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Relativistic distribution functions and applications to electron beams

Thomas P. Wright and G. Ronald Hadley
Plasma Theory Division-5241, Sandia Laboratories, Albuquerque, New Mexico 87115

(Received 10 February 1975; revised manuscript received 17 April 1975)

Equilibrium and monoenergetic distribution functions in the laboratory frame are derived from first principles.
Thermodynamically consistent macroscopic properties of relativistic beam systems are defined and discussed

as a foundation for specific applications. Characteristics of superpinched relativistic electron beams such as

isotropy in the lab frame, rms cone angle of the electrons with respect to the beam axis, and the energy flux

across a unit surface at an arbitrary angle to the beam axis are obtained. These properties provide important
information on the expected symmetry of irradiation of fusion targets by focused electron beams. A linearized

kinetic theory is outlined which leads to an integral expression for the general form of the relativistic plasma

dispersion function.

I. INTRODUCTION

The continuing development of h";gh-current rel-
ativistic electron accelerators' and their fusion
applications to plasma heating in confinement de-
vices' and inertial confinement systems' has pro-
vided additional motivation for work involving rel-
ativistic distribution functions. Electron beams
produced by such accelerators can display relativ-
istic effects in either their net drift motion or
random thermal motion, or both. In some cases,
as we shall discuss below, the beams may even
approach the characteristic of a hot relativistic
gas. Although the high currents give rise to im-
portant self-field effects, 4 much can be learned
about properties of these systems without a de-
tailed treatment of self-consistent fields, merely
by examining certain moments of the distribution
function.

The relativistic equilibrium has been given pre-
viously in the rest frame' ' (zero net drift) and in
the laboratory frame. '" It is possible to develop
relativistic fluid equations by taking moments of
this distribution. " " Much of the previous work
has used manifestly covariant four-dimensional
notation. This approach is elegant in its ease of
formal manipulation, but it can sometimes obscure
physical quantities which one would like to com-
pare directly with experiment. For this reason
the authors will remain in three-vector notation
throughout. In addition, we emphasize the evalu-
ation of lab-frame quantities which are of direct
physical interest to experimenters. Analysis of
lab-frame integrals is presented which permits
calculation of some quantities which apparently
cannot be evaluated analytically by transformation
to the rest frame.

Many laboratory relativistic electron beams are
neither cold enough to use cold-beam approxima-
tions, ' "nor are they sufficiently cool to satisfy

the paraxial or two-mass approximation. " "
Therefore, we concentrate on the general form of
the relativistic equilibrium distribution function
and also derive from it a monoenergetic lab-frame
distribution function for comparison of results.

In Sec. II, we provide a thermodynamically con-
sistent derivation of the equilibrium distribution
function from first principles. Macroscopic quan-
tities such as temperature, internal (random ki-
netic) energy, and macroscopic kinetic energy in
the laboratory frame, and their properties under
Lorentz transformation, are presented. For non-
equilibrium systems such as relativistic electron
beams produced in high-current diodes, we derive
a monoenergetic form of a distribution function in
Sec. III, and discuss some of its macroscopic prop-
erties as compared to the equilibrium distribution.
Sections II and III provide the foundation for fluid
models which will be presented in a separate pub-
lication.

Applications to characteristic properties of su-
perpinched electron beams and symmetry consid-
erations for fusion pellet targets are presented in
Sec. IV. Leaving the realm of fluidlike properties
of relativistic beams, Sec. V takes a look at rela-
tivistic kinetic theory and defines a single integral
representation of the general form of the relativis-
tic plasma-dispersion function in the lab frame.
Appendices A-C contain some of the formalism
used to obtain the results given in the bulk of the
paper.

II, RELATIVISTIC EQUILIBRIUM DISTRIBUTION
FUNCTION AND MACROSCOPIC PROPERTIES

Here we derive the general form of the relativis-
tic equilibrium distribution function in an arbi-
trary Lorentz frame. The starting point taken
here follows earlier work, "and is presented for
completeness. However, the development is car-

686



12 RELATIVISTIC DISTRIBUTION FUNCTIONS AND. . .

ried further here in a thermodynamically consis-
tent definition of macroscopic properties.

Moreover, the procedure by which integrals over
the distribution function can be performed directly
in the laboratory frame opens up new applications
of the relativistic distribution function, some of
which will be given in Secs. IV and V.

Our choice of notation is as follows: The number
of particles (dN) within a phase-space volume be-
tween (x, w) and (x+ dx, w+ dw) will be given by

d N = f(x, w) d'x d'w .

