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Kinetic theory of a normal quantum fluid: Weak-coupling approximation*
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In the linear-response regime, a normal Bose or Fermi fluid can be described by an exact kinetic equation

whose kernel is nonlocal in space and time. We derive a general expression for this kernel and evaluate it
explicitly to second order in the interparticle potential. The result is a wave-vector- and frequency-dependent

generalization of the linear Uehling-Uhlenbeck kernel with the Born-approximation cross section. Our theory

is developed in terms of a second-quantized form of the Wigner representation. Convenient expressions are
obtained for the commutators and anticommutators of the phase-space density operators, and the equilibrium

averages of these operators are analyzed in terms of momentum-dependent generalizations of the classical pair
distribution function h(k} and direct correlation function c(k). The central quantity in this study is a two-

particle equilibrium correlation function, the phase-space density-density anticommutator, whose Fourier
transform S{kmpp') gives the symmetrized scattering function S(kco} by integration over the momenta. The
kinetic equation is obtained by a formal closure of the quantum BBGKY hierarchy, with the nonlocal kernel

expressed in terms of correlation functions involving two, three, and four particles. We show that our method

for approximating the kernel and initial condition by a second-order expansion preserves all the sum rules of
S(kcopp') to the same order and that the result satisfies the appropriate positivity and symmetry conditions.

I. INTRODUCTION

The classical Boltzmann equation occupies a
uniquely successful position in nonequilibrium sta-
tistical mechanics. Intermediary between the
microscopic and macroscopic worlds, it serves
as a model whose intuitive appeal and wide ap-
plicability have not been equaled by any other
method of description. ' Although it is limited to
dilute gases, similar equations have been de-
veloped for denser fluids. A Boltzmann-like ki-
netic theory for quantum-mechanical fluids has
long been an attractive possibility, but the prob-
lems involved in its formulation are much more
severe than in the classical case. A quantum
kinetic equation known as the Uehling-Uhlenbeck
equation can be obtained from the Boltzmann equa-~
tion by the substitution of the quantum-mechanical
cross section for the classical one and the inser-
tion of statistical factors to reproduce the Bose or
Fermi ideal-gas distributions at equilibrium. "
Several derivations have been given for the Ueh-
ling-Uhlenbeck equation, ' ' and corrections to it
have been suggested, ' ' but systematic attempts
to improve upon it have generally not gone beyond
the formal stage. ' " An exception. is the trans-
port equation derived by Kadanoff and Baym for
systems slowly varying in space and time, "but,
as discussed below, there remains a need for a
quantum kinetic theory valid on all scales of length
and time.

Our approach to this problem was stimulated by
certain recent developments in classical kinetic

theory. It has been known for some time that a
liquid or dense gas can truly be described by a
Boltzmann-like kinetic equation only if the kinetic
kernel is made nonlocal in time and space to ac-
count for the duration and spatial extent of the
collision process. "'4 Indeed, the first attempt
to treat such effects was made by Enskog more
than 50 years ago." Although nonlocal kernels
have subsequently appeared in many derivations,
it is only in the last few years that systematic and
explicit approximations have been obtained. For
small deviations from equilibrium, a classical
fluid can be described by an exact linear kinetic
equation, whose kernel has now been evaluated
to second order in the interparticle potential, ""
and to fjrstis. i9 and second2o order in a dens jty
expansion. Other techniques have been used for
the special case of a hard-sphere gas. ' 2 There
have also been several methods proposed for ob-
taining a kernel valid at liquid densities, " '"

An important aspect of these new kinetic theories
is that they are derived without reference to any
length or time scale, and therefore may be useful
for the full range of fluid phenomena. from the
molecular to the hydrodynamic regime. Support
for this notion comes from an analysis of the weak-
coupling equation by Forster and Martin, "who
showed that it gives consistent predictions of the
sum rules and the transport coefficients, re-
flecting a balanced treatment of the short-time and
the long-time behavior. A similar result holds
for the low-density equations. "'" From the work
of Forster and Martin and of Hesibois, "'" it fol-
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lows that to determine the transport coefficients
exactly, the kinetic kernel must be correct through
second order in space and time derivatives. The
quantum transport equation derived by Kadanoff
and Baym was explicitly limited to the long-time
large-distance regime by the omission of terms
higher than first order in the gradients, and it is
therefore insufficient even for a complete descrip-
tion of linear hydrodynamics.

Our object in this paper is to demonstrate that
a linear kinetic theory for normal quantum fluids
with Bose or Fermi statistics can be formulated
with the same conceptual simplicity and consis-
tency as has now been attained in the classical
case, and, specifically, to calculate the nonlocal
kernel to second order in a potential expansion.
We show that in the classical limit this second-
order kernel properly reduces to the classical
one, and that in the limit of large times and dis-
tances it reduces to the linear Uehling-Uhlenbeck
kernel with the Born-approximation cross section.

The organization of the paper is as follows. In
Sec. II we discuss properties of the operators and
distribution functions needed for our calculation,
and define the quantity for which we obtain the
kinetic equation, the two-particle anticommutator
correlation function E(1,1'~ t). The time evolution
of E(1,1'~t) is linked to that of an infinite sequence
of higher-order correlation functions by equations
of motion analogous to the classical Bogoliubov-
Born-Green-Kirkwood- Yvon (BBGKY) hierarchy.
In Sec. III w'e derive a formal closure of the hier-
archy as a kinetic equation for E(1,1'~ t) and dis-
cuss our method of approximation. Section IV con-
tains the calculation of the second-order kernel.
We conclude with a brief discussion of our results
and their implications for future work.

II. WIGNER REPRESENTATION

A. Phase —space operators

Using the transformation introduced by Wigner, "
we define a one-particle phase-space density
operator by

f(rp, t) =(2mb) '
Jl

dr'e " "'~"p (r —2r'', t)g(r +-,'r', t),

(2.1)

where tt(r, t) and g (r', t) are the Heisenberg field
operators satisfying

4(r)0"(r') n4'(r')0(r) —= t'(r r')—
and

4(r)0(r ) - '04(r )0(r) =0

at equal times. The factor q equals +1 for bosons
and -1 for fermions. Throughout the paper, we
use the letters &, &, and P to represent vector
quantities. In terms of f (rp, t), the ordinary num-
ber and current density operators are given by

dp f(rp, t) = 0"(r,t)4(r, t), (2.2)

(2.3)

It is apparent from these equations that f(rp, t) has
a formal similarity to the classical phase-space
density

f.(rp, t) =g «r - r;(t)) ~(p- p;(t)).

