photon frequen-
cies, and where J(q) is the Compton profile func-
tion, defined as

Z(q) = —
~~

dk
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TABLE III. Compton profiles in the impulse approximation for the helium ground state.
Here the Jo(q) are the first-order Compton profiles, and J (q) and J(q) are the results in the
first and second decoupling approximations, respectively, all the results being quoted for the

value of the variational parameter Z& chosen such that Z&
—-Z —5 . Jf f):(q) are the analytic

16
'

Hartree-Fock results and JMc sc,-(q) the multiconfigurational self-consistent-field results.

q (a.u.} Jo(q) Jo (q) J (q) JMc-sn:(q)

0.0
p.1
0.2
0.3
p 4
p. 5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4
1,5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.0
3.5
4.o
4.5
5.0

~See Ref. 12.
"See Ref. 1p.

1.0060
0.99549
0.964 79
0.916 36
p.853 85
0.781 57
0.703 89
p.624 80
0.547 60
o.4v4 v4

0.407 83
0.347 73
0.294 72
0.248 64
0.20906
0.17537
0.14691
0.122 99
0.102 97
0.086 267

0.072 351
0.060 769
0.051 131
0.043 109
0.036426
0.030 852
0.026 195
0.022 297
0.019029
0.016283

0.013969
0.006 750 6
0.003 469 7

0.001 885 2

0.001 075 7

1.0612
1.0483
1.0108
0.952 26
0.877 80
0.793 27
O.VO438
0.616 04
0.531 99
0.454 73

0.385 63
0.325 13
0.273 04
0.228 76
0.19145
0.160 25
0.134 25
0.112 64
0.094 705
0.079 818

0.067 449
0.057 157
0.048 575
0.041 402
0.035 392
0.030 341
0.026 085
0.022 489
0.019 441
0.016 850

0.014 643
0.007 521 1
0.004 076 6
0.002 3152

0.001 369 7

1.0717
1.0583
1.0195
0.959 09
0.882 36
0.795 50
O.7O44V
0.6143V

0.529 01
0.450 92

0.38140
0.320 83
0.268 92
0.22497
0.188 11
0.15737
0.13184
0.11067
0.093 131
0.078 590

0.066 516
0.056 469
0.048 088
0.041 007
0.035195
0.030 244
0.026 065
0.022 525
0.019519
0.016959

0.014 771
0.007 677
0.004 192 2
0.002 397 1
0.001 425 7

1.0 705
1.0568
1.0172
0.955 71
0.87818
0.791 04
0.700 36
0.61115
0.527 04
0.450 28

0.382 00
0.322 43
0.271 22
0.227 68
0.190 97
0.160 19
0.134 47-

0.11304
0.095 201
0.0 80 346

0.067 972
0.057 651
0.049 027
0.041 808
0.035 751
0.030 656
0.026 359
0.022 727
0.019 648
0.017 030

0.014 780
0.007 606 5
0.004 1300
0.002 351 9
0.001 396 2

1.068
1.055
1.015
0.954
0.876
0.788
0.698
0.609
0.525
0.449

0.381

0.271

0.191

0.135

0.096

0.069

0.031

0.015

with q= K ~ p/~ K~ being the projection of the elec-
tron momentum p on the scattering vector K=k,

k2 ky and k, being the initial and final photon mo-
menta, respectively.

An analytic expression for J(q) in the second de-

I

coupling approximation is given below, and as in
the previous calculations the results of the first de-
coupling approximation may be obtained by setting
the factor D to unity:

J'(q) = Jo(q) +J,(q), Jo(q) = 16Z,'/3m(q2+Z, )

1 Z,'[3 + 4 ln2 —~x6(Z -Z, ) ] 4Z', q'[8 (Z —Z, ) —5] 27 23 q' 73Z~~ 3
vD L' L' 32L 32L2 32L2 8M

q(3q'+8Z,'q'+9Z', ), 2qZ, 3(4 +A.) 9 q
Z L3 q +3Z 8Z Z2 Z,
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where

L= (q'+Z,'), M = (q'+9Z,') .

In Table III we present results of various calcula-
tions of the Compton profile in the impulse approx-
imation: J'p(q), J'(q), and J(q), the results of the
first-order, first and second decoupling approxima-
tions with Z, = Z ——,'6; J„„(q),the analytic Hartree-
Fock results; and J„csc„(q), the multiconfigura-
tional self-consistent-field calculations which in-
corporate non-Hartree-Pock correlation effects.

In comparison with the MC-SCF results for q=0,
we observe that J (0) and J(0) differ by only 0.7%%up

and 0.1%%up, , respectively, and thus that (~P ~
'), and

(~p~ ') differ by the same percentage. In the range
0 &q &1.2, J (q) and J(q) differ by less than 1.3%%up

and 1%, respectively. For the median range of q

this difference never exceeds 3%. However, for

q =3, the results for J'(q) and J(q) are exact to
the accuracy quoted for the numerically obtained
MC-SCF results. The improvement over the first-
order calculations in each instance is substantial.
It is also observed that J (q) and J(q) are essen-
tially equivalent to the analytic Hartree-Fock re-
sults, being correct to two, and at times three,
significant figures. Thus in this problem the ef-
fect of correlation proves to be fairly negligible.
This conclusion tends to agree with the results of
recent calculations for the helium" and neon" "
atom ground states that the effect of correlation on
closed-shell systems appears to be negligible.

In conclusion, we note that together with the re-
sults presented in this paper and those in Refs. 2

and 4 we have applied variational methods for ob-
taining single-particle expectation values and the
reduced single-particle density matrix, to derive
for the helium ground-state isoelectronic sequence
accurate, one-parameter, analytic expressions
for all single-particle properties of interest in both
configuration and momentum space. The study of
other many-electron atoms by these variational
methods is being pursued.
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