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Comment on "Intensity-dependent ionization potentials for H and He in intense laser beams"*f
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It is argued that a straightforward physical interpretation of the intensity-dependent ionization potentials

computed by Choi, Henneberger, and Sanders is not possible.

In a recent article in this journal, Choi, Henne-
berger, and Sanders' have reported ground-state
energies for one and two electron systems in the
presence of a potential which is purported to ac-
couI ~ for a portion of the interaction between a
linearly polarized laser field and the given atomic
system. The potential was derived according to a
method proposed by Henneberger, ' a method per-
haps best described as a strong-coupling method.
The authors have interpreted the difference in

energy between the ionization limit and the cal-
culated ground-state energy as an intensity-de-
pendent ionization potential for the system. In the
examples studied these ionization energies are less
than those in the absence of the laser field, tending
to zero as the field strength becomes enormous.
Similar though quantitatively different results have
been found for elliptically polarized light. ' Though
the authors caution that no direct comparison to
experiment is possible until the newly computed
ground-state wave functions are used to compute
the transition probabilities to the continuum, the
hope is plainly entertained (and stated more ex-
plicitly elsewhere ) that dividing the intensity-
dependent ionization energy by the photon energy
should yield an "effective number" of photons
needed to ionize the atom.

It is the purpose of this Comment to show that
any straightforward interpretation of either the
intensity-dependent ionization potentials, or the
transition probabilities computed according to
the Henneberger scheme, ' is at best misleading.
The arguments presented are arguments of prin-
ciple based on the simple model of a single atom
interacting with a given classical external radia-
tion field (as assumed in Ref. 2). These observa-
tions do not preclude the possibility that sensible
physical approximations involving portions of the
actual physical system not included in the model
(as, e.g. , the relaxation times of a gas} might
lead one to conclude that the calculated quantities
do in fact correspond to experimental reality. Be-
cause we have not been able to think of any such

y~(«, ) = U~(«„«~)(1(«,)

where gz is the interaction-picture wave function.
If the interaction V~(«) is turned on at «=«, , then
the probability that a transition has occurred from
an initial Heisenberg state li ) (Holi)=E,.li)) to a
final Heisenberg state l f) is given by

I';-g(«, «;) =l&flU («, «;)li &I'. (4)

%'e want to emphasize that it is the quantity indi-
cated in E|I. (4) that must be calculated according
to conventional quantum-mechanical interpretation.
Our whole point is that the Henneberger method
does not calculate the matrix elements of UI. This
will become apparent below.

The Henneberger method consists of making a
time-dependent unitary transformation Qs(«, «, ) to
a new picture (which we denote as the Henneberger
picture) according to the rule

fq («) =0„(«,«0)g„(«).

(Here and throughout this paper (s is the wave
function in the Henneberger picture, not the Hei-
sent:erg picture. Heisenberg states of H, are un-

argument, we believe that it is prudent to view the
results of Choi, Henneberger, and Sanders' with
due caution until reasoning to the contrary is pre-
sented.

Our argument is as follows. With Henneberger, '
we consider for simplicity a one-electron atom
with infinitely heavy nucleus bound by a potential
Vo and interacting with an external classical radia-
tion field specified by a, vector potential A(«) In.
the SchrMinger picture the Hamiltonian H of the
problem is given by H =H, + V~ («) where H, and V~

are given by (I=1}

a, = (2m)-'P + V„ (1)

V~(«) =-e(mc) 'A(«)'p+e'(2mc') 'A'(«) (2)

We proceed to the interaction picture in the usual
fashion and define the conventional time-evolution
operator UI(«„«, ) by the rule
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labeled. ) The particular transformation chosen
by Henneberger is given by

Q„(t, t, ) = exp[(ie/mc) o.'p] exp[-(ie'/2mc')r],

where

t
n = A(t') dt'

to

(6)

H„= (2m) 'p 2 + V, (r + o'). (10)