Multiparticle density operators are defined by

II =
Jt dl —,'p,'f (1)+ —,

'
Jtdl d2 v(12)f(12). (2.5)

In carrying out the perturbation expansion, later,
we shall assume that v(r) is bounded and short
ranged.

The equal-time commutation relations of the
first few Wigner operators can be expressed as

[f(1),f(2)] = 5(1 —2) S(1)f(1), (2.6a)

[f(1),f(23)] =&(1 —2)S(1)f(13)+5(1—3)S(l)f(12),

(2.6b)

[f(12),f(34)] = & (1 —3)S (1)f(124)+ 5 (1 —4)S (1)f(123)

+~(2 —3)S(2)f(124) + &(2 —4)S(2)f(123)

+[&(1 —3)6(2 —4)+5(l —4)5(2 3)]

xS (12)f(12), (2.6c)

where

~(I —2)=~(r -r.)~(p, -p. )

and

S(1)=2i sin[&hD(l)],

f(12, . . . , n, t) =(2~8) 'J dr„' e '~~'"~~ yt(r„——,'r„', t)

x f(12, . . . ,n —l, t) g(r„+ 2r„', t),

(2.4)

where 1 stands for & P„and so forth. It should be
noted that these operators are Hermitian, and that
the f(1, . . . ,i, . . . ,j, . . . ,n, t) are symmetric under
permutations (i,j ) for both Bose and Fermi sta-
tistics. We consider a system of unit-mass point
particles interacting through a central potential
v(12) = v(~ r, —r, ~), for which the Hamiltonian can be
written
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S(12)=2i sin[2hD(1) +2IID(2)],

D (I ) = V„ '
V~ —V~

' V„ .

The gradients in D(1) act to the left or right as in-
dicated by the arrows. The anticommutation rela-
tions are given by expressions, beginning with

—,
' (f(1),f(2)] =f(12) + & (1 —2) cos[2IID(1)]f(1), (2.7)

that are similar to (2.6) except for the presence
of higher-order operators on the right-hand side.
The relations (2.6) and (2.7), which we believe are
new, are a convenient restatement of the commu-
tation and anticommutation relations of pairs
(t) (r)(I)(r') of the field operators. The intermediate
formula

(2))h) ' J)dr,' dr,'e "~1 2 2 2)t" [6(r, + ,'r,' ——r,+2r,')(t)~(r, —,'r,')—g(r,+ —
r2,')[=6(l —2)e'" '" ' f(1) (2 6)

is helpful for verifying them. It should be empha-
sized that both (2.6) and (2.7) are true for both
Bose and Fermi statistics.

With the aid of Eqs. (2.6), one can work out the
commutators in the equations of motion Bf/st
= (N') '[f, H] by straightforward integration. The
result is the coupled system of equations

t tL(1))f(1t) = — d2 , tl (12)f(12,t)

( Bt
+ iL(12) ~f(12,t) = — d3[iL, (13)+iL, (23)]

9

)

(2.9a)

and so forth, where

8
L(1)=L,(1)= - t P, '

1

x f(123,t), (2.9b)

(2.10a)

L(12)= L,(1)+I 0(2) + tv(12)(2/Il)

L, (12) = iv(12)(2/It) sin(zkV„V& ).

(2.10b)

(2.10c)

exp I'k ~ —p = p+Sk .
Bp

Except for the definition of the interaction opera-
tors in (2.10b) and (2.10c), this system has the
same form as the classical BBGKY hierarchy. "

The occurrence of operators like sin[-,'hD(1)]
is typical of formulas involving the Wigner dis-
tribution. "" Such operators can be expanded in
powers of h to give quantum corrections to clas-
sical results. The classical expression corre-
sponding to the first term in the expansion of
(2.6a), for example, is the Poisson-bracket for-
mula

[f.(I),A(2)]„=6(I—2)(V,, &0, —
Vp, V,,)f.(1).

These operators can be employed in another way,
however. After a Fourier transformation with
respect to &„ an operator like e '" "i' ~& acts on
the functions to its right to produce a displacement
in momentum:

r

It is primarily in this form that we use Eqs. (2.6}-
(2.10).

B. Distribution functions

Equilibrium averages of the density operators
will be denoted by

n(1) = (f(1)), n(12) = (f(12)), (2.11)

where the angular brackets indicate an average in
the grand canonical ensemble with inverse tem-
perature P and chemical potential p. For h-0,
these functions reduce to the classical one- and
two-particle phase-space distribution functions.
Because of translational invariance in our en-
semble, the one-particle function is simply the
momentum distribution n(P), which is normalized
to the density by JdP n(P) =n For fr.ee particles,
it is the Bose or Fermi distribution

n (p) =(2') '(e " ' "' —q) '. (2.12)

Our normalization ensures that the A-0 limit of
n(P) is ng(P), where

e(p) = (2 /t~)-'"-" ' (2.13)

is the Maxwellian. Similarly, the classical limit
of n(12} is

limn(12) =n'g, (r —r )(t)(P, )(t)(P, ),
h~0

(2.14)

where g, (r) is the classical pair-distribution func-
tion. As will be seen below, the momentum and
position variables in the quantum n(12) do not
separate in this way, but the pair distribution
g(r) is nevertheless given by

n'g(r, —r, ) =, dp, dp, n(12), (2.15)

as in the classical case. Though n(12) is real, it
is not necessarily non-negative for all values of
its variables. This is characteristic of the Wigner
representation. The function n(12) is best regarded
as a particular off-diagonal Fourier transform of
the two-particle density matrix. Since an integra-
tion over all momenta as in (2.15) gives the diag-
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f(k, p„k,p, ) = dr, dr e "1'"1e ' 2'"~f(r, p„r p, ),

which is given in terms of the operators

(2.16)

p(hk) = dre '"'"g(r)

onal part, the pair distribution g(r) is non-nega-
tive, as it must be.