We have scaled the momentum by the rest mass
times the speed of light, w =p/me. For a given
species volume element, the average particle den-
sity, momentum density, total energy density, and
scaled fluid velocity are given by

n= f(x, w) d'w,

P =m e ~v f(x, w) d'w,

e/mc', respectively, we use standard techniques"
from the calculus of variations to find the form of
f(x, w) which maximizes s:

f(x, w) =Ae "~'s'".
Evaluation of A, n, 6 in terms of physical quanti-
ties may be accomplished by substituting Eq. (10)
into Eqs. (2) and (5) giving (cf. Appendix A)

n, = I4~Z, (~n)/+~2]A

~y+g. w d SU

4nK, (nX) 86 y

where we have defined

A.
' =—1 —5 5 /o. '

and K, (o.'&) is a modified Bessel function. The
tegral in Eq. (13) is performed using the same
technique as given in Appendix A, and the deriva-
tive is performed by making use of the recursion
relation [8.485.15]," so that

6 =me' yf(x) w) d'w )

P = — —f(x, w) d'w,
n y

where

y=(1+w )' ~=1/(1 —v2)

(5)

a Z (Xo.)
K(Xn) 85 X o)

This identifies 5 as being proportional to P and
determines X = I' ' = (1 —P')' '. We now express
the distribution function in the form

and v is the dimensionless particle velocity.
We will define the rest frame as that frame in

which P = 0; any other frame characterized by P
40 and I' = (1 —P') ' ' will be referred to as a lab-
oratory frame. For convenience and later usage,
we list the relations between some laboratory (I,)
and rest (R) frame" quantities,

vi (I' —1)- - 1
vs = +

rt)2 I VL —1 I

w„= w~+ P 'L. (r —1)P ~ w~ —rP'yI. ] P,

ys = r(yl. —tY ~ w~) = ry~(1 —P v~) .
(8)

s = -kI,H = -k~ (x, w) ln f(x, w) d'w, (10)

where k~ is the Boltzmann constant. Introducing
the Lagrange multipliers 5 and o.'for P/mc and

Note that the reverse transformations are obtained
simply by switching the subscripts i. and R and re-
placing P by -P in the above expressions.

The equilibrium distribution function is defined
to be that distribution function which maximizes
the specific entropy (s), consistent with fixed val-
ues for P and e in a given laboratory frame. " The
specific entropy is defined in terms of the distri-
bution function through the Boltzmann H function, "

nn A.
'noI ~(y s .~)

4~If, (n~)

n ~&L ~ e- K P('Yg —8 ' w=
4&re, (~)

' (15a)

nsf,
4', ($)

(15b)

The invariant parameter $ = o.'/r has been used in
the last two expressions, which give the distribu-
tion function in laboratory-frame and rest-frame
variables ~ These expressions show its Lorentz
invariance'4 clearly.

Before a discussion of the parameter g is at-
tempted, a remark is in order concerning relativ-
istic thermodynamics. Throughout this paper the
authors take as an assumption the form invariance
of the equations of nonrelativistic thermodynamics.
By this we mean that all the equations of nonrela-
tivistic thermodynamics are assumed to hold in any
Lorentz frame unchanged in form. This assump-
tion then allows one to uniquely specify the trans-
formation properties of all thermodynamic quanti-
ties."

P roceeding now to the identif ication of (, we use
the thermodynamic definition of the temperature as
the derivative of the internal energy with respect
to the entropy at constant volume. " By using Eq.
(15b) in Eq. (10) and recognizing that the total en-
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ke$ n, ]e '4„=,U —k 4„)4
4 (4)),

g =mc'/ksTR .

(16)

Therefore, g
' is the rest-frame temperature

scaled by the rest-mass energy.
We now give expressions for some moments

which we will use later. The lab-frame expres-
sions can be obtained either by direct evaluation
as developed here, or by transforming to the rest
frame, "using the proper transformation of the
momentum volume element"

d'wi= (yi/ys) d'w& = I'(1+ P ' w&/ys) d'w„. (18)

ergy density in the rest frame is just internal plus
rest mass (es = Us + num c'), we obtain (23a)

+B~B~B y (23b)

with 1 the unit tensor, and where we have used
Eq. (15b) and [8.432.9]"to evaluate the integral.
The scalar pressure P~ obeys the ideal-gas law,
which can also be obtained by applying the appro-
priate thermodynamic Maxwell relation" to the
expression for the rest-frame entropy density,
Eq. (10).

We now determine the form of the corresponding
laboratory-frame expressions for these quantities.
The expressions may be obtained by direct evalua-
tion or transformation of the integrands back to the
rest frame. The total energy and momentum den-
sities in the lab frame are found to be

e~ = ns m c' + U„=n~m c' [1+ g($)/f], (19)

)4(4)=-4 () 4—» 'd K,($)
d$

The total energy density in the rest frame is ob-
tained by evaluating Eq. (4): ei = Fnim c' [1+P'/$ + p($)/$]

=F'(. P'p. )

= num c + Ui + Ki,

Pi = Fni m c [I + 1/$ + i),($)/$] p

=F'( +P )P/c.

(24a)

(24b)

(24c)

(25a)

(25b)

Here, p(() is a monotonic function which increases
from a value of & for nonrelativistic temperatures
(g» 1), to a value of 3 for ultrarelativistic tem-
peratures ($«1). The internal energy density in
the rest frame is defined as the random kinetic en-
ergy density of the particles,

Us = V(&)nz4~z .

The internal state of the system is determined by
U~, which satisfies the virial theorem only in the
nonrelativistic temperature limit.

