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To avoid the shortcomings of conventional methods such as the symmetry dilemma and the subtrac-
tion of large numbers of roughly equal magnitude, a Green’s-function method is extended to the study
of hyperfine splitting in atoms and molecules. With this method the hyperfine coupling constants are
calculated for the ground and excited states of the molecule by a self-consistent equation, starting from
the Hartree-Fock level of a closed-shell system. In this approach the one-particle picture is retained,
and it is possible to study the hyperfine problem from a different physical point of view. The theory
is applied to the calculation of the ground-state and some excited-state hyperfine coupling constants
of Li and CH;. It is shown that those terms of the perturbation expansion which are essential to ex-
plain the constant of the atom are unessential in the case of the methyl radical and vice versa. This
result is generalized. The computational effort to evaluate the coupling constants has been found to

be very small.

I. INTRODUCTION

Much work has been done to calculate hyperfine
coupling constants (hfs) for atoms and molecules
by an ab initio approach.'”2° Many results ob-
tained so far depend strongly on the method used
for calculating the wave function of the system,
and there is no general agreement on the relative
advantages and shortcomings of the different meth-
ods. Actually there are two main reasons re-
sponsible for the difficulties arising when calcu-
lating hyperfine splitting. First the splitting is
proportional to the spin density of the electrons
at the nuclei and it is usually obtained as a small
difference of comparatively large numbers, i.e.,
the difference of the spin densities of spin-up and
spin-down electrons. Furthermore, the hyperfine
‘splitting arises only in open-shell systems which
are difficult to handle compared to closed-shell
systems with approximately the same number of
electrons. In this work we investigate a method
which avoids the above difficulties, but before
elaborating on it in detail other approaches to the
hfs problem are briefly discussed.

It is convenient to start with an expression for
the hfs. Because of the fast rotation of free mole-
cules the hyperfine splittings arise only from the
Fermi contact operator which for S states is given
by?! 22

F= ;FN,

FY= %"ngNBN; 6(r, - TN)-ék ° —fN,

@)

where g, B, &, By are the electronic g factor, the
Bohr magneton, the nuclear g factor, and the nu-
clear magneton for the Nth nucleus, respectively.
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§k and TN are the spin operators for the kth elec-
tron and the Nth nucleus. Experimental results
are expressed in terms of a coupling constant??® gV

F¥-g"§ Ty, (2)

where § is the total electron spin operator. Equa-
ting Eq. (1) and Eq. (2) leads to an explicit ex-
pression for the hfs as an expectation value in the
state described by the wave function ¥:

a" =‘1§7’ng~3~2’2: (¥|6(r, —7y)SF¥). 3)

When states which are not S states are considered
(L-S coupling) the above coupling constant is to be
divided by 2J and ¥ 'must be understood as
¥(J=L+S,M;=J). Equation (3) is the usual start-
ing point for ad initio calculations of the hfs.

Most of the calculations are based on the Har-
tree-Fock (HF) approximation or on extensions of
it. In the restricted HF (RHF) scheme the assump-
tion is made that the spatial parts of the HF orbi-
tals are independent of the electron spin. Thus,
only the unpaired valence electron contributes to
the hfs, and when this electron has a vanishing
density at the nucleus, no splitting is expected, in
contradiction to experiment. No core polarization
or higher correlation effects are included in the
RHF hfs. To include core polarization the un-
restricted HF (UHF) scheme is used whereby the
assumption made in the RHF approximation is
omitted. However, the wave function ¥ calculated
in the UHF approximation is not an eigenfunction of
S2, which is very unsatisfactory especially when
calculating spin-dependent observables. In addi-
tion it is difficult to estimate the amount of corre-
lation included in this approximation. From ex-
tensive calculations on atoms Bagus et al.” have
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concluded that the UHF method should be used
with extreme caution for the prediction of spin
densities at the nucleus.