To investigate n(12) in more detail, we can em-
ploy perturbation theory. " The notation we intro-
duce here will also be needed later. It will be
convenient to use a Fourier transform of f(12),

where y = (2)]'h)'q and n(P) =1+yn(P). The creation
and annihilation points of the diagram are assigned
infinitesimal times corresponding to the order
of the operators in (2.17). The evaluation of these
diagrams follows standard rules, " except for the
convention that there is a momentum-conserving
factor (2')'&(P, -Pk) for an uninterrupted one-
particle line connecting endpoints labeled P, and P,.
For an m-particle diagram representing
n(12, . . . ,m) there is an over-all factor of y
Thus the uncorrelated diagram, Fig. 1(a), gives

(2~)'|)(k, )~ (k, )n(P, )n(P. ),

by

f(kkpk, k.p2} = (2&k} 'W'(I-)V '(2-)V (2+)V (1+),

while the exchange diagram, Fig. 1(b), gives

(2]])'&(k, + k, )&(p, -p, )yn(1+)n(1-).

yn(p) for w =0-6 p, T

n(p) for r =0+
(2.18)

(2.1 7)

where 1+=p, a —,'hk„2+ =p, a —,'hk, . Now n(12) is
given by the sum of imaginary-time-ordered mo-
mentum-space diagrams indicated in Fig. 1, where
the lines in the first two diagrams represent the
fully interacting one-particle propagator. For
infinitesimal time differences the propagator is

There is an extra factor of q for the crossing of
external particle lines in Fig. 1(b), corresponding
to a permutation of field operators. The contribu-
tion of the connected part of n(12), Fig. 1(c), is
represented by

(2~)'|)(k, + k, )H(k, P,P, ),

where the nonsingular function H(kpp') is a, special
form, indicated below, of the sum of all two-par-
ticle connected diagrams, Fig. 2. In summary,
n(12) is given by

n(12)= (2, ) (kn, ) nf, e" " ' '(k(k, -k, )yn(k, ——,'Kk)n(2, ~ —,'kk) ye(kk, k, )]. (2.19)

The term containing &(P, -P, ) vanishes in the
classical limit, while the function H reduces to

»mH(kpp ') = h.(k)n4(p )n4) (P '),
h~0

(2.20}

H(kPP ') = h(kPP ')N(kP)N(kP '),

where

N(kp) =——,'n(p +-,'hk)n(p ——,'hk)

(2.21)

+ —,'n(p ——,'hk)n(p+-, '-hk). (2.22)

where h, (k) is the Fourier transform ot g, (r) —1.
It will be useful to define a quantum generaliza-

tion h(kpp') of h, (k) by

Obviously there are many functions besides N(kP)
which reduce to ng(P) in the classical limit; the
reason for this particular definition of h(kPP') will
be apparent in Sec. IIC. Like H(kpp'}, h(kpp') is
real, even under 0'--k, and symmetric inP and
P'. It vanishes for an ideal gas. Our notation
should not be interpreted to suggest too close an
analogy with the classical distribution functions,
however. It should be noted, for example, that
the quantum g(r) —1 is not equal to the Fourier
transform of fdP dP' h(kPP'), as we do not include
the exchange term in our definition of h(kPP').

To illustrate the relationship of h(kpp') to its
classical limit, w'e give here the first term in its
perturbation expansion. For the calculations of

I+ 2+ I+ 2+ I+ 2+
P P

(a) (b) (c)

I
— 2— I

— 2—

FIG. 1. Diagrams for n(12). The lines in (a) and (b)
represent the fully interacting propagator. Part (c) rep-
resents the sum of all two-particle connected diagrams.

I 2 P) P~

FIG. 2. First-order terms of the two-particle con-
nected diagram,
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A, (p„p„p„p,) = —,'n, (p, )n, (p, )n, (p, )n, (p, )

+ 'n, (P, )n,-(P,)n, (P, )n. (P.)

and

(2.25)

v(kk) =v(k) = Jjdre "'v(r).

For the special choice of variables that defines
H(kPP'),

H(kpp') =3C(p —,'kk, p'+-,'hk—,p + ,'kk, p' —,'hk—), -
(2.26)

we can use the identity

n (p- —,'kk)n (p+-,'kk) =n (p+ zik) n (p —zhk)e

(2.27)

to extract a factor N, (kP)N, (kP') from A„ leaving
a final expression for the first-order k, (kPP') in

the form

k, (kpp') =-J3[v(k) nv(p-P'))

ta,nh( —,'Phk P) —tanh(2I3kk P'}
zP@k (P-P') (2.28)

Sec. IV, we need the sum of the two-particle con-
nected diagrams with the momentum labeling of
Fig. 2, which we write as

(2 &}'3(p,.p. p. -P, )-&(p„p.,p. ,p.). (2.23)

A short calculation of the two diagrams on the
right-hand side of Fig. 2 gives the first-order re-
sult

(p) t p2 t p3i p4)

= p[v(p, —p, )+)iv(p, —p, ))AO(p„p„p„p, )

zP(p', +P', -P', -P', )

where

(2.31)

L(kmpp') =S(k+pp')7'(ptfu), (2.32)

where T(x) =(-,x) ' tanh( —,x). It can be seen that the
distinction between them vanishes in the classical
limit.

It will be convenient to use a function of complex
argument z, defined by

(f(rP, t)) „—(f(rp)) obeys the same kinetic equation
as the linear-response function L(rp, r'p'~t), which
is an equilibrium two-particle correlation function.
As is well known, the linear-response regime is
sufficient to account for many of the important
properties of a fluid system, including its full
neutron-scattering and light-scattering spectra as
well as its transport coefficients. ""

Closely related to L is the anticommutator corre-
lation function defined by

F(1,1'it —t') = (-,'(f(1, t), f(1', t'))) —(f(l))(f (1')),

(2.30)

which also obeys a kinetic equation and which con-
tains equivalent information. We prefer to for-
mulate our theory in terms of F rather than L.
Although the formal development of a kinetic equa-
tion for I would be identical to that given in Sec.
III for F, the perturbation calculations it would
require are somewhat more difficult. In particu-
lar, obtaining the initial value of L requires an

analysis of time- or frequency-dependent dia-
grams rather than equal-time diagrams as in the
case of E. The connection between L and I" is
given in terms of the Fourier transform

f
S(k(dpp') = d(r —r') e "' '" " '