The average momentum [Eq. (3)] vanishes in the
rest frame, since fs is isotropic . The momentum
flux tensor P is related to the pressure tensor g
(random momentum flux) by

P =—c (mcw —P/n)(w/y)f d'su=P —cP P. (21)

~R PB PR1 ~ (22)

This relation reduces to the proper nonrelativistic
expression for the pressure tensor, and is the
same form which is obtained in deriving the rela-
tivistic fluid equations by taking moments of a ki-
netic equation. Whereas the momentum ft.ux tensor
gives the total momentum flux in a given direction,
the pressure tensor gives only the flux of the ran-
dom component of momentum in a given direction.
This difference vanishes in the rest frame where
the isotropic equilibrium distribution gives

Ul, =m c' (y~ —P wi —1/F) fd'mi, (26a)

= num c'tu( $)/( F
2= eI. —cP ~ Pl, —nimc /F,

Ki = cp ~ pi —(I' —1)nimc'/F.

(26b)

(26c)

(27)

The lab-frame entropy density can now be ex-
pressed in terms of the internal energy density

Fk~( n~(e
4 F)4 (4))

' (28)

so that the thermodynamic definition of the lab-
frame temperature gives T~= FTL." Note that the
entropy density transforms as sl. = Fs~.

The pressure tensor for this relativistic ideal
gas in the lab frame can be evaluated from Eq.
(19), with the result wz =F1 =ms. The pressure
tensor is isotropic since it gives the momentum

The total energy density in the lab frame now con-
tains a macroscopic kinetic energy in addition to
the rest-mass energy and internal (random kinetic)
energy densities.

We will need explicit expressions for Ui and Ki
for a calculation in Sec. IV. Based on the assump-
tion of form invariance of thermodynamic equa-
tions, it can be shown that UL = U~. This can also
be explained physically by the fact that the internal
energy density characterizes an internal state of
the system which is independent of relative motion.
The expressions for Ul. and K~ are found to be
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flux in the fluid frame (random momentum flux in
lab frame), and we are using a distribution func-
tion which is isotropic in the fluid (rest) frame.

There are many physical systems where it is
difficult to justify the use of the equilibrium distri-
bution function; so we next consider a specific non-
equilibr ium distribution.

(i) P = fz(w~/yz) d'wz c0;

(ii) f~ ~ 0;

(iii) fz should possess a parameter which charac-
terizes randomness in momentum space (for the
equilibrium distribution this parameter is the tem-
perature).

Our investigation of possible functions satisfying
(i)-(iii) has resulted in the selection G(Q~) ~ e"' "~
as being the simplest analytical form. This result
may be obtained by multiplying Eq. (15a) by 6(w~
—so,), a procedure which has been used previously"
to obtain monoenergetic distribution functions from
other distributions. Renormalizing to the lab-
frame density [Eq. (2)] gives the form

nba&(so& —w ) a ~ wz, /~0' e
4nw2O sinh a (29)

where a is related to the drift velocity P by Eq.
(5), which gives

coth a ——

For convenience we define the ratio of the drift
velocity to the particle velocity by

b =—Py, /wo= cotha —1/a.

Note that not only is f, anisotropic in the lab frame
(for b 10), but it is also anisotropic in every other
Lorentz frame, including the rest frame. If, for
some reason, it is desired to have an isotropic
monoenergetic distribution function, then it must

III. MONOENERGETIC DISTRIBUTION FUNCTIONS

Under certain conditions in relativistic electron-
beam diodes (such as neglect of beam scattering,
time-dependent space charge, and voltage effects)
the energy of the beam particles can be considered
to be a function only of their position across the
gap. Thus at a given position in the lab frame, the
beam distribution can be taken as monoenergetic, "

f~ = 6(w ~ —zo, ) G(O~),

where Q~ is the solid angle in the lab-frame mo-
mentum space.

We are guided in our selection of G(Q~) by recog-
nizing that fz should have the following properties:

be chosen monoenergetic in the rest frame. How-
ever, a monoenergetic form in the lab frame has
a stronger physical basis for our purposes here.

The lab-frame expressions for the total energy
density [Eq. (4)], internal energy density [Eq.
(26a)], average momentum [Eq. (3)], and pressure
tensor [Eq. (21)] for the distribution f, are

2E'o = num C po, (32)

(33)

(34)

(35)

U, = n~m c'(y, —I')/I',

Pp ntmcyoP

v. =P.[1 -a(t)eses],
with es= p/p, p, =n~mc'w, p/a, and g(b) =3 —(1
—b')a/b. Note that these quantities defined by av-
erages over a nonequilibrium distribution do not
have the same thermodynamic implications as the
corresponding quantities in Sec. II.

For a given value of b, a is determined from Eq.
(31), and therefore, the anisotropic part of the
pressure tensor depends only on the ratio of the
dirft speed to the particle speed. The anisotropy
factor g is always slightly larger than b', becom-
ing equal to &' for a cold beam (b = 1). In this limit,
Eq. (31) requires a to approach infinity so that the
isotropic term vanishes, as it shouM. In the op-
posite limit of a slowly drifting beam (b & 0.1), we
find a=3b(1+ -', b'), so that P, = n~mc'w', /3yo, and
g= -', b'. It should be stressed that b is the ratio
of the drift velocity to the particle velocity, which
can be greater than the ratio of either of these ve-
locities to the speed of light.