We write this as H„=FPz+VH(t), where H„is the
time-independent portion of H„. Henneberger sug-
gests that we use H~ to compute transition proba-
bilities because H„must represent the same phys-
ics as H. In particular, the scheme consists in
finding eigenstates of H„' and using Ve(t) as the
perturbation. Defining a Henneberger interaction
picture in the obvious fashion, this leads to the
calculation of the time-evolution operator U„, in
the Henneberger interaction picture. The following
relation between Uz and U« is easily established:

U, (t„t, ) = I'(t„ t, )U„,(t„t, )I' '(t„ t, )

In Eq. (11), & is given by

I'(t„ t ) = epx(iqt, )Q„(t„t,) exp(-iH'„t, ). (12)

Equation (11) is the key to our discussion, for it
shows that U~ and U«are not the same operators.
We explore the ramifications of this identity be-
low.

I et us begin with an interaction potential A(t)
which vanishes for t&t, [or if we wish to .let
t; - -™,lim, . A(t, ) =0]. This corresponds to
the actual experimental situation. In this event,
to in Eqs. (6)-(8) is taken to be t, , so that Q„(t,t, )
=1 for t«;. This is sensible because 0„ is in-
tended to account for the interaction with A(t) and
there is no interaction for t&t;. It follows that
H„'=8,. This is true because for «t;, HH =H=H»
so that the only part of the Hamiltonian which is

r = &'(t') «'. (8)

This particular transformation has the property
that in the dipole approximation for A(t) (which we
henceforth assume), g„represents a free electron
when V, =O. Thus, if V~ may be considered large
compared to V„we may effectively generate some
sort of strong-coupling expansion.

In the Henneberger picture, the evolution of the
system is governed by a new Hamiltonian H„given
by

H~ —Q„HAH + lQ„QH.

For the Hamiltonian given by Eqs. (1) and (2), and
the transformation (6), He is explicitly given by

e'0' 2
v dtl ~(tl)e-lot

2plc (15)

and &(t) is given by Eq. (7). Inspection of Eqs.
(14) and (15) shows that v and v„are not the same.
We are forced to conclude that the matrix elements
of U„, are not the transition amplitudes we are
seeking. Instead, they are related to the transition
amplitudes by taking matrix elements of Eq. (11),
a fact which may be explicitly verified for the case
of the harmonic oscillator.

What are the matrix elements of U«~ They are
simply the transition amplitudes in the Henneberger
picture. The use of U« for calculating transition
probabilities requires the validity of making obser-
vations in the Henneberger picture. This is our
primary conclusion. However, because Henne-
berger appears to have shown in Ref. 2 that per-
turbation theory in the new picture (in powers of e)
yields the same results as conventional perturba-
tion theory, we wish to make several more points.

The reader might expect that since the Henne-
berger and Schrodinger pictures agree for t & f„
that they should agree again when the interaction is
turned off at t =t&. This would require I'(t&, to) =1
and establish the identity of U~(tz, t, ) and U«(tz, t;).
Unfortunately O„depends on the time integral of
the interaction &(t). Only in the most fortuitous of
circumstances could one expect o.'(t&) =0. Thus,

constant throughout all time is Ho. (If there were
some other constant Hamiltonian Ho, then it would
be constant for t &~, as well, because by definition
it is constant. ) Thus, observers in both the Schr o-'
dinger picture and the Henneberger picture would
agree upon the states which are to be used for
calculating transition probabilities, the Heisen-
berg states of H, . But by Eq. (11), U«and U~ are
not the same, so that these two observers would
disagree on the transition probability.