In the limit @-0 the momentum dependence van-
ishes and we recover the first-order classical
k, (k}= -P v(k).

e" d(d S(k(epp')F kzpp'
J~ 2 1I' (d) —z

which for Imz &0 is the Laplace transform of
F(kPP '~ t), with the convention

(2.33)

C. Correlation functions

Traditional kinetic theories describe the time
evolution of the nonequilibrium average of f(rp, t).
For small deviations from equilibrium produced
by an external potential u(rp), introduced adia-
batically in the distant past and turned off at I =0,
this average is given by an expression of the form

tt(t)=-if dte'"r(t)
0

(2.34)

We will also use the r-space form F(1,1'~z). From
the definitions (2.30) and (2.31), it can be shown
that S(k~PP') is real, and that its symmetric inte-
grals over an arbitrary function of the momentum
are non-negative:

(f(rtt, t))„—(f(rtt)) =d fdr d(t'I (rp, r'(t'(t')tt(r'tt')
dp dp'g*(p) S (k~pp') g(p') -0. (2.35)

+0(u'). (2.29)

For sufficiently small disturbances, therefore,
In particular, this guarantees the positivity of the
symmetrized scattering function S(k(e),d2 which is
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given by

2(»)= )dddl" 2(»DD') (2.36)

Zernike-like equation

h(kpP ') = c(kPp ') + Jt dP h(kPP )N(kp) c (kpp ').
(2.43)

F(k, z*;pp') =[E'(k, z;pp')]*, (2.37a)

lim Im dPdP'g* p I' k, co+ j&;pp' g p' ~0,
(2.S7b)

Furthermore, S(k&pp') is even under k, & —h, —
and symmetric in P and P'. In terms of F(kzPP')
these properties may be summarized as

It can readily be verified that the static inverse
& ' is given by

F '(kpp') =6(p -p')/N(kp) —c(kpp'). (2.44)

Like h(kPP'), the function c(kPP') vanishes for free
particles. The first-order term c, (kPP') is identi-
cal to h, (kPP'), given by (2.28).

F(-k, -z; pp') =-F(k, z; pp'),

I'(k, z; pp') =F(k, z; p'p).

(2.37c)

(2.37d) III. QUANTUM KINETIC EQUATION

The importance of preserving these relations in an
approximate theory for E(kzPP') has been indi-
cated in the classical case.""

We turn now to the initial value F(1,1')
=F(1,1'I t =0). Using the anticommutator identity
(2.7), we can express it in terms of n(11') and n(1)
by

F(1,1') =n(11') —n(1)n(1')

In the first part of this section we derive a kinet-
ic equation for E(1,1'Iz) by a formal closure of
the BBGKY hierarchy, with the kinetic kernel
defined in terms of correlation functions involving
two, three, and four particles. Our scheme for
approximating the kernel in a way that preserves
its symmetries is discussed in Sec. III B. We show
that this scheme also preserves all the sum rules
of S(k~PP') to the same order of approximation.

+ 5(1—1') cos(2AV„' V& )n(1). (2.s8)
A. Nonlocal kernel

After a Fourier transformation with respect to
&, —&,', the last term becomes

&(P —P') cosh —k —n(P)
2 ~p

= ~(p -p')[2~(p + 2hk) + 2~(p 2Itk)].

(2.39)

Combining this with expressions (2.19)—(2.22) for
n(11'), we obtain the important result

F(kpp') = 5(p —p') N(kp) + h(kpp')N(kp)N(kp').

(2.40)

A comparison with the classical formula

»mE(kPP') =6(P -P')~e(P)+h. (k)~'4 (P)4(P')
0 (2.41)

emphasizes that N(kp) is indeed the proper quantum
generalization of np(p) in this context.

To obtain an explicit formula for the static in-
verse & ' satisfying

From the operator equations of motion (2.9), we
obtain a hierarchy of correlation-function equa-
tions beginning with

[z —1 (1)]F(1,1'(z) =F(1,1')+ fd2 1, (12)F(12,1'[z), .
(3.la)

[z —L(12)]E(12,1'Iz) =F(12,1') + Jtd3 [L,(13)+L,(23)]

x F(123,1'Iz),

(3.1b)

together with the complementary sequence

[z +L(1')]F(1 1 Iz) =F(1 1 ) —JI d2 Ll(1 2 )

xE(1,1'2'Iz), (3.2a)

[z +1 (1')IF(12,1'(z) =F(12,1') —fd2' L(2')(,
x F(12,1'2'Iz),

Jl dp F(kPP)F '(kpP') =6(P P'), -(2.42)
(s.2b)

we define a generalization c(kPP') of the classical
direct correlation function c,(k) by the Ornstein-

where the higher-order correlation functions anal-
ogous to E(1,1'I t) are defined by

F(1, . . . , n, l', . . . , n'It —t') =(—,'[f(1, . . . ,n, t), f(1', . . . ,n', t'))) —(f(1, . . . ,n))(f(1', . . . ,n')).

Our goal in this section is a closed kinetic equation for F(1,1'Iz) in the form

(3.3)
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tz —L(1)IE(1,1'lz) =E(1,1')+ d2 E(1,2lz)F(2, 1'lz).

' d2 &(1,2iz)E(2, 1'iz) = d2 L, (12)E(12,1'iz).

(3.5)

Equation (3.5) defines &(1,1'~z) uniquely pro-
vided there exists a z-dependent inverse F '(&zpp')
satisfying

~dP F(kzPP)F '(kzPP') =6(P —P'} (3.6)

for all k and z. Although there has been no explicit
proof, the existence of such an inverse seems
well established in the classical case, and we are
confident that this is also true in the case of a
normal quantum fluid. " For a noninteracting
quantum fluid the inverse is given by

(3 'f)

for an interacting system the inverse can be for-
mally obtained from its large-& expansion

E (1,1'~z) =zE (1,1')

(3.4)

A comparison of (3.1a) and (3.4) shows that the
kinetic kernel or memory function &(1,1'~z) must
satisfy

where F(1,1') is the time derivative of E(1,1'it)
at t =0. Note that E '(l, l') is the static inverse,
Eq. (2.44).