Note that, for the equilibrium distribution func-
tion, P is simply a Lorentz-frame label, whereas
here tY designates the specific lab frame in which
the distribution f, is chosen to be monoenergetic,
as distinguished from other arbitrary Lorentz
frames.

IV. SOME APPLICATIONS TO RELATIVISTIC ELECTRON
BEAMS

In this section we investigate some applications
of the previously developed formalism and expres-
sions to problems of electron-beam irradiation of
fusion pellets. " The first important concept to be
discussed is that of a superpinched electron beam, '
which is necessary to concentrate the electron-
beam energy on a small target with dimensions on
the order of a millimeter. To achieve a reasonable
degree of symmetric loading, it is desirable to
have the superpinched beam behave as nearly as
possible like a hot electron gas. At the very least,
its internal energy in the lab frame should exceed
its drift kinetic energy. In terms of the quantities
defined in Sec. II, the ratio B = U~/K~ for the equi-
librium and monoenergetic distributions considered
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previously is given by

v(()"'q =
(r —1)[(r+1)(I+q)+ ~r]' (36a)

(36b)

From these expressions it is clear that there is
some critical drift speed, with I', & 2, above which
the beam will always have more drift kinetic ener-
gy than internal energy in the lab frame. From
Eq. (36b) we see that

propriate distribution function. This quantity gives
a measure of the rms angle of incidence of beam
electroris on a plane surface normal to the beam
axis, which can be compared with particle simula-
tions, and is important input for Monte Carlo en-
ergy-deposition calculations.

For the equilibrium distribution, it is possible
to perform the integrations in the lab frame by the
methods of Appendix A, or by transformation to
the rest frame. However, it is easier to use Eq.
(ll) to express Eq. (38) in terms of derivatives of
the normalization integral:

K2Z 8 K2Z
(39)

From Eq. (36a), for a relatively cold beam ($» 1),
we find I', =1+7/$, and for a hot beam I', = 1.26.
In both PIC simulations and relativistic fluid-en-
velope calculations, ' superpinched electron beams
seem to have drift velocities which satisfy I'&I"„
and thus have more energy in random thermal mo-
tion than in axial-drift motion.

It may seem surprising at first that, regardless
of the thermal-energy content of the beam, it can
have characteristics of a cold beam for moderate
values of I'. Moreover, this result does not quali-
tatively depend on the form chosen for the distri-
bution, but in fact arises from relativistic mechan-
ics. To illustrate this, we consider a single par-
ticle which has a velocity component v in the axial
direction in the lab frame. We define a "particle
frame" as that frame translating axially with speed
v. In this particle frame, the particle velocity is
strictly perpendicular to the x axis, say of magni-
tude u along the y axis. From Eq. (2) we have the
lab-frame velocity components V„=v, V~ =u/I'.
Defining a transverse kinetic energy content of the
particle in the lab frame by E~=mc'[(1 —V'/c') '~'
—1], and a longitudinal kinetic energy content by

„E= cm'[(I —V'„/c') '~' —1], we find that their ratio
lies in the range

E 1 —p
E„P(I'—1) '

with p=v/c, I'=(1 —p') '~'. Therefore for I p&1
(I'& W2) there is more energy content in the axial
motion in the lab frame than in the transverse mo-
tion, regardless of the size of u & c. We will find
this sensitivity of lab frame averages to the drift
velocity occurs in subsequent calculations also.

Turning now to the computation of another im-
portant relativistic electron-beam parameter, we
define the rms cone half-angle of beam electrons
in the lab frame with respect to the beam axis by

sin'8 =&P',)/&P'),

where the brackets indicate averages over the ap-

with z =n A=(n. ' —5')'~'. The differentiations are
readily performed, and n and b are given their
physical meanings to yield

sin'8, = —', [1+—p'I'gK, (()/&, ($)] (40a)

sin'8, „-2/3(21"'- 1), (41)

where we have used the identity I' = 1+ P'I"'. Us-
ing this upper bound, we see that &«drops rapidly
from its isotropic value as the beam drift velocity
increases, falling to less than 11' for I" = 3. Simi-
lar behavior is obtained from Eq. (40b).

A distribution of electron angles of incidence
near the beam axis at the anode plane was obtained
from a particle simulation" of a superpinched
beam. The averages over this distribution gave
0, , =32.5 and a beam drift I'=1.46. Using this
value of I" in Eq. (41), we find 8„~29, and using
the value y, =2.2 (also obtained from the simula-
tion), Eq. (40b) gives 8, =31.5'. This agreement
is quite good, considering the crudeness of the
distribution generated from the simulation.