To make this clear we consider the concrete ex-
ample of a one-dimensional harmonic oscillator,
with the polarization of A in the direction of the
oscillator. For this case we have Vo=&mOx', 0
being the natural oscillator frequency. We allow
a general wave packet A =e„f(t), but require f(t)

0 as t- —. The transition probability from
the ground state ~0) at t =-~ to an excited state

~
n) is easily calculated to be'

P, „(t)=(v"/n!)e

where

e'0 , '2
v = ' dt'f(t')e '"'2' C

The transition probability in the Henneberger pic-
ture P", z has the same form as in Eq. (13) with
the substitution v- v„, where
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UI and UH~ are not equal even after the interaction
is turned off. In our concrete example we may see
this by performing an integration by parts on Eq.
(15) to yield

e'0
H 22180

2
dii f(ti)& ioi' -&( i)&- jot

(16)
If the second term inside the absolute value symbol
were absent, then vH would yield the correct tran-
sition amplitude. For I'& I'&, this term becomes
o.(t&)e

'"' which does not take on a definite limit
as t-+. That is, vH becomes singular in this
limit. Notice that this does not happen to v, which
is perfectly well behaved for a smooth wave packet
which tends to zero as t-+. Of course, if we
arbitrarily set these unwanted singular terms to
zero, we reproduce the correct answer.

The appearance of singular terms as t-+
(even with well-behaved wave packets) is a general
feature of the interaction in the Henneberger pic-
ture. This is easily seen from Eil. (10), because
o'(t), which specifies the interaction, does not
tend to zero as t-+~. These terms manifest
themselves in a powers-of-e perturbation theory
in the following fashion. Noting that AH depends
upon 8, we may expand both sides of Eil. (11}in
powers of e and establish the relation between the
powers-of-e expansions of UI and U». Denoting
the power of e for the relevant quantity by a super-
script (n), we find the first term yields Uz"'=Uzi'
+I'"' The second term gives U"' =U"'+I""'U"'
+I'"', while the general term gives UI"' =U„'",'

+(terms involving I'"', . . . , I'"'). For finite times
and well-behaved wave packets, these extra terms
involving ~"', . . . , I'"' are invariably present and
nonzero. As I' +, both UHI' and these extra
terms become singular, though their sum (which
is Uz'"') is well behaved. Reversing the emphasis,
the above relation tells us that U„'",' = U,'"'+ (extra
terms) This m. eans that we can always algebrai-
cally rearrange U„'",' to look like U,'"' plus extra
terms. If these extra terms are ignored because
they become singular at t-+, we have then
"proved" the equivalence of the two perturbation
series. The above remarks may be explicitly
verified for our concrete example.

Of course, Henneberger is not suggesting that
we do a powers-of-e expansion of UHI, but rather
that V„be used as the perturbation, the hope being
that this series converges more rapidly than the
V~ perturbation series. However, to yield easily
interpretable answers, Eq. (11}must be used to
bring these approximations for U«back to the
Schrodinger picture, thus giving an alternate ex-
pansion for UI . A particular example of a circum-
stance in which such a strong-coupling expansion

is very sensible is noted below. Our point is sim-
ply that the matrix elements of UHI are not to be
interpreted in any obvious fashion as the physical
transition amplitudes. This lack of direct experi-
mental interpretation also holds for the energy
shifts in the Henneberger picture. This is made
clear below in the context of an example.

We saw above that for a packeted radiation field,
no energy shifts were introduced into the discus-
sion. It is natural however, to consider the limit
where the packet becomes purely sinusoidal. This
causes no particular difficulty so long as we re-
main in finite time, but does raise problems in in-
finite-time. (This can be seen in our harmonic
oscillator example, where I'0 „becomes badly de-
fined in this limit). Physically, this means that it
is necessary to work in finite times, and then
prescribe some method (e.g. , relaxation-time
averaging) for obtaining long-time results. In this
circumstance, it is natural to define the "constant"
part H~ of the Hamiltonian H„as the time average
of the Hamiltonian. This need not be the same as
H„as the interaction term need not have vanishing
time average. This was the procedure used by
Henneberger' to derive the potential used by Choi,
Henneberger, and Sanders. ' That the energy levels
of IP„are not directly interpretable may be seen
from the exactly soluble example of a two-level
atom interacting with a circularly polarized radia-
tion field. ' (The harmonic oscillator example is
not particularly illuminating because all the levels
are shifted by the same amount. )