The existence of an inverse for the antic~zm-
mutator function E(kzf)(P') is a special property not
shared by every correlation function of interest:
a counterexample is provided by the commutator
function

X(1,1'li- f') =(2I1) '&[f(1, f), f(1', t')1&.

From Eq. (2.6a) it can be seen that the initial
value is

)((Izzpp ) = (25) 6(P —P )[i1(P —2hk) —n(i) + zn~)1,

(3.9)

and therefore vanishes for k =0. Consequently,
g does not have a well-behaved static inverse and
the derivation given below for I' cannot be applied
to g. One can readily verify in the classical limit
that p does not, in fact, satisfy a kinetic equation
of the form (3.4), by combining Eq. (3.4) for F
with the fluctuation-dissipation theorem

y, (1,1'~ t) = ,'i P E,(1,1'i i-). —
We now proceed to derive an expression for the

kinetic kernel in a more useful form than (3.5).4'

It will be convenient to work with the function

—i d2d2'E ' l, 2 F 2,2' E ' 2', 1' K(&zPP') =
~t

dP E(&zPP)E(~PP') (3.10)

+0(z '), (3.8) Applying [z +L(1')] to (3.5) and using (3.2), we have

I((1 1'Iz) — d2' d3 Z(2 3'lz)I, (1 2')F(3,1 2 Iz) = dI2, ( 22)( d(1 21') —
J/

'
d2(2 1'2')I'(12 I'2')Iz)). (3 11)

Using (3.5) and (3.6) to rewrite &(1,3'~z) on the
left-hand side as

d2 d3L, (12)F(12,3lz}E '(3,3'lz),

we obtain the desired expression for K(1,1'~z) in

the form

K(1,1'~z }=K"'(l,l ') +K"'(l, l'~z),

The static part

(3.12a)

K"'(l,l') = d2L, (12)E(12,1') (3.12b)

is independent of z and represents a mean-field or
modified Vlasov contribution to the equation of
motion, while the dynamic part

K''('(l, l'~z) =- d2 d2' L, (12)L,(1'2')G(12,1'2'~z},
(3.12c )

with

G(12,1'2'iz) =F(12,1'2'iz)

d3d3'E(12, 3~z)E '(3,3'|z)

&&E(3',1'2'~z ), (3.13)

(3.14a)

lim Im dp dp'g" (P)K(&,~+ ie;pp'}g(P') (0,
q ~0+

(3.14b)

starts at order z ' and describes the Boltzmann-
like effect of collisions. The kernel ~ is similarly
decomposed into a static part ~"' and a dynamic
part ~'"'.

The positivity and symmetry properties (2.37)
of E(A'zPP') determine corresponding properties
of the kernel.
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K(-k, z;-PP') = K-(k, -';PP'),

K'"'(k, z;pp') =K'~'(k, z p'p).

(3.14c)

(3.14d)

The sta'ic part is real, and odd under k- -4, but
by itself it is not symmetric under P -P'; rather,
it is the sum of the static part and the streaming
term

K"'(kPP')+k'PE(kPP') =K"'(kp'P)+k'O'E(kp'P)

(3.14e)

which has this property. This combination is sim-
ply iE(kpp').

The static kernel K"'(kPP ') is closely related to
the function II(kPP'}, as follows. Subtracting the
terms of order 1/z in the large-z expansions of
Eqs. (3.1a) and (3.2a), we find

[L(1)+L(1')]E(1,1') = —Jtd2 [L,(12)E(12,1')

[z —L, —&(z)]E(z)=F(,),
where

~(-') =K(,)(z)(E(.)) '.

(3.20)

(3.21)

It should be noted that the initial condition used in
this approximation is the truncation of the exact
initial condition.

Equation (3.19) can also be written

E(z) =F(,)([EF '(z)F](,)) 'F(,). (3.22)

The advantage of writing E(z) in this form is that
the term in brackets is symmetric in its momen-
tum indices, '8 Our method of approximation is to
truncate E and K(z) in Eq. (3.18) at second order.
Thus, writing E(z) for the solution, we have

E(z) =E...[(z —L.)E...-K...(z)l 'E„, , (3.»)
which can be rearranged in the form of an approxi-
mate kinetic equation

or

+I, (1'2)F(1'2,1)] This can be compared to another symmetric ap-
proximation, namely,

k (P -P')ff(kpp') =-K"'(kPP').K"'(kp'P) F( ) = I:[E '( )1...] ', (3.23)

B. Method of approximation

Equation (3.15) is an example of a relationship
between statics and dynamics that should be main-
tained in any consistent theory, as should the sym-
metry properties (3.14}. In this paper we are con-
cerned with approximating the kinetic kernel by
means of a perturbation expansion. To accomplish
this in a consistent way, we first write the solu-
tion to the kinetic equation (3.4) as

F(z) =[z -L.-~(z}) 'F, (s.17)

using an abbreviated notation in which F(z) stands
for the "matrix" E(kzPP') with indices P and P'.
Similarly (z —Lo) is the matrix with components
(z —k 'p)~(p —p'). Now we multiply (3.17) by FF '
from the left-hand side and obtain

E(z) =E[(z —I.,)E —K(z)] 'E. -(s.18)

(s.15)

In the classical limit, H(kPP') becomes even in
each momentum variable, while K"'(kpp') becomes
odd in P and even in P'. The sum of (3.15) and its
form with P'- -P' therefore gives

limK"'(kpp') = —k pn'k, (k) p(p) p(p'), (3.18)
h~0

which is equivalent to the well-known potential-
independent expression for the cia' ~ical ~"' in
terms of the direct correlation function. ""We
do not know any analogous expression for K"' in
the quantum-mechanical case."

the inversion of the truncation of the inverse. This
is the approximation used by Forster and Martin
in the classical case." In this scheme the approxi-
mate kinetic equation has the kernel

&(z) =[(F-')(,)] '[F-'Z(z)](, )

and initial condition

F=[(F ')

(3.24)

(3.25)

In the classical case, the approximation (3.24) is
equivalent to a direct truncation of &(z), because
of the special form of the classical E. This is not
true for the quantum &(z). It should be noted,
moreover, that a direct truncation of the quantum-
mechanical &(z) does not lead to a symmetric
approximation.

