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In bistable systems the transition kinetics between the two locally stable states can be
altered without changing the behavior in the immediate vicinity of the two favored steady
states. It follows that quantities which characterize only the vicinity of the favored states
cannot determine the most probable state. A second point: Even in monostable linear cir-
cuits the steady state need not correspond to minimum entropy production.

There has been a growing interest in the non-
equilibrium steady state. Entropy, entropy gen-
eration, and the nonlinear variation of the entropy
about the state in question have been treated in a
diverse stream of papers, far too numerous for
citation but with several central thrusts. The work
by Jaynes, ' as elaborated by Zubarev and Kala-
schnikov, ' by Corbet and Morowitz, ' and others,
assigns entropy the same role as in equilibrium
statistical mechanics. In this approach, entropy
represents a lack of information, and is maxi-
mized subject to constraints imposed on the sys-
tem. A second line of attack is based on the work
of Qlansdorff and Prigogine4 and a related but in-
dependent approach by Schlogl. ' These theories
take the nonlinear changes of the entropy about a
steady state, or else the "excess entropy produc-
tion, " and utilize these quantities in stability cri-
teria. Finally there is the older work by Prigo-
gine' which stresses that entropy generation is at
a minimum in the steady state for systems "suffi-
ciently close to equilibrium. "

Work of this sort seems motivated by the attempt
to find a quantity which plays the same pivotal role
in the steady state as energy does in equilibrium.
In equilibrium, the state with the lowest energy is
the most probable state, and more generally,
e 8 describes the relative probability of occupa-
tion of higher-energy states. We can write down

this probability without any need to follow the sys-
tem through its detailed motion. If there is more
than one locally stable state, e ~" still gives us the
relative occupation probabilities at the several
points of local stability, without any need to invoke
the behavior at the intervening potential barriers.

This paper points out that in general, in the
steady state, we cannot expect to find any simple
expressions of this sort. We shall show that there
can be no quantity which depends only on the im-
mediate neighborhood of interest and which deter-
mines the relative probability of occupation of that
neighborhood. Thus entropy, entropy time deriva-
tives, or nonlinear entropy variations are inade-

quate to specify the probability of occupation of one
stable or metastable state relative to another such
state. In a separate comment, at the end of this
paper, we also show that the principle of minimum
entropy generation is limited to the role of a fre-
quently useful approximation, rather than being a
ba, sic physical principle. It has, of course, always
been clear that in systems which depart from
equilibrium behavior in a very microscopic way,
e.g. , turbulence or non-Maxwellian hot-electron
distributions, we need a detailed concern with the
kinetics of the system's behavior. This paper,
however, is limited to simpler systems in which
only a few macrovariables are required to be far
from equilibrium,

In the case of some steady-state systems, which
permit more than one locally stable state, we have
learned how to compute the relative probability
of occupation of such states. ' ' %'e can use these
known results to judge the limitations of the en-
tropy-oriented approaches, and in a separate pub-
lication" the author will invoke tunnel diode cir-
cuits as a vehicle for that analysis. Here, we
shall use another model, chosen because it can be
understood without detailed dependence on the
existing literature. ' '

Our basic point: We can modify a system, such
as a particle in the potential shown in Fig. 1(a),
in such a way that the system behavior and all the
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FIG. l. (a) Bistable potential well withe metastable
relative to C. (b) D has been raised to level ofB to
illustrate effect of heating BD.
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local properties near state A and C remain un-
affected; but by going away from equilibrium we
can change the kinetics over a range of the inter-
vening states. Thus we can change p(C)/p(A),
where p is the distribution function, without chang-
ing the entropy associated with either C or A, and
without changing any of the time or x derivatives
of entropy, near A or C. It is therefore impos-
sible to use a purely local characterization to pre-
dict the system's preferred state. The detailed
kinetics along the path connecting C and A must
be involved.

Consider motion in a heavily overdamped poten-
tial, as shown in Fig. 1(a). The probability dis-
tribution p for a particle in this potential is given
by e ~, and this favors the neighborhood of C
relative to that of A. For subsequent use, note
that curve a can be taken as a plot of -4'T logp.
Now let us modify the temperature along a range
of the x coordinate, say between B and D. If we
bring BD to a very high temperature, then 8
will be a very flat distribution, and p will be in-
dependent of U and x in that range. Elsewhere
we have kept the original temperature, and there-
fore the same relative variation of the distribution
function. Thus, the shape of -logp- U/kT has
been left unchanged to the left of &, similarly to
the right of D. We have, however, as a result of
the high temperature in the range BD made logp
independent of x. Thus the new curve of -logp
is given by curve b which is identical in shape to
a, except for the leveling shown by the dashed line
between B and D (The s. ignificance of the solid
line, showing a rise between B and D, will be dis-
cussed later. )

Thus by modifying the behavior in the range BD,
we have changed the relative probability of occupa-
tion of A and C and have changed C to the less
likely state. In Fig. 1(a) as sketched, p is greater
at D than at A, but this is not essential for the
argument. The range BD can be chosen to lie
entirely above the energies of both A and C, and
if the energy at the unstable point B is high enough,
the same conclusion can still be reached: C can
become the less likely state.

We have thus modified the relative probabilities
of A and C, without modifying the behavior near
A or C, but only in the sparsely occupied states
in between. Thus any local quantity characterizing
the behavior near A or C will have been left un-
changed and cannot serve as an indicator of the
favored state or of the stability of a distribution.

The argument just given requires subsidiary
remarks about the role of the points B and D at
which the temperature discontinuities occur. First
of all, the temperature of our particle cannot be
strictly discontinuous as a function of x. After

crossing either B or D, the particle must take a
little while to come into equilibrium with its new
temperature. The greater the damping, however,
the more rapid the adjustment will be. Thus the
range of x over which deviations from the correct
"local" Boltzmann distribution occur can be mini-
mized to any desired degree. Within this range
of deviation, the steady-state distribution p is
affected not only by the potential but also by gra-
dients in particle temperature. Assume, as indi-
cated, that the temperature var iation occurs over
a range of x small enough so that the potential gra-
dient has no appreciable effect on p within this
range. In this range we are therefore concerned
primarily with the effects of the temperature
variation. At D, for example, particles from the
right arrive with a lower velocity than particles
from the left. To achieve the zero-current flow
required in the steady state, the density must,
therefore, drop as we go into the high-temperature
range. This is shown by the solid portion of Fig.
1(b) between B and D, The situation at B, how-
ever, is entirely analogous to the one at D with the
same temperature changes, and therefore, the
same drop in p upon moving from the cold range
into the hot range. Thus the net effect of the more
accurate solid portion BD of Fig. 1(b) is the same
a.s that of the original dashed line, and the hot
zone still provides the indicated leveling action.

Have we not also changed entropy generation by
introducing the heating apparatus for the range
BD~ To answer this, note first that the actual
well structure, aside from the particle motion,
need not be thermally conducting. In particular,
the "material" between BD could be thermally dis-
joint from the remaining portions of the well, so
that only the particle motion itself acts as a source
of heat transport between BD and the surrounding
colder portions. If BD, however, is in a low-
probability range, such particle crossings will be
rare, and the associated entropy production can be
very small and by suitable well choice, made ar-
bitrarily small. In any case entropy generation
associated with passage through D, for example,
is not part of the immediate neighborhood charac-
terization of C, if C and D are far enough apart in

energy. Any other entropy production associated
with the heating of 8D is equally present, whether
the particle is near A or near C, and does not
enter into a comparison of quantities between A
and C.

Our conclusion can be illustrated via an example
suggested by C. H. Bennett. To determine whether
under a given set of planetary conditions life is the
preferred state or only a metastable state, we
cannot just compare the lifeless state and the
known biological state, but must consider the
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transitions between these states. Furthermore,
we must go beyond ensemble averages and must
take fluctuations (analogous to the temperatures in

Fig. I) along the transition paths into account
We now break from the preceding for a comment

applicable to monostable systems. The steady
state is frequently characterized as a state of
minimum entropy production. This principle can
only be expected to apply for steady states which
are not too far from equilibrium. ' The intuitive
appeal of the principle is exemplified by a typical
quotation": Since it is to be expected that the
steady state will be as near the equilibrium state
as the various constants will allow, we expect
the entropy production rate to be as small as pos-
sible. "

Recent extensions" of dQ = T ds to steady-state
systems far from equilibrium have required eval-
uation of the energy dissipation in a slowly modu-
lated system whose entropy is chang ing. Let ~ be
some modulation parameter, e.g. , the battery vol-
tage in a circuit. Compare the dissipation in a
circuit slowly being taken through ~ =~, with the
dissipation in a circuit which has reached the
steady state for ~ =~0. Minimal entropy production

would suggest that the modulated circuit has a
higher dissipation, and that this difference is
second order in dX/dt. In actual fact,"the dif-
ference is generally first order and reversible;
i.e., it changes sign together with dh/dt. . Even in
the case of strictly linear circuits, where we
might expect the validity of the minimal entropy
production theorem to be unlimited by the restric-
tion to systems "not too far from equilibrium, "
we find that minimal entropy production does not
apply. Consider, for example, a voltage source
across a resistance in series with an inductance.
Now increase the battery voltage slightly. As we
approach the new steady state, during a period
determined by the L/R time constant of the circuit,
the resistive current and therefore Ne dissiPation
inc~ease steadily. They do so for all initial values
of battery voltage, i.e. , for conditions arbitrarily
close to equilibrium. Without specifying the exact
domain of validity of minimal entropy production,
we simply point out that it is not a universal prin-
ciple. In a separate paper, ' we will discuss this
and some of the other entropy-related stability
criteria of Glansdorff and Prigogine in more de-
tail.
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