The Hamiltonian for this problem is H =Ho+ V,
where

Ho=-,'&o'„V =-,'P(o; cos&t+o, sin+t), (17)

and the v, 's are the standard Pauli matrices. The
exact solution to this problem shows a single reso-
nance at & =~. To carry out the Henneberger
program, we must define the analog of Eq. (6) for
the present system. The analog of an unbound
particle is to take ~ =0. If ~ =0, one easily verifies
that the operator QH given by

A„(t) = exp(--,' i &to,) exp[--,'it(pv, —~o,)] (18)

carries the Schrodinger wave function to one which
is constant in time, i.e., a free spinor, and hence
qualifies as a Henneberger transformation. Carry-
ing out the steps indicated in Eil. (9), and extract-
ing the time-averaged portion of HH, we find that
H'„and V„are given by

4P PH' ———v ——oH 2 g 3 g 1 (Ie)

A. pm NP PV = ——cos8& o + cosN v + —sin@ o
2 3 gR 9

(2o}
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where

K=A'. (d/8,

g +(~2 ~ P2)1/2

(21)

(22)

+(y, [cos(e —8)t —1] . (23)

In this expression we see the resonance denomi-
nator & —6) as expected. Following Henneberger,
we take the matrix element of U„'I" between the
"shifted" eigenstates u, (FPu, =E,u, ), square, and
take a time average to yield the time-averaged
transition. probability I' + in the Henneberger
picture. One finds that I' + is given by

PH $2P2/2g2(e g)2 (24)

It is easy to show that this expression has real
poles at ~, if (P/&)'&~, while it maximizes at
& =2& (the real part of ~, ) for (P/&)'&4. We know

of no interpretation which can be attached to this
behavior. It can also be shown that taking the ma-
trix element of U„"I' between the unshifted states,
or between an unshifted initial state, and a shifted
final state leads to equally uninterpretable transi-
tion probabilities.

By contrast, if Eq. (11) is used to return U„, to

The eigenvalues of P„' are given by 8, =+2& being
the "shifted energies" for this system. The driving
frequency has also been shifted from to 0, and
we might expect the system to have a resonance
when e = 8, or &, = 2&(1 +[1—4(P/&)']'~']. We would
thus speak of a "shift" in the resonance frequency
of the system which depends on the intensity P.
Unfortunately, we know that the exact solution is
resonant at =~ for all intensities, so that any
such interpretation is incorrect.

We put this argument on a firmer footing by com-
puting the first order (in V„) transition matrix.
U„"I' is easily found to be

Up'(to) = ,
—v, +

&
v,) sin(e —8)&

the Schrodinger picture, one obtains reasonable
approximations to the exact Babi transition proba-
bility. The zeroth-order contribution to UI is ob-
tained from Eq. (11)by taking the zeroth-order
contribution to U„~ (U„"~' =1). Taking the matrix
element between unshifted states, squaring, and
time averaging, one finds

P(0) P2/2 g2 (26)

which is simply the Babi solution evaluated at
~ =0, as expected. Keeping the first-order term
in U„z given by Eq. (23), yields, by the same pro-
cedure

(26)

Although this expression runs into trouble for
large &/P, for small A/P it provides an excellent
strong coupling approximation to the exact Rabi
solution. For example, at &/P=0. 1, Eq. (26) fits
the exact solution within 1% over a large range of

It also peaks within 1% of the =~ resonance.
Further terms in U„I may be kept. The resulting
terms in U~ give a reasonable strong-coupling
expansion (&/P«1) for the Rabi solution.

It should be mentioned that a similar analysis
holds for a two-level system in a plane-polarized
field. ' In this instance detailed calculations have
been performed, ' and compared to experiment in
connection with the Hanle effect. ' The results are
in good agreement with experiment, showing that
this is a reasonable method of obtaining a strong-
coupling solution, so long as one returns to the
Schrodinger picture for comparing with experi-
ment.

We must conclude that a straightforward inter-
pretation of level shifts in the Henneberger picture
is not possible. This being the case, the utmost
caution must be exercised in ascribing any experi-
mental significance to the intensity-dependent ion-
ization potentials calculated by Choi, Henneberger,
and Sanders.
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