Although the results obtained thus far indicate
that superpinched beams display some tendencies
toward hot gas behavior, it is important to quantify
the results further by considering the energy flux

Using the same procedure for the monoenergetic
distribution, we obtain

sin'8, = 2b/a,

with b and a defined by Eq. (31). There are simi-
larities between Eqs. (40a) and (40b). For a com-
pletely stagnated beam (b-0), we find from both
of these expressions that the rms cone half-angle
of an electron in a system with zero net drift is
54.7' with respect to an arbitrarily chosen axis.
The factor involving P, in Eq. (40a) increases mono-
tonically from a value of 6 for $ & 1 (hot beam), to
a value equal to g for $» 1. Thus, for hot beams,
the rms angle 6),q becomes independent of the beam
temperature, allowing us to fix an upper bound on

6eq given by
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4' = -mc' e, vz, (y~ —1)f d'tez,0'

=-mc e ~
S w~(l —I/y~) f d'zv~,

where the momentum integration is over the sub-
space 0' defined by e, w~ & 0, corresponding to
a flux into the surface. Choosing the e, axis as
the polar axis in momentum space, the expression
for the flux can be written as

carried across a surface with unit normal e, which
is at an angle 8 with respect to the beam axis.
Thus we can consider the symmetry of the energy
flux across the surface of an arbitrarily shaped
target.

The one-way energy flux across the surface is
defined by

0 = -mc' u' dm sin8' d 8„(1—I/y)

x [a cos8„f(r, w)],

(42)

where we have dropped the laboratory subscripts.
This expression must be evaluated in the lab
frame, since a transformation to the rest frame
in this case hopelessly distorts the momentum sub-
space 0', making a closed-form evaluation impos-
sible. However, even the lab-frame evaluation is
sufficiently abstruse that we have given the details
in Appendix B. Designating the component of the
drift along e, by e, P = —P cos8, and defining the
quantities v=Pr cos8, p, '= 1+v', q =in(~~+v), we
find the energy flux into the surface for the drift-
ing equilibrium distribution to be

with

5 P4g c,(pg)', + v K,(g)+K, (q, g)—
g~p

(43)

c, = 4g'(p, '+ v') —1, c, = c, —p(p, '+ v')/I", c, =1 —p(p, '+ v')/I'+ v'(4 p, '+1),

c, = v'[(3g'+ v')/3 —p/r], c = —', v4(1 —1/gr), c,= v'/15'',

where K,(() is a modified Bessel function and
K,(q, g) is its associated incomplete Bessel func-
tion." For a stagnated beam, v = 0 (g = 1), and Eq.
(43) reduces to

f

The relative degree of anisotropy due to net beam
drift motion (ignoring beam-profile effects) is ob-
tained by taking the ratio of Eqs. (46) and (44) to
obtain

mc e'
4'(p = 1) = n~ (3+ 2$)

2 $3
(44) Q(P, 8) = 1+ F(h)P cos8,

with

(47)

so that the only anisotropy possible would arise
from a nonuniform beam density (nl & constant).
For a relatively hot beam ($ 6 0.1), we obtain

+(&"0 I) =&r.(c&B7'R/4p')

x[4 p'(p, 'y v') —1+8vp'

—(p,'+ v'+2vp, ) p,']/r], (45)

whereas in the exact cold-beam limit ($» 1) we
find the expected result

e(g»1) =n mc'v(1 —I/r)
=n~(mc'r)(cP)(r —1) cos8.

Since our previous results imply that isotropy
can only be approached in the lab frame for pr s 1,
we obtain the expression for the energy flux cor-
rect to first order in Pr by setting p, = 1 in Eq. (43)
and keeping only the term linear in v [K,(li, $) -v']:

n mc34'(Pr«1) = ((3+2$)e '/$'
2K, ($)

+ P[K,($) —K, (g)] cos8] . (46)

~(g) h e [K3($) K2(h)1 2 67
(2]+3)

Therefore, we see that a 10% requirement in sym-
metry over one hemisphere of a target pellet for a
uniform beam requires P& 0.0375 (V„;«&10' cm/
sec). This appears to put severe restrictions on
the degree of beam stagnation. However, we have
neglected the possible isotropizing effect of the
large surface scattering of high-energy obliquely
incident electrons on a high-atomic-number target.
More than half of the incident electrons may be
scattered and subsequently returned to the target
by the diode electric field and beam self-fields.
However, if further studies of this scattering ef-
fect do not appreciably relax the constraint ob-
tained above, then we can infer a high degree of
beam stagnation from experiments" which show
behavior characteristic of symmetric loading.

V. APPLICATION TO RELATIVISTIC KINETIC THEORY

Although research into relativistic kinetic theory
has been performed for some time' ' " ' the con-
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tinuing development of high-current relativistic
electron beams is providing a further stimulus for
studying relativistic beam-plasma interactions
which concern beam propagation or plasma heat-
ing. The basic approach taken in most of the work
to date is based on either a cold beam where the
beam-particle velocities are all parallel, or on
the paraxial or two-mass approximation. The lat-
ter case applies to a cool beam, where the trans-
verse momentum of beam particles is small com-
pared to their total momentum. The exact form of
the relativistic distribution, Eq. (15), can then be
simplified by expansion of y = (1+m')'~' and renor-
malized to a bi-Maxwellian distribution with a
parallel mass m~~ = I'm and a perpendicular mass
m~ = I'm.