The two approximation schemes defined by (3.19}
and (3.23) have essentially the same physical con-
tent; they differ only in technical detail. In the
classical limit, the difference can be simply de-
scribed, as follows: In the first scheme, the ini-
tial condition and the static part of the kernel are
given in terms of the truncated k, (k); in the second,
they are given in terms of the truncated c,(k). The
dynamic part of the kernel is the same in both.
In the classical case, therefore, the two schemes
are equally tractable. Quantum mechanically,
however, the first scheme is by far the simpler
procedure because the static quantities it requires
can be obtained more directly.

To conclude the discussion of the approximation
scheme given by Eq. (3.19), we show how it af-
fects the sum rules of S(»PP'). A similar analysis
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E(kzpP') =gz ''-,
i ~'S(kWP')

d
2H'

{3.28)

can be applied to E&I. (3.23). We consider first
the large-z expansion of the exact F(kzPP'), which
is given in terms of the frequency moments of
S(k~P&') by

(0)

I + 2+ 3+

I- 2- 3-

I+ 2+ 3+

I+ 2+ 3+

I- 2- 3-

I+ 2+ 3+

I+ 2+ 3+

I- 2- 3-

I+ 2+ 3+

~ ~

F(z) =z 'E+iz 'F —z 'F+ (3.2'7) (b)

Now expanding the right-hand side of E&l. (3.22),
we obtain

F(z) =z 'E&, ) +iz 'E&, )

—z '
[E&» —(EE 'F)&, ) +F&»(E&2&) 'E&»]+ ~ ~ ~ .

(3.28) (c)

I- 2-

I+ 2+ 3+

I- 2-

I+ 2+ 3+

I- 2- 3-

I+ 2+ 3+

I- 2-

I+ 2+ 3+

If each factor in (3.28) could be evaluated exactly,
instead of being truncated at second order as indi-
cated, we would recover the expansion of the exact
E(z), but, as given, the third and higher coeffi-
cients in the expansion of E(z) contain terms that
are not present in the expansion of E(z) It is .not
difficult to see, however, that the net contribution
of these terms always starts at third order, so
that all the fre&luency moments of S(k&pp'} will,
in fact, be correct to second order.

It should be apparent that the considerations of
this section are not limited to the second-order
potential expansion, but apply to any mell-defined
expansion to arbitrary order.

IV. THE SECOND -ORDER KERNEL

A. Static part

In this section we evaluate the static kernel to
second order in the potential. We begin by re-
writing E&i. (3.12b), Fourier transformed with

respect to both &, and &,', as

I- 2— 3- I- 2- 3— I
—2- 3- I- 2—3—

FIG. 3. Unconnected and two-connected diagrams for
E(12, 3).

(2«)'6 (k+ k')K"'(kPP ')

= —(2v) ' J~ldkdP V(kP}E(k —k, P, kp; k'p'),

(4.1)
where

2, 5 9
V(kP ) = v(k) —sinh —k

8 2 BP
(4.2)

Our task is to calculate F(12,3}to first order. The
diagrams for E(12,3) can be classified as uncon-
nected, two-connected, and three-connected. Since
the three-connected diagrams start at second
order, we need not consider them here. With each
diagram taken with the two infinitesimal time
orderings that correspond to the two terms of
the anticommutator, the unconnected diagrams,
Fig. 3(a), give

E(k,p„kap„k,p, ) = (2v)'6(k, )6(k, + k, )6(p2 —p, )n(p, )N(k, p, ) + (2v)86(k, )6(k, +k, )6(p, —p, )n(p )N(k p )

+(2n)'6(k +k +k )[6(2+1-)6(3+2—)yn(1-)+6(1+2-)6(2+3-)yn(1+)N(k p ) (4 3)

where

-'&16(P -P'}
~ dp pv(p -p)M(kp)N(aP'),

(4.4)

M(kp) = (pk} '[n(p ——,'hk) —n(p y-,'hk)].

where 6(2+1-)=6[(2+}—(1-)]with 2+ =P, +zonk„
etc. Substituting (4.3} in (4.1) and writing out the
effect of the V operator as a difference of dis-
placements of P, we obtain

K,"'(kpp') = p[v(k)+qv"(p —p')]M(kp)N(kp'}

We note that M(kP) occurs in the initial value of the
commutator function (3.9), and that in the classical
limit it reduces to

limM(kP) =k Png(P}.
5~0

(4.8)

With the general form (2.23) of the two-particle
connected diagram, it is equally straightforward
to write down the result for the two-connected
diagrams of F(12,3) and substitute in (4.1) to obtain
their contribution to K"'. The diagrams of Fig.
3(b}give
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K,"'(kPP') = dP p[v(k)+r]v(P -P)]M(kP)If(kPP') —n]6(P P-') )"dP pv(P -P)M(kP)Jf(kPP'),

and the remaining two-connected diagrams, Fig. 3(c), give

K,")(kPP') =(»h)-'~ dP, dP, dP, 6(P, +P. -P, P'k-&(k)-&(-k}]

& {v(P, P,)[-6(P -P, ) —6(P P,)]-+a v(P, -P')[6(P -P, ) —6(P -P')B,
where

X(k) =[-,'+yn(P' +'hk}]K(P, ——,'hk, P, + ,'hk, P-, + ',hk, p'-- —,'hk).

The combination &,"'+&,"', taken by itself, is equivalent to a Hartree-Fock approximation for ~"':

0&„;!()ki(i') 0[v(k) ~=nv(k 0')]M(k(i) -—nk(k P'))v()i kv—((i (i)kk(k(i)—

(4 7)

(4.8)

(4.9)

which has been used to discuss zero sound in a
Fermi liquid. " One can also obtain (4.9) by fac-
toring the nonequilibrium average (f(12))„, in the
BBGKY equation connecting (f(1))„,and (f(12))„,
and then linearizing the resulting collisionless
kinetic equation for (f(l })„,."

The expressions (4.4), (4.7), and (4.8) are written
in terms of exact one- and two-particle distribution
functions; truncated at second order, they give
the full second-order expansion of the static kernel

~(~) g (~) +g (~)
(2)

I

in terms of the zero- and first-order static func-
tions we have already calculated plus the first-
order term in the expansion of n(P), which is

n, (P) =n, (P)+n, (P)rr, (P)n, (P),

where

o', (P) =- WP P[v(0)+r]v(P -P)]n, (P).

