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1/Z-expansion study of the 1s 23 S, 1s 2s2p I', and 1s 2p 'S states of the beryllium
isoelectronic sequence
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A Z-expansion procedure is used to obtain eigenvalues and eigenfunctions for the 1s'2s' 'S, 1s'2p' 'S, and
1s'2s2p 'P states of the beryllium isoelectronic sequence. The degeneracy effects associated with the 1s'2s' 'S
and the 1s'Zp' 'S states are included to every order in the perturbative procedure. Z expansions of the dipole
length and dipole velocity forms of the oscillator strength for the 1s'2s 'S-1s'2s2p 'P and 1s'2s2p 'P-1s'2p'
'S transitions are compared with the results of calculations using individual values of the nuclear charge Z.

I. INTRODUCTION rvhere

In recent papers, "selected states of the lithium
isoeiectronic sequence (1s'2s 'S, 1s'3s 'S, 1s'2p 'P,
ls'3p 'P, and 1s'3d 'D) were studied using a 1/Z-
expansion method. ' In this paper we extend the
study to states of the beryllium isoelectronic se-
quence which are degenerate in zero order. Z ex-
pansions for the energies and eigenfunctions of the
1s'2s' '8, 1s'2P' '8, and 1s'2s2P 'P states of the
entire beryllium isoelectronic sequence are cal-
culated and used to obtain Z expansions of the
oscillator strengths for the 1s'2s' '$-1s'2s2p 'Q
and the 1s 2s2P 'I'-1s 2P 'S transitions.

II. THEORY

The eigenfunctions and eigenvalues are solutions
to the nonrelativistic Schrodinger equation
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These equations are equivalent to the variational
statement &J„'=0, where the function J'„' is ob-
tained by substituting Eqs. (3) and (4) into the func-
tional
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where r; is the position vector (in atomic units) of
the ith electron with respect to the nucleus. The
Z-expansion method is developed by choosing the
unit of energy to be Z' a.u. and the unit of length
to be Z ' a.u. If H~ is the hydrogenic Hamiltonian
and V is the interelectronic repulsion term,
V= P';&&1/~ j; —p,. ~, where p; =r;Z a, .u. , the Ham-
iltonian is given by

Following Dalgarno and Drake' we introduce the
trial form

(
y(s&) gg(s)

( ~ )

where one of the functions, Q„, is (&((o& and the set
satisfies

&y, ((&,(y, ) =~„&„., a, a'=1, 2, . . . , X

H=IIo+(1/Z) V .
The eigenfunctions and eigenvalues may be ex-
panded in the form

(2)

This leads to the iterative solutions
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S-1 S

E„"=&y„'"I vip(„'&- g'Q'E„"' " "&y(")Iy('
r=p t=p

(13)

E(28+ 1) (~(s)
I VI ~(8)& g g E( os+ t r-t)(~{r)

I
-~(t)&

r=p t=p

(14)

S-1
E(8) (y(s-t)

I
Vly(o)& gE(t)(y(s-8) ly(o)& (12)

Using the Wigner 2n+1 rule E„" and E„'"' can
be expressed in terms of the eigenfunction through

(S) .

side, is used to determine the s-order energy
E('). Multiplying Eq. (17) by g(o)* and integrating
gives

S 1

E"=&y'"I vip' ")- gE'"'&(('"Iy('-")& (16)
r= 1

which is identical in form to Eq. (12).
The other n —I conditions are used to determine

g(; '), i.e., to determine the mixing coefficients
b;, ', q = 2, . . . , n (b„-=0 as will be shown below).
Multiplying Eq. (17) by $(o) * and integrating we
obtain
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where I)((')& is defined by Eq. (11) and b(;) is the
s-order mixing coefficient of

I
j(t')& with the qth

state. The s-order equation for the state
I P, & is

(H E(o)) Iy(')& = (v E(')) Iy(' '))

where the primed summations mean that the term
r = t=0 is omitted. If there is no degeneracy, these
recurrence relationships can be evaluated imme-
diately. If, however, the state under investigation
is degenerate in zero order with one or more
states of the same symmetry, this degeneracy must
be resolved and Eqs. (11)-(14)modified to account
for the degeneracy at each step in the iterative
scheme. We assume an n-fold degeneracy lifted
in first order, as occurs in the beryllium sequence
for the ls'2s' 'S and the 1s'2P' 'S states. The gen-
eral case of an n-fold degeneracy lifted in nth
order is treated by Hirschfelder and Certain. '