However, many high-current beams generated
in the laboratory may not satisfy either of these
simplifying assumptions. Therefore, it is neces-
sary to develop the theory using the general form
of Eq. (15). The purpose of this investigation (to
provide a foundation for exact relativistic kinetic
theory) is identical to that of recent work, "but
the approach is different. Rather than performing
the analysis in manifestly covariant four-vector
notation, we follow the philosophy of the other sec-
tions of this paper in remaining in three-vector
space, where our expressions may be directly
related to physical quantities. We will find an in-
tegral form for the plasma-dispersion function in
the lab frame below which can be reduced to an
expression obtained elsewhere in the rest frame of
a species.

Since we will be concerned with laboratory-frame
quantities throughout this section, the subscript
on laboratory variables will be suppressed for con-
venience. For later comparison of results, we will
need to make use of the Lorentz-invariant quantity"

) =P n„q„cP„, (50)

oPn q, (51)

where n and P are defined in Eqs. (2) and (5).
Defining a current-neutral, charge-neutral, ex-

ternal-field free-plasma equilibrium allows us to
look for small deviations from such an, equilibrium
by assuming that the distribution functions deviate
by a small amount from their equilibrium form.
Solving the linearized Vlasov-Maxwell equations
by a standard procedure, ' we obtain the Fourier-
Laplace-transformed self-consistent plasma elec-
tric-field response to initial perturbations (a),

R ~k 4/ (52)

where e is the radian frequency and k is the wave
vector in the lab frame, which are related by the
dispersion characteristics of the wave.

To begin the analysis, we consider a multicom-
ponent plasma with species designated by n. Not
all species need to be relativistic, but we assume
that elastic and inelastic collisions are negligible
so that the number of particles in a given species
remains constant and the evolution of the particle
distributions is governed by the collisionless Vla-
sov equation:

fa + w, fa + qa! E+ ~g, fa 0 (4g)
BI; y Ox m„y Bw

with q the charge and m the rest mass of species
n. The electric and magnetic fields arise from
self-fields as well as externally imposed fields,
and they satisfy Maxwell's equations. The net cur-
rent due to drift motion of the species, and the net
charge density are

ye@ —ck w =y~e~ —ck~ (48)
The normal modes of the system are determined
from the determinant of the tensor '

R = (c'k' —&u') 1 —c'kk—
mQ

sf„ck sf„w d~av~+—x wx
ew ew y(0- ck w

(53)

vve "'~'"+2
d v

(d —% 'v (54a)

(o'„g„[Z(&-„)(e,e, +e,e,) —g+'(g )e,e,j,
(54b)

For nonrelativistic species at rest in the lab frame,
using the Maxwell-Boltzmann distribution reduces
the final term to the familiar form (k = ke, )

the thermal velocity is u =(ksT /m„)+', g„
=2 '~'~/ku„and Z, Z' are the nonrelativistic plas-
ma-dispersion function" and its first derivative.

For relativistic species (dropping the species
subscripts), we use Eq. (15a) to evaluate the ex-
pression in the brackets of Eq. (53)

where the plasma frequency is u&„= (4n'n„e'/m„)'~', = tI' (cu —ck. P) —— cu —c% ~ — P f.
y y

(55)
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The contribution of a relativistic species to the
last term in Eq. (53) becomes

-&d32[)I'pI6 —I'(&v K—. I6)Q"],

with

(56)

K = K+P '[(I' —1)K P —I'P'(d]P . (59)

Comparing Eq. (57) with Eq. (54), we would ex-
pect that it is possible to define a relativistic dis-
persion function by

13 d 1v ww gr(y 2. )

41(K2($) y y&v —K w

with K = c%, and the beam plasma frequency mea-
sured in the lab frame is ~,' = 4)(ne2/ml'. Note
that the factor multiplying Q" in Eq. (56) is, by
Eq. (48), just the wave frequency transformed to
the rest frame

(v = I'((d —K p) .

The corresponding transformation of the wave
vector can be obtained using Eqs. (8), (9), (48),
and (58)

so that

(60)

8 ew
K sT Bp

(61)

where the relativistic drift factor I' is considered
to be constant in performing the differentiations.
Two of the momentum-space integrals in Eq. (60)
can be performed (Appendix C) by choosing the co-
ordinate axes so that the wave vector and drift
velocity are specified by K = Ke„p = p2e i+ p IIe„
with the result

1 "' dv) exp[-$1 [(1 —P IIv)'y2 —P']'/']
2«, (h) -, v —~/K [(I 0 IIv)'r—' —&']"' (62)

where v is the scaled physical velocity component along K, and ) =(1 —v') ' '. The components of Q" are
found to be (Q» = Q» =

Q23
=

Q32
= 0)

(21() ~2 ' dv) K / (z) (,K / (z)
$K (&),(d —Kv z'/' z'/'

(2)() ~2 ' dvy K, /, (z)
$K ($) (v —Kv z'/'

(63a)

(63b)

Q
—( ) ) ((P )2(1 P )2 5/2( ) 3/2( )

33 $K ($) (v Kv II z5/2 z3/2 (63c)

Q =Q = E,I'P, g~ v(1 —Pv)13 31 K (~) J, ~ —av z'i' (63d)

This function is explicitly the relativistic disper-
sion function for P =0. But more generally, by
transforming to the rest frame using Eqs. (7),
(9), (18), (48), (58), and (59), we obtain

W($, (v/K, P)=,z T($, Id„/Kz) . (65)

with z = )I'[(I —pIIv)2y —p, ]'/, and the terms in-
volving the modified Bessel functions of odd half-
integer order can be expressed in terms of a fi-
nite inverse power series in z multiplied by e '."

It is possible to relate the relativistic disper-
sion function, Eq. (60), to a function obtained
earlier by Godfrey, Newberger, and Taggert, '

d . (64x -8

The T function has been analyzed and evaluated
elsewhere. "

Vl. SUMMARY AND CONCLUSIONS

We have presented a derivation of the relativis-
tic-equilibrium-distribution function and have
evaluated certain averages over that distribution
in the laboratory frame. Some of these expres-
sions, such as the energy-flux calculations in Ap-
pendix B, cannot be obtained analytically by the
usual transformation of the integrand to rest-
frame variables. A monoenergetic lab-frame dis-
tribution was introduced to compare moment cal-
culations with the equilibrium distribution. The
qualitative results obtained are fairly insensitive
to the assumed form of the distribution function.
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The pressure tensor in the lab frame for the mono-
energetic distribution is genuinely anisotropic,
with an anisotropy factor larger than the square
of the ratio of the drift speed to the particle speed.

Expressions for the root-mean-square cone
half-angle of the beam electron with respect to the
beam axis were obtained, and compared with elec-
tron angles of incidence on a plane normal to the
beam axis. The ratio of beam internal energy to
drift kinetic energy was calculated in the lab
frame, as well as the energy flux across a unit
area surface at an arbitrary angle to the beam
axis. These quantities provide information on the
characteristics of superpinched electron beams,
and deposition symmetry on fusion targets; and
they depend strongly on the beam drift velocity.
We have shown that, independent of the beam
temperature, and for only moderately relativistic

drifts, the beam exhibits relatively cold-beam be-
havior in' the lab frame. In the absence of sym-
metrizing effects such as scattering, the beam must
exhibit a high degree of stagnation for a reasonably
symmetric irradiation of a hemispherical surface.

A basic development of relativistic kinetic theory
given here defines a general form for the relativis-
tic plasma dispersion function. This provides a
foundation for further development of a physically
motivated study of plasma waves and instabilities
in systems with relativistic species.
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APPENDIX A

Here we evaluate the normalization integral given in Eq. (2) by utilizing spherical coordinates in momen-
tum space:

2I'

n~ =A exp(- o(1+w')' '+ w[sine (6, cosP+ 6, sing)+ 6, cos8]]w' sin8d w d8dg
0 0 0

—A ~2e c~ et'wdQ d zg
0 0

where we have dropped the lab subscripts on the momentum. The angular integrations are carried out by
expanding the exponentials in power series. The P integration is performed using [3.621.5]" and the
doubling formula for gamma functions [8.335.1)"to obtain

2 ff'

(26,)" (26,)" (w sine)"""
exp[w sin (6, cosQ+ 6, sin&] )]dP = 2m

0 k"-0 l."-0
(A2)

The 0 integration is performed in the same manner, yielding

k, l, m

1
I'(k+l+I+ 2)

' (A3)

This result can be put in a more compact form by noticing that the I sum represents a modified Bessel
function [8.445],"and that the two remaining sums may be collapsed by successive application of the multi-
plication theorem [9.6.51],4' with the result

e''"dG=[(2m)' '/(w6)' ']I,(,(w6) =4m(sinhw6)/w6, (A4)

where we have used [10.2.13] and 6= (6', + 6', + 6',).' ' Note that this is just the result we would have ob-
tained if we had chosen the polar axis along 5. The same technique can be used to show that the integral in
Eq. (A2) can be expressed as 2mIo(6,w sing), with 62~= 6', +6,'.

The remaining integral is performed by substituting Eq. (A3) into Eq. (A1) and using [8.432.9 and
8.486.15]"to obtain
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4m, (()c2/]Pc[)" (622/2a)' (52/2n)"I 2 I I 2 I~
~

~
id 3 ~~~

~

~
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~

~

~ ~

21~~

~
~

~

~

~
~I I

~ 2
2

i~

r 2
3

m

~ ~ ~m
Qf Pl a

kt lcm

(A5)

Again, recognizing that the triple sum can be collapsed in succession by the multiplication theorem
[9.6.51],~ we obtain

Jsxp(-ay+ h w)d'.w = (ds/al')«(ah) = (4s/o) J w siohs i) sxp[-a((sw')'i']dso,
0

(A6)

where X2=1 —(6/n)2, and Re(n —6))0. The last equality in Eq. (A6) gives a definite integral which, to our
knowledge has not appeared in standard integral tables. An integral related to Eq. (A6) is given in Ref. 32.
Equation (12) follows directly from Eqs. (A1) and (A6).