From the UHF wave function one obtains an
eigenfunction of S? by applying a projection operator
introduced by Léwdin.?* The hfs obtained with
this method (PUHF) are often better than those ob-
tained with the UHF calculation,® but they lead
sometimes to worse results than UHF.?® There is
also the serious objection that the projection is
performed after the variation, leading to a wave
function which does not minimize the energy. It
is of course reasonable to minimize the energy
after projection. This has been attempted by
Goddard.?®*®* The spin density obtained with this
method for nitrogen represents an improvement
over the UHF value, but the oxygen and fluorine
values are in poorer agreement with experiment
than the UHF values. It is here also the case that
the amount of correlation included is uncertain.?’

Another extension of the RHF method which has
also been used to calculate atomic hfs®'® is the so-
called spin-optimized HF method.?'*® Such an
approach is extremely complicated, since it aban-
dons orbital orthogonality. The expense in com-
puter time is large and increases enormously with
the number of electrons.

There are still other methods which have been
applied to calculate hfs. The configuration-inter-
action (CI) approach which is, in principle, ade-
quate for calculating many-electron wave functions
has been used with varying success,?:5:28=30,10-12
The main reason for this is that, especially for
larger systems, the selections of configurations is
arbitrary. A more complete CI calculation re-
quires a high computational effort. In addition it
is difficult to interpret the results physically be-
cause of the many-configuration character of V.
Meyer® has proposed an approximate extended HF
method (AEHF) for evaluating hfs. With this meth-
od one uses a many-determinant wave function ¥
with a limited number of single- and double-ex-
cited configurations, which describes polarization
effects. This method avoids some of the short-
coming of the previously used methods. Indeed the
results obtained with AEHF give for the first-row
atoms a more consistent agreement with experi-
ment than the methods using a single-determinant
wave function. Because of the large contributions
of second-order effects in the polarization param-
eters, some doubts may arise concerning the re-
liability of the perturbation theory used in this
method.®

Two other limited types of CI wave functions,
referred to as polarization'® and first-order!! wave
functions, have been used to determine atomic
hfs. The spin densities obtained with these meth-

ods are also in more consistent agreement with
experiment than the values obtained with a single-
determinant wave function. For the atoms B to F
the spin densities resulting from UHF calculations
are about twice as large as the experimental val-
ues. The polarization and first-order wave func-
tions indeed lead to smaller spin densities. These
are, however, in several cases too small com-
pared with experiment. Larsson et al.!® have dis-
cussed the main reasons for the above behavior of
the first-order spin densities by analyzing the
corresponding wave functions in terms of natural
spin orbitals.?® Such an analysis is of general im-
portance, since it may help answer the question
about which type of correlation and polarization
effects contribute to hyperfine structure.

The Brueckner-Goldstone (BG) method has also
been applied to the hyperfine splitting problem.®
In this approach the ground-state expectation value
of the Fermi contact operator is calculated start-
ing from an unperturbed Hamiltonian which in-
cludes the V¥~! potential introduced by Kelly.*
For the Li atom this choice of potential is suitable
to avoid the symmetry dilemma?* which arises in
the UHF scheme. In addition the BG approach has
the advantage that one deals directly with small
numbers.

A hierarchy of n-particle variational Bethe-
Goldstone equations defined in terms of configura-
tional excitations of a HF reference state has been
used by Nesbet!” to calculate atomic hyperfine
coupling constants. The method leads to good re-
sults, but requires a considerable amount of com-
puter time.

The present paper investigates an approach to
calculate hfs which is completely different from
previous methods. As a closed-shell molecule
(neutral or ionic) does not exhibit a hyperfine
splitting, we may use the Green’s function for-
malism to evaluate the hfs of diverse states of
the molecule obtained by removing one electron
from the closed shell. In principle, we can also
study the effect of removing two or more electrons
from the molecule by considering the appropriate
many-body Green’s functions. Thus, we are able
to calculate hfs for ions which are difficult to mea-
sure and which might be of interest, e.g., in
astrophysics, as well as hfs of radicals and many
different open-shell systems. This approach also
has the main formal advantages of the BG ap-
proach. Further advantages are that the hfs for
excited states can be calculated starting from the
same closed-shell HF calculation and that the
number of terms which contribute to the hfs is
strongly reduced due to the properties of closed-
shell systems [see Sec. IV, Fig. 2)]. We have
chosen the HF potential as a starting point because
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of the general availability of HF calculations. The
theory can easily be extended to other types of
suitable single-particle potentials.