(4.10)

(4.11)

The first-order kernel is obtained entirely from
the unconnected part K,"' and has the Hartree-Fock
form:

,"'(kk')=(0[( )+0 (0-0')] .(0)- '( -0') J 0 ( -0) .(0)) .(0'). (4.12a.)

The second-order term contains contributions from both K,"' and the two-connected parts K,"' and K,"',
and is given by

K,"'(kPP') = Jtdp p[v(k)+@ v(p -P)][M (kp)E (kpP') +M, (kP)E (kPP')]

dp U p -p I, kp S,
' p' +M, kp S happ' +Z( ) happ', (4.12b)

where K,",' is K,"' with 36 taken to first order from Eq. (2.24). We note that Kk(» is odd in k, in accord
with (3.14), and that its h-0 limit gives the correct second-order expansion of the classical result, Eq.
(3.16).'

To complete the list of static quantities appearing in the initial condition E(»(kPP'}, we give the second-
order term of n(P), which is

n, (P) =no(P)[o', (P)2 coth" (-'pP')0', (P) + &,(P)]no(P),

where

(4.13)

v, ()i)= —fdk 0[0(0)+nv(k —(i)]n, ()i)+—fl, 0'[v(k)+ilk(0')]'[n, (k —ilk)n(V)n (0 kk)n, (kk,k.)i')

+yn (P —Ek)n (P)n, (P+hk)E, ( Phk P')]—
(4.14)

P '=P -P —hk, E,(x) =x '(e" —1 —x).

The second-order term of H(kPP') is given in terms
of K,"' by Eq. (3.15). This is not a circular defini-

tion, because &,"' contains the first-order term
H, but does not contain H, .

B. Dynamic part

Up to this point we have dealt with the diagram-
matic analysis of equal-time correlation functions,
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for which the calculations are relatively straight-
forward. To obtain the dynamic part of the kinetic
kernel from Eq, (3.12c), we must analyze the
z-dependent function G(12,1'2'~z), and the calcula-
tions will in general be more complicated. To
obtain the dynamic part to second order, how-

ever, we need only the free-particle function
G0(12,1'2'~z). This simplifies our work consider-
ably. It should be noted that there is no first-
order contribution to the dynamic part.

Using Eqs. (3.1) a,nd (3.7), we find

G (12,1'2'~z) =[z —I (1)—L (2)] 'G (12,1'2'),

(4.15)

where

G, (12,1'2') = F0(12,1'2') — d3 d3' E0(12,3)E0 '(3,3')

x F,(3',1'2'), (4.16)

so that our task is reduced to the evaluation of the
zero-order static functions on the right-hand side
of (4.16}. The last term, which can be obtained
from Eqs. (2.44) and (4.3), cancels the contribution
of 20 of the 24 diagrams for E,(12,1'2'). The re-
maining four diagrams, Fig. 4, give

G.(k, p„k,p, :k,p„k.p, ) = ((»)'6(k, + k, )6(k, +k,}6(p,-p, )6(p, -p, )+ (»)'6(k1+k. )6(k, + k, )6(p, -p, )6(p, -p, )

+y(2)1)26(k, +k, +k, +k, )[6(3 pl -)6(4+2-)6(1+4-)+6(1+3-)6(2+4-)6(4+1-}]j

where

x, (k,p„k,p (4.17)

a(k, p„k,p, ) = —,'[n, (1+)n,(2+)n, (1—)n, (2 —) + n0(l-)n, (2-)D1,(l+)n, (2+)].

Using Eq. (2.27), we can also write a(k, P„k2P2} as

(4.18)

cosh[-,'Pk'(k, P, +k, P, )]
( 1PI D 2P2} 0( 1P1} 0( 2P2} cosh(1P@k, P }cosh (& Pkk, .

)
(4.19)

We note in passing that in the classical limit, G, (12,1'2') reduces to

limG, (12,1'2') =n2(p(p, )p(p, )[6(1 —1')6(2 —2')+6(1-2') 6(2 —1')],
h 0

in agreement with a direct classical calculation.
Now substituting (4.15) and (4.17) in Eq. (3.12c) and performing several integrations, we obtain the sec-

ond-order dynamic kernel in the form

&l"(DnDD') =
J . D(DD) D(DD')n(D D')-D(D -

, DD')n(D -D')+nD
2 + —-,D')n ( -1 '- + —)

p -p k, p+p, Ifk hk a(k- k, p;kp)
k 2 ' 2 4 2 z —(k-k)'P -O'P~ ~

~ (4.20)

The operator V(k, P), defined in Eq. (4.2), acts on

everything to its right in (4.20).
It is instructive to examine the classical limit

of K,'"' in this form. With 0=0, the statistical
factor a(k —k, P; kP) reduces to D12$(P)(t)(P), the
terms containing q cancel, the V operator reduces
to v(k)k s/Bp, and we recover the classical ex-
pression for [Z( )(kzpp')n(p(p')](2) . ' The sta-
tistical factor also reduces to its classical value
in the Pp. - -~ limit of Eq. (4.20), but the kine-
matic exchange and wave-diffraction effects re-
main.

While the classical weak-coupling kernel is
naturally expressed as a generalized Fokker-

Planck operator, the quantum weak-coupling ker-
nel actually has a Boltzmann-like collisional struc-
ture, although this is not at all apparent from
(4.20). We now proceed to transform the second-

I+ 2+ 3+ 4+ I+ 2+ 3+ 4+ I+ 2+ 3+ 4+ I+ 2+ 3+ 4+

I- 2- 3- 4- I- 2- 3- 4- I- 2- 3- 4- I- 2- 3- 4-

FIG. 4. Zero-order diagrams for G(12, 34).
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order kernel to such a form, beginning by writing
explicitly the displacements in P and P

' indicated
by the V operators. The result has two types of
terms, characterized by the sign in a(k —k, P a-,'k;
kP). Corresponding to this sign, we change the
variables of integration by

k = +(P, -P), P =P, + z (P, -P +k)

and insert fdp, 5(p +p, —p, -p, +k). As we have no
further need to refer to the classical limit, we
have set @=1. F inally, we add the above to its
version with P, and P4 interchanged, and obtain

)i, ()(zz(z(z') ()v) ' f=d)z, d)z, d), (v()z )z.) ~ z)v-((z -i, )I )V(iz)z, )z,)z. , )z')(l&(d)z, )z,d. l iz, z) *'d()z)z, (-z,-)z'I -)z, -z)(,

(4.21)

where

W(p, p, p, p„p') =[v(p, -p, )+)l v(p, -p, )] &(p, -p')+[v(p, -p, )+)iv(p, -p, )]5(p, -p')
—[v(p, —p, ) + )lv(p, —p, )] 6 (p, —p ') —[v(p, —p, ) + ')i v(p~ -p, )] 5 (p, -p '),

A(P, P2p, p, lk) z) = (P, +P, -P, -P4+")A()(P, + ak, p, + zk, p, —zk, P, —zklz))
—,' n„(p, )n, (p, )n, (p, )n„(p, ) +-,' R„(p,)n„(p, )n„(p,)n(p, )

(4.22)

(4.23)

(4.24)

To clarify the structure of the dynamic kernel
as given by (4.21), it is useful to examine the fol-
lowing limits. For & =0, the & function in A may
be used to reduce the 8' factor to

[v(p —p, ) + q v(p p, )][&(p —p—') + & (p, —p ')

for 0=0, z-+i0' the denominators of the A.

factors produce

and the numerators then differ only by a factor of
e . For k and equal to zero, therefore, the
second-order dynamic kernel reduces to the linear
Uehling-Uhlenbeck collision kernel with the Born
approximation cross section, in the form

)(md, ' (Ozz;d)z )= —iz(z,z) f'd), d(z. d(z. (v()z i, )+Vv((z - )])' (-S(Z)) Z((z --)z'')-Z(l'. , )'') Z((z;)d)(--
0

x 5(p dpi'-p~ -Pd)5 (z[p dp2 P, -Pd])no-(p)no(P2)no(P3)no(P4) ~ (4.25)

The Uehling-Uhlenbeck kernel can be interpreted
in terms of energy- and momentum-conserving
collisions between free particles with incoming
momenta P and P, and outgoing momenta P, and P4.
Correspondingly, the k, z-dependent kernel in-
volves collisions in the presence of a medium of
other particles, whose collective effect is rep-
resented by a momentum k' and an energy = Rex.
Except at 0 =0, however, the collisions are not
simply described by a cross section.

To conclude our derivation, we write the dy-
namic kernel in a form which clearly displays
its full symmetry. First we insert fdP, &(P —P, )
in Eq. (4.21) and perform the changes of variable
(1 2, 3—4), (1 —3,2 —4), and (1 —4, 2 —3), where
1 stands for P„etc. Using the symmetries

W(1234,P') = —W(3412,P') =qW(2134, P'), (4.26)

A(1234' k, z) = -A(3412' -k, -z) =A (2134' k, z),

(4.27)
we can then write the sum of these four expres-
sions as

K2(") (kzpp') =—,W(1234, p)W(1234, p')
1 " d1d2d3d4

x [—,'A (1234' k, z) —&A (1234' -k, -z)].

(4.2S)

From this expression, it follows immediately that
the second-order kernel satisfies the positivity and
symmetry conditions (3.14).

V. CONCLUSION

We have presented what we believe is the first
explicit kinetic equation for a quantum-mechanical
fluid that is meaningful on all scales of length and
time. Although the second-order kernel is not di-
rectly applicable to a real fluid with a strong re-
pulsive interaction, it provides a model kinetic
equation containing features which should also ap-
pear in any improved theory. The symmetries of
the kernel, which are related to the conservation
laws, and the positivity or stability condition,
which ensures that S(k(v) and the transport coeffi-
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cients are positive, are maintained exactly. The
short-time limit reflected in the sum rules, and
the long-time large-distance limit reflected in the
Uehling-Uhlenbeck kernel are correctly repro-
duced to the order of the approximation. In a
future publication we will give a detailed discus-
sion of the conservation laws and the transport
coefficients determined by this second-order
theory.

We have presented our theory in terms of the
anticommutator function &(1,1'~t). If we had
worked instead with the linear response function
L(1,1'~ t}l we would have obtained an approximate
kinetic equation similar in form to the one for
F(1,1'~ t) but differing by detailed-balancing factors
corresponding to the factor v(x) in Eq. (2.32). The
second-order dynamic kernel, for example, would
have the same form as (4.21) but the function
Ao(P, P,P,P, ~z) in (4.24) would be multiplied by
7[&P(P', +P', -P', -P~)]. Similarly, the first-order
term (4.12a) of the static kernel would be multi-
plied by ~(Phk P'). In the long-time large-dis-
tance limit the effect of these factors would dis-
appear and we would again recover the Uehling-
Uhlenbeck kernel (4.25}.

While the approach to quantum kinetic theory
we have formulated here is limited to the linear-
response domain, it is independent of any appeal
to coarse graining in space or time and of assump-
tions such as the Bogoliubov functional ansatz. '*"
It is clear a P~io~i that assumptions of the former

kind preclude an accurate description of the short-
time behavior. Likewise, the Bogoliubov theory
does not attempt to describe the short-time be-
havior, and in fact it has been shown in the clas-
sical case that the ansatz is correct only for van-
ishing wave vector and frequency. "

In this paper we have emphasized the consistent
application of a second-order perturbation calcula-
tion of the kernel and the initial condition. We do
not mean to suggest, however, that calculating all
terms of an nth-order expansion would be of great
value; selective summation of diagrams or other
techniques appropriate to a particular physical
system are more likely to be fruitful. The for-
mulation of Secs. II and III is suitable for a den-
sity or fugacity expansion, and in the future we in-
tend to discuss an approximate kernel containing
all effects of binary collisions. " For a dense fluid
or a system with long-range forces, it would
probably be desirable to modify the theory to elimi-
nate any direct reference to the potential, as has
been suggested in the classical case.""" We
note again that in its present form the theory is
not applicable to a superfluid, as we have not al-
lowed for Bose-Einstein condensation in the non-
interacting system.
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