Without loss of generality we may assume that
the n degenerate states of Ho are tt)„q = 1, . . . , n,
and we wish to solve for lg, &. According to the
usual degenerate perturbation theory, V is diag-
onalized with respect to the Q, to give the correct
zero-order eigenfunctions ((i(o), q = 1, . . . , n, such
that

(p(')
I Vl p(i')) = E("6„, q, q' = 1, . . . , n (15)

where F-," is the first-order energy for the state
Unlike the nondegenerate case, Eq. (11) no

longer completely defines
I

g(t')&, to which may be
added arbitrary multiples of the degenerate states:
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Using Eq. (15)
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and in the velocity formulation by
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Using Eqs. (3) and (4) Z expansions of the oscil-
lator strengths may be calculated:

(23)

Having determined g(' ' one can then solve for
E,' (or E," ' and E," ' using Wigner's rule) and
continue iterating.

The oscillator strength for a dipole transition
from P„ to g„ is given (in atomic units) in the
length formulation by

S
g(r) (s-r)

r=2
(17) f Q g Sf(8)

S=O
(24)

In order that this equation be mathematically con-
sistent its right-hand side must be orthogonal to
each of the n eigenfunctions i(I(o). One of the con-
ditions, that P

o) is orthogonal to the right-hand

f Q g Sf(S)-
s=p

(25)

If the eigenfunctions are exact, the coefficients of
the length and velocity expansions are identical.
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III. CALCULATIONS AND RESULTS

The diagonalization of H, to obtain the zero-
order basis set pk and the calculation of the ma-
trix elements (Qk ~

V~ yk) were done by modifying
a configuration-interaction program written by
Schaefer. ' This program uses L-S configurations
of the form

bf Dg

where b~ is a symmetry-adapted coefficient and

D& is a determinant of atomic orbitals. The
atomic orbitals 8& are of the general form

~~=«Yi, ,~~ AH. s).
The radial function R, is expanded as a sum of
Slater -type orbitals,

fkltk t ~k [(2s) t]1/2
k

where g is the orbital exponent and n, l, mare the
usual quantum numbers. These atomic orbitals
are orthogonalized at the beginning of the program
and remain fixed during the calculation. Hydro-
genic orbitals are used for the 1s, 2s, and 2p
orbitals instead of Hartree-Pock orbitals to
ensure the correct values for the zeroth- and
first-order coefficients in the Z expansion. This
resulted in some loss of accuracy at low 8, but
ensured that the series limit for high Z was cor-
rect. The remaining orbital exponents were
guessed and no attempt was made to search for an
optimum set. The final wave function for each
state consists of 60 configurations.

The values for the orbital exponents and the
configurations used for the 'S and 'P states are
shown in Tables I and II. Using these basis sets
the wave functions and energies for the 1s'28' 'S,
1s'2P' 'S, and the 1s'2s2P 'P states of the entire
beryllium isoelectronic sequence were obtained

TABLE I. Atomic orbitals and configurations of the ls 2s and the ls 2p S states.

Atomic orb.

Slater orb.
Scaled

orb. exp. Configurations

ls
2S

ls'
ls
2S
2sl I

3S

2P
2P'
2pl I

2pl t I

3P
3P
3d
3d'

1.OO00

0.5000
0.5000
0.3675
1.5874
0.9250
0.3675
0.4500

0.5000
0.6875
1.2125
0.2840
1.2125
0.4875
1.1125
0.4625

ls 22s2

s22p
ls 22s 1$'
1S 2S1S"
ls22s2s'
1S 2S2S"
ls2s21s'
1s2s2ls"
ls2s 2s'
s21s'2

ls22s'2
ls2ls' ls"
ls ls'3s
is ls'2s"
1$21$"2s'
ls 2$ 2$
.s21s
s 22s" '