With the present approach it is possible to study
the hyperfine problem from a physically different
point of view making it a complementary method
to those previously applied.

As examples we calculate in Sec. VI the ground-
state and some excited-state hfs of Li and CH,. We
do not intend to calculate highly accurate hfs. To
do this more adequate basis sets for the HF cal-
culations should be used, especially for the values
of the orbitals at the nuclei. Our present aims are
to find the important terms of the perturbation
expansion, to look at the mutual compensation of
correlation and reorganization effects, to assess
the computational effort needed to obtain results
in reasonable agreement with experiment, and to
demonstrate the feasibility of the approach in
general.

II. THE HAMILTONIAN AND THE ONE-PARTICLE
GREEN’S FUNCTION

The nonrelativistic Hamiltonian of an atom or
molecule is given as a sum of a one-particle oper-
ator 2(7) and a two-particle operator V(,7’). To
evaluate the Green’s function, this Hamiltonian
should be written in the notation of the occupation
number formalism, where a; and a;r are annihila-
tion and creation operators for a particle in the
one-particle state specified by ¢. As already men-
tioned, we choose .(7) to be the HF operator and
the one-particle states become the HF spin orbi-
tals. When the Fermi contact operator is in-
cluded, we find

H=H,+Hy +Hp,
HO = Z Ei “Iai ’

1
Hp = E Hg’

N

N

4)

Y=Y Flala,, ‘

_1 Tt
Hy =3 Z Vimaia;a,a,
1.4:k,1

- Z Z;(ijk - ikkj)“iTaj ,

where €;, F¥ = andV,,,, are the matrix elements
of the operators i, F¥ and |7 -7/|"!, respective-
ly, and F is the set of orbitals occupied in the HF
ground state of the atom or molecule.

As already mentioned in the Introduction, we
attempt to calculate the hfs by a Green’s-function
method. For this purpose we consider a closed-

shell system of M interacting electrons with a
ground-state wave function ¥¥, Then the one-
particle Green’s function is defined by

G (t, ') = =i (¥ T {a; (t)a] (¢")}| W), ()

where the a;(t) =e'#* q,e” 't are in the Heisenberg

representation and T is the Wick time-ordering
operator. Of more interest to us is the Fourier
transform

th (w) J- iw(t—t )d(t t )Glm (t I )
Z <‘I‘”la I\I/MJ"}(‘I’””laTl‘I/M)
w+(EM EXF1y 07

o3 Sulall o v
w+(EFT_EN -0

6)

where ¥7 and EY are the wave function and the
corresponding energy of the nth state of the sys-
tem having U electrons. Thus by calculating the
poles of the Green’s functions, one obtains the
ionization energies and electron affinities which
include the hyperfine structure. Since Fermi con-
tact splitting occurs only in open-shell systems,
one can obtain the hfs for the diverse states of the
(M t£1)-electron systems.

III. A FORMULA FOR THE HYPERFINE SPLITTING

To demonstrate how the hfs can be calculated,
we start from the Dyson equation in matrix nota-
tion:

G (@) = 6°(®) + () 2™ (©) 6™ (), (7)
where Z"* denotes the self-energy part and GO is
the free Green’s function,

5, .
Giy )_ -€; +a1,0 a={+1’ LT,
-1, i 9. (8)
In addition to the above Green’s-function matrix
G"* we consider an analogous function G¥ which is

calculated with H = H,+H, and thus does not in-
clude any hyperfine structure:

GV =G°+G°ZVGY, 9)

While the self-energy part Eh“‘ contains the inter-
action between the HF particles as well as the
Fermi contact interaction, 2" contains only the
former interaction. We may write

I =BV L ENE, (10)

where each term (diagram) of Z"'F must contain
both interactions. The hfs can be calculated di-
rectly from

(EV)-I_(EM'S)'1=§V'F_ (11)

Considering only diagonal elements, the Green’s
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functions may be written as

pv
Ghi=goip + /1@ (12a)
and
hfs
hfs _ ____¥§ e hi's
Gl = 571, H @), (12b)

where p! and pI's are the pole strengths of the
corresponding Green’s functions and are given by

9%y -t
pr=l1- (#)l] : (132)
azhfs -1
hfs — [ ==ii . 1
p= - (5, ) )

A; is the hyperfine splitting in the state specified
by i and the f; are correction functions®*3® which
are smooth around the pole of G;; and vanish at
this pole, i.e.,

FY(=1) = fIS (=1, +4A,)=0.