APPENDIX B

The energy flux into a surface of unit area with unit normal e, is defined in Eq. (42). To evaluate this
expression we use Eq. (8) to express Eq. (42) in the form

(1 —1/y)2()2exp(-ny) exp(5.w)dA'd2(), (B1)

where we have chosen e, to lie along the 3-axis in momentum space. The flux is defined to be positive
entering the surface, so that the 8 integration has the limits —

2w to v. The (t) integration is given by Eq.
(A2) and the resulting e integration over half of its range is handled as before, giving

(
—2[)6 )22(—2()6 )2l (i2()6 )2m (L2()6 )2mol-.('...-,—:)-.(.,—.I.('. ..,.))

kq lq m

(B2)

The final integral can be performed as in Appendix A, with the result

-2m & g (62/2a)' (5,'/2(]. )'

(62/2 o()m (52/2 ~)mo|)'2
[«ss. ~ (a) «s. ~ (a)] — r(ms-,') [«si ~ f (a) «ss. . i (a)I) . (I)

By defining ])2, = 1 —(5,/a)2, X2=1 —(62/nA. ,)', &d =X+„X2'=1 —(62/a][2)2, &=Ap2A2= (1 —62/n2)'~2, all but one
sum in Eq. (B3) can be performed using the multiplication theorem [9.6.51]4'

K,(&n) K, (~~) ~(6,'/2~~. )"""K.../. (~~.) K.:.(~~.}
m=o

1 d ~ (2m+1)52mK „/, ((2.][.2) 52 K2(c[&) K2(o,X)
I'(m+ —')(2(xX )"" ' c.' ](.' (B4)

where we have performed the 62 differentiation and used the recursion relation [8.486.15]." Using an inte-
gral expression for the modified Bessel function which can be derived from [8.432.9],"

+1/2 + m+1/2

J, m(0

and using the doubling formula for gamma functions [8.335.1]"makes it possible to perform the final sum:

1 1 d "x 6 K2((x/[.} K2 ((x](.}
mC' X' X2de 0 n

= —psd ———sl —cosh(h~/h)sxp[-a(x'+h)' '] dos~ ' — '
)X3 (B6)
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We will now express Eq. (B6) in terms of physical variables by recalling that n = I'(, 6= o,P, A. =I' ',
Xi=I','. Also, by choosing the beam drift towards the surface under consideration (e,.P(0), we have 5,
= —P, )I'—= —vg, with v) 0. We also define p. = I'/I', = (1+ v')'/'. Carrying out the differentiation in Eq. (B6)
gives

g((1+t')'/'+ 1 —
&

exp[- gg(1+ t')'/']t cosh(vent) dt+ v
BzmC g K2 2

(B7)

where we have changed integration variables from x to t = X~x. The integral expression can be simplified
considerably by expressing the hyperbolic function in its exponential form and again transforming the inte-
gration variable according to

t = tux+ v(1+x')'/'. (Ba)

This step is the most crucial one in obtaining the closed-form solution, and after some nontrivial manipu. —

lation, some of the integrals obtained from the transformation can be integrated exactly and the rest can
be expressed in terms of the incomplete modified Bessel function"

"exp[-&(1+x')'/'] "~ e

(1 +x2)1/2 (t —1) (B9)

with q= ln(p+ v). The result is

2@ 4I(,'(p' —1) —I/(2I/, ' —1)/I' —1 (4g' —t(/I')(2t/, ' —1) —1 4I/, '(2p' —1) —1 exp(- pg)
A~Pl C (u 5)' (I 5)' &.(&)+:«.(()-)'«.(()-, ((4~'-)l, ,-»- ~, , -((&~'-()—+ (-

~ «(n, ()l.
(Blo)

The final form for the flux given in Eq. (43) is obtained by applying recursion formulas" for incomplete
Bessel functions to eliminate the partial derivatives in Eq. (B10).

We would like to point out again that this flux calculation cannot be performed analytically by transforming
the original integrand to the rest frame. This is readily seen from Eq. (42), where the simple integration
limits on 8 would change to very complicated interdependent limits on each integration variable.

APPENDIX C

Here we indicate the method of reducing Eq. (60) to a single integral expression for the relativistic
plasma dispersion function. In order to perform two of the integrals in closed form, we must choose the
dimensionless wave vector along the 3-axis and use cylindrical coordinates in velocity space with the drift
velocity having the Cartesian components P=P,e, +P„e,. Changing to dimensionless velocity variables in
Eq. (60), with v= (v, cosQ, v, sing, v„), and d'zu =y'd'v, we find

r 1 dV II
yll

3
2II'

W =—,; — ";— dv, v, y' exp[- $1'y(1 —P„v„)] d(t) exp((I'yP, v, cosQ) .
7T 2( / „ i v)) —2U/ I(: 0

(C1)

The (t) integration is just 2mfo()I'yPiv, ) by [8.431.3]. Writing the relativistic factor y in the form
y= (yj) vg) and changing variables in the vi integration according to the transformation t =y/y)) puts
the second integral in the form

[(PP (t2 1)y/2] [ (P(1 P )y t] dt )) P )) II )) ) J J

$1'[(I —P)v) )'y' —P'i]' ' (C2)

where we have used a variation of [6.616.2]." Substitution of these results into Eq. (Cl) gives Eq. (62),
With 5 = VII ~
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