1s2s 2S
ls ls"2s"
1$22p' 2

ls22p" 2

ls22p"' 2

1$22p2p'
1$22p 2p"
1s 2p2p"'
]$22p 2p
1$ 2P 2P

22p 2p Il I

1s 2p3p

ls22p 3p
1$ 3d
1$23dt

1$ 3d3dl
2s21,s'2
2$21s"2

21 I ] II

2s2ls 2sl

2$ 2P
2S22PI 2

s22pll 2

2s 2P2P
2s 2P2P"
2s22p'2p"

1$2s ls
ls2s2s'2
ls 2s 1S'2S' (2)
ls2s ls'ls" (2)
1$2$2p 2

1s2s2pt 2

ls2s2p

1s2s2p 2p' (2)

1s2S2p 2p" (2)
ls2s 342
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TABLE II. Atomic orbitals and configurations of the 1s22s2p P state.

Atomic orb.

Slater orb.
Scaled

orb. exp. Configurations

ls
2s

ls'
2s'
Bs
ls
2s
Bs
2p
2p'
Bp
2Ptl
3p'
2pl t I

Bd
Bd'

1
2
1
1
2
3
1
2
3
2
2

3
2
3
2
3
3

1.0000
0.5000
0.5000
1.4772
0.7498
0.4125
0.8700
0.3682
0.3500
0.5000
1.5268
0.3525
0.3591
0.9800
0.6500
0.4025
1.1000

ls 282p
1s 2s2p'
ls 2s2p"
ls 28 3p
1s 2pls
ls22p ls"
ls22p 2s'
1s 2p2s"
ls 2p3s
ls22p Bd

1s 2pM
ls2s 2p 1s'
ls2s 2p ls"
1s2s 2p 2s'
1s2s 2p 3s
ls2s2p Bd(2)
ls2s2p Bd'(2)
1821s'2P'
ls'ls'2p"
ls ls Bp
1s22s'2P'
18 28 2p
ls 2s'Bp
ls 3s2P
ls Bs2p"
1s 3s3P
1s 2P'3d
ls 2P

1s 3pBd
1s23P Bd

2s2p ls"
2s2p2p' (2)
2s2p22p' (3)
ls2p 2p '2

1s2s 2p
1s2s ~2p"
ls2s23p
ls2P 22P' (3)
ls2p 23p (3)
1s2p 1s' 2s'
ls2P1s' Bs
1s2p 2s'Bs
1s2s1s'2p' (2)
ls2s ls'3p (2)
ls2s2s'BP (2)
182p ls Bd

ls2s2p'Bd
ls28 Bp Bd

using Eqs. (13), (14), and (16). Table III shows
a comparison of the eigenvalues obtained for the
series with some variational calculations of
gneiss' and Hibbert. ' The eigenvalues obtained are

understandably unable to compete in accuracy with
those more refined calculations for which orbital
exponents were optimized at each Z value; our
accuracy at each Z value could be considerably

TABLE III. Eigenvalues (a.u. ) for the beryllium isoelectronic sequence.

82282

Z expansion
Weiss
(Ref. 6) Z expansion

182282p ~P

Hibbert
(Ref. 7)

1s22p2 S

Z expansion
Hibbert
(Ref. 7)

5
6
7

8
9

10
11
12
13
]4

-24.3099
-36.5036
-51.1951
-68 ~ 385S
-88.0761
-110.2664
—134.9567
-162.1470
-191.8374
-224.0278

-24.3413
-36.5262
—51.2128
-68.4001

-23.9324
-35.9998
-50.5648
-67.6295
-87.1946
—109.2599
-133.8255
-160.8913
-190.4573
—222.5235

-23.9571
-36.0054
-50.5647
-67.6215

-35.5692
—50.0218
-66.9735
-86.4257
-108.37S7
—132.8326
-159.7872
-189.2424
-221.1981

-35.6417
-50.0871
-67.0366
-86.4873
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TABLE IV. Energy-expansion coefficients E~~' (Z a.u, ).

Order

0
1
2
3
4
5
6
7

8
9

10

j.s22s2 ~S

-1.25o ooo oo(o)
1,559 2V421(O)

-8.523 93349 (-1)
—7.906 534 38(—2)

4.266 424 46(-2}
l.909 61545 (-1)
3.852 019 09 (0)
1.289 291 95 (1)
3.s3o o2o 3o(o)

-8.442 240 86(1)
-3.348 e9136(2)

1s 2s2P P

-1.250 000 00(0)
1.682 737 60(0)

-1.062 740 15(0)
-3.347 332 77 {-1)

1.053 643 59{0)
-4.SO5 613S6(-1)
-1.344 s5e1o(1)
-6.O42 O4191(O)
. 1.9e552951(2)

7.194 578 01(2)
4.994 929 90(2)

1s 2P $

-1.250 000 00 (0)
1.veo 5v6 oo(o)

-1,216 212 22 (0)
-6.957 087 26(-1)
-4.064 794 68 (-1)

3.3O8 446 O2 (O)

2.253 794 97 (1)
8.028 664 24 (0)

-3.102 491 07 (2)
-4.974 855 44(2)

6,675 71993(3)

improved with a single optimization of the scaled
exponents used for the entire series. It should
be emphasized also that within the same basis
set, the Z-expansion results are identical to the
results obtained by diagonalizing the full Hamil-
tonian for each value of Z. Note that the series
does not converge below Z=5. The agreement
with the variational calculations of Vfeiss and

Hibbert increases as Z increases. Results are
given through Z =14, Si Xl, beyond which rela-'

tivistic effects become important. Table IV shows
the energy-expansion coefficients for the three
states.

The energy for the lowest 'S state is given to
second order by E = -1.25Z'+ 1.559 274Z- 0.852 393.
The Z expansion of the Hartree-Fock energy to
second order is' E""' = -1.25Z2+1.571001Z
—0.805 468, giving E""= -0.011727Z —0.046 925
for the correlation energy. The semiempirical
values for E~') of -0.880 (Ref. 9) and -0.875
(Ref. 10) suggest that our value of E~'~ has not
converged. A larger calculation using 150 con-
figurations resulted in a value for E ' of
-0.861 33.

The dipole length and velocity values for the
2s' 'S-2s2P 'P and the 2s2P 'P-2P' 'S transitions

TABLE V. Comparison of oscil. lator strengths calculated by the Z-expansion method with
other works for the 1s 2s S-1s 2s2p I transition.

Z expansion Ref. 7 Ref, 13 Ref. 14 Ref. 15 Ref. 16 Ref. 17 Ref. 18

Ov

f)
f,

N'v frf V

f.
pvl f)f.
Nevis f &

f V

Na vries f &

f
Mg ix f

f,
Al x f)

f V

fg
f

0.777
0.803
0.634
0.651
0.530
0.548
0.456
0.473
0.399
0.417
0.356
0.372
0.321
0.336
0.293
0.306
0.269
0.281

0.788
0.756
0.625
0.5SO

0.524
0.498

0.760
0.780
0.605
0.631
0.513
0,525
0.435
0.464
0.384
0.408

0.261
0.265

0.787

0.644

0.543

0.416

0.373

0.339

0.287

0.770
0.843

0.517
0.570

0.840

0.679

0.569

0.432

O. V65

0.515

0.764

0.614

0.513
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TABLE VI. Comparison of oscillator strengths calculated by the Z-expansion method with
other works for the 1s 2s2p P-1s 2p S transition.

C t'ai

Ov

Pyi

Ne vti

Navw~

Mg ix

Al x

Si x&

fr
f,
frf.
f rf.
fr
f p

fr
f,
f r

f,
frf.
f.
fr
f,

Z expansion

0.142
0.159
0.122
0.140
0.107
0.121
0.094
0.106
0.084
0.095
0.077
0.083
0.071
0.075
0.065
0.068
O. O61
0.062

Ref. 7

0.166
0.168
0.136
0.138
0.116
0.118
0.101
0.104
0.090
0.091

Bef. 13

0.173
0.163
0.135
0.144
0.112
0.129
0.101
0.111
0.092
0.096

0.062
0.064

Ref. 14

0.207

0.158

0.130

0.085

0.077

0.064

Ref, 15

0.17

0.11

Bef. 16

0.158

0.128

0.108

a.re listed in Tables V and VI and compared with
various other calculations. Experimental energy
differences are used so that the inaccuracies in
the calculation are due to the transition integral
alone. The energy differences used were obtained
from Moore" for Z=6-8 and from Wiese et al."
for Z =9-14. For the 2s'-2s2p transition the
length values seem to be in better agreement with
other calculations although the length and velocity
results agree to within 5%. The length and ve-
locity results for the 2s2&-2p' transition disagree
by as much as 15% for low-Z values, the dis-

agreement reducing to 5% for Z) 12. This is
due in large part to the eigenfunction of the
1s'2p' 'S state, which is not as accurate as the
eigenfunctions of the other two states which are
the lowest states of their respective symmetries.
The agreement with experiment is good for both
transitions as noted by Nicolaides et al." The
expansion coefficients for the square of the tran-
sition integral and for the oscillator strength
with calculated energy differences are given in
Tables VII-X.

TABLE VII. Z-expansion coefficients for the 2s ~$-
2s2P P transition in the length formulation .

TABLE VIII. Z-expansion coefficients for the 28 8-
2s2p P transition in the velocity formulation .

Order

] OO

r =—~z-'8'&
r z2 ~ l

s=0
Transition element

squared

f QZ sf(s)
s=Q

Oscillator strength (with
calculated ~) Order

r =z' Z r('&
V 0 f Z-sf(s)

Transition element Oscillator strength (with
squared calculated ~)

0
1
2
3
4

6

8
9

10

1.283 18186(1)
4.977 757 96(1)
1.831 721 91(2)
5.387 997 66(2)
1.885 924 00 (3)
5.766 588 54(3)

-2.531 994 48(3)
-1.229 713 05(5)
-6.011624 16(5)
-1.532 81157 (6)
-1.955 722 12 (6)

0.00
3.1es 519v 3 (o)
6.893 15378(0)
1.772 764 22(1)
5.e4v vov 11(1)
2.287 675 15(2)
2.145 378 24(2)

-5.38O4OV 52(3)
-3.235 884 34(4)
-7.175236 99(4)

1.191458 26(4)

0
1
2
3
4
5
6

8
9

10

0.0
0.0
2.260 409 89(-1)

-1.467 080 27(—1)
-1.224 714 73(0)

2.818 717 55(0)
2.798 237 55(1)

—1.234 750 35 (1)
-5.eo6 514 93(2)
-1.280 632 01(3)

3.154 63V 83(3)

0.0
3.661 6es 16(o)
3.861 906 94(0)

-5.6VV 136 5V(O)

1.400 222 69 (1)
4.536 826 44{2)
1.182 516 72 (3)

-5.170 712 15(3)
-3,675 260 58 (4)
-5.830 878 14(4)

9.109 001 62 {4)
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TABLE IX. Z-expansion coefficients for the 2s2P ~P-
2P2 ~S transition in the length formulation .

TABLE X. Z-expansion coefficients for the 2s2P ~P-
2P2 ~S transition in the velocity formulation.

Order

0
1
2
3
4
5
6
7
8
9

10

1Z' =— g -sos)
r -&2

S=

Transition element
squared

1.116818 14(1)
3.523 053 58 (1)
6.343 3S6 51(l)
1.254 523 54(2)
1.11S646 O3(3)
8.097 762 95(3)
3.144 352 3O(4)
8.921 579 62 (3)

-v.65o 933 5s(5)
-5.595 444 53(6)
-2.oov 113oe{v)

f Z sf(s)
8=

Oscillator strength (with
calculated ~)
0.0
8.029 058 30(-1)
1.390 13367 (0)

-1.731 824 21(O)
-1.682 068 25(1)

4.623 793 04(1)
V.32V O35 5S(2)
2.15o 919vv(3)

-7.239 870 80(3)
-8.597 04348(4)
-3.124 3os ev(5)

Order

0
1
2
3

5
6

8
9

10

r„=z' z-'8'
8--

Transition element
squared

0.0
0.0
1.137 166 95(-1)
7.744 298 40(-2)
2.1S5e34 3O(-1)

-6.470 517 12 (0)
-3.829 726 16(1)
-9.064 585 12 (0)

5.804 194 39(2)
1.908 301 87 (3)

-3.891 944 61(3)

S=0

Oscillator strength (with
calculated bS)

0.0
v. o3o o6s 59(-1)
1.479 255 82 (0)
5.809 81964(0)

-1.726 269 68(1)
2.465 49O1V(2)

-6.726 129 31(2)
V.S24 35e eo(2)
9.1192v 5 34(3)
1.102 17380(4)

-1.245 2O5 OO(5)
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