Inserting Eqs. (12a) and (12b) into Eq. (11), one
obtains for the hyperfine splitting

Ay =p{ZF (=1 +8,) + O(8%); (14)

O(A%) denotes a term of the order of A? and is
negligible. Equation (14) is a self-consistent
equation for the hyperfine splitting in the state
|i, M £1). Usually we are not very near a pole
of the self-energy part, which means, with |Al|
< 1,;, that we may neglect A; on the right-hand
side of Eq. (14). When calculating the hfs for a
state ¢ which corresponds to the removal of an
outer electron from the ground state of the M
electron system, -I, is far away from poles of
ZVF 19 and we may furthermore substitute the
ionization potential I; by —€; according to Koop-
mans’ theorem?”:
A =pIZ]iF(€,). (15)

Equation (15) is the basic formula we use in our
calculations of A;. It should be mentioned that for
obtaining a higher accuracy, G;; and Z,; in Eqgs.
(12) and (13) should be replaced by the ith eigen-
value of G and € +Z, respectively, where € is the
diagonal matrix of the one-particle energies.
However, the eigenvector matrices of the Green’s
function matrices are usually well approximated
by unit matrices® and Eq. (15) can be used.

D=(-1) ViklzlSVliiajk F;;zl

IV. EVALUATION OF V-

To complete the calculation of the hfs we have to
determine the combined self-energy part Z"F,
This is done within the framework of a known per-
turbation theory.*® It is convenient to use a dia-
grammatic method which provides us with a
straightforward expansion of the self-energy part.
For the special case of evaluating ZV'F , the rules
to draw and evaluate the functions are briefly in-
troduced.

We first introduce some definitions. All dia-
grams are drawn on a vertical time scale on the
page. A solid line pointing upwards represents

G, (t, t') with ¢>¢' and when pointing downwards it

represents G2, (¢, ') with t<t’. A wavy line rep-
resents the matrix element of the Coulomb inter-
action and a wavey line attached to F" inside a
circle stands for a matrix element of F¥.

The rules for drawing the diagrams of nth order
in V;;,; and mth order in F ; are the following:
(i) Draw 7 horizontal V;,,, lines and m(>1) hori-
zontal F;; lines and connect them by 21 +m -1
G° lines. All topologically nonequivalent linked
diagrams should be drawn. (ii) Diagrams which
split into two unlinked parts by removing a single
solid line as well as diagrams with solid lines
which start and end at the same wavy line have to
be omitted. '

It is convenient for us to evaluate the diagrams
directly in w space. The following rules hold:
(i) Connect the free indices occurring in each
diagram by an expliw(f - #')] line, which is pointing
from ¢ to ¢’. (ii) Draw horizontal lines between
two successive wavy lines. Any part of a diagram
between two successive wavy lines is called a
block. (iii) Each G° or expliw(t - ')] line cut by a
horizontal line makes an additive contribution to
the denominator of the block: -€; and —w for G{;
and expliw (¢ —¢')] pointing upwards and €;, w when
pointing downwards. (iv) All interactions V;,,; and
F;j, the contributions of the blocks and a factor
(-1)**® (where a is the number of hole lines and b
is the number of closed loops) are multiplied and
the sum over the internal indices is taken.

As an example a diagram of second order in Vj,,,
and first order in Fj; is obtained by these rules:

REF

where D is the diagram shown in Fig. 1. In the
following we consider three arguments which lead
to a strong reduction of the number of diagrams
which have to be taken into account and to a sim-

Ligiigts (0 =€ —€ +€, )40 —€; —€; +¢€,)

(16)

r

plification of the expressions involved. First it is
clear that we need only consider the diagrams of
first order in F;;. The diagrams of second order
in F;; are much smaller but actually contribute to
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FIG. 1. Diagram of second order in V;;; and first
order in F;;. In the text this diagram is referred to as
D.

the nuclear coupling constants describing the nu-
clear-spin-resonance experiments. The second
point is that for closed-shell systems the matrix
elements F,, obey simple rules (real spin orbitals
are considered):

an =F;'m’
Fmono,=Fmonooac" (17)
Mot _Fmﬂ"ﬁ .

With these rules it can be seen that many dia-
grams vanish. We obtain the simple rule that
diagrams where the Fermi contact wavy line is
located at a closed loop (“direct diagrams”) do not
contribute to Z};¥, e.g., see Fig. 2. It follows
that only “exchange diagrams,” i.e., diagrams
where the Fermi contact wavy line is located at
the solid line going from j to ¢, contribute to Z};*,

This fact may easily be interpreted physically.
Consider an unpaired m electron outside the closed
shell of doubly occupied orbitals. This electron
does not contribute to the hfs since its spin density
at the nucleus vanishes. From the diagrams which
contribute to Z:F (see Fig. 3) we conclude that
this electron prefers the interaction with other
electrons having the same spin than with those of
different spin. This is easily seen by considering
that

1= VUM ao‘oh 60,0, .

jajkdk oy

io,
Thus, as some of the other electrons have a finite
spin density at the nucleus, these diagrams de-
scribe the mechanism of core polarization and
higher correlation effects contributing to a non-
vanishing hfs.

n
+

Since we are calculating the hfs of an open-shell
system starting from a closed-shell calculation,
we may perform the summation over the spin
variables and thus simplify the expressions for the
diagrams. The rule of performing the spin sum-
mation is simple: instead of summing over spin
orbitals as in Eq. (16), we may sum over doubly
occupied and empty orbitals only and multiply each
diagram by 2°, where b is the number of closed
loops.

The nonvanishing diagrams of first order in Ff"!
and up to second order in V;,, are shown in Fig. 3.
It should be mentioned that the hfs for each nucleus
of the molecule can be calculated separately.

hfs in first-order perturbation theory
In the lowest-order approximation [Fig. 3(a)] we
obtain for the hyperfine splitting due to the Nth
nucleus

Waf=p, F. (18)
The corresponding hfs is simply
ai = SngBeyBubil @i (ry)I?, (19)

where ¢,(7y) is the ith HF orbital of the closed-
shell system taken at the Nth nucleus. Here the
main difference between the present method and
the usual methods becomes clear. When the hfs
of a radical or an ion is calculated by the RHF
approach, one obtains a{ =% ngBgyByl @i (7y)[?,
where ¢; is the corresponding RHF orbital of the
system. In the present approach we start from
the HF calculation of a closed-shell system, the
ionization of which leads to the radical or ionic
state of interest, and the effective spin density
obtained in this case is p;|@;(7y)|?2. Ina pure one-
particle picture p; is equal to 1, and when many-
body effects are included p; becomes less than 1.
Thus, the hfs of Eq. (19) already contains many-
body effects.

It has been found®® that for the ionization of the
outer electrons the p; do not vary strongly for
different orbitals and have values =0.9. There-
fore, Eq. (19) provides a simple expression for
hfs of s-type unpaired electrons. The efficiency
of this formula should be examined by numerical
calculations and, if possible, by estimating the
contributions of higher orders.

FIG. 2. Example for
the cancellation of “di-
rect diagrams.”

"
o
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a
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g

FIG. 3. Feynman diagrams contributing to the hfs of
the Nth nucleus. (a) Bare vertex; (b) diagram of first
order in Coulomb interaction; (c) diagram of second
order and independent of w; (d)—(g) diagrams of second
order which depend on w.

For completeness we consider also the hyper-
fine splitting up to first order in V,,,, [Fig. 3(a)
+3()]:

N
avpri=py+2 Yy, Yumlis (20)
B €1 —€

Here % runs over all doubly occupied and 1 over
all empty orbitals (not spin orbitals). AY in Eq.
(20) already contains spin-polarization effects
and also gives an essential contribution towards
the hfs of electron systems with an unpaired elec -
tron which has a vanishing spin density at the
nucleus.

V. RENORMALIZED VERTEX

In Sec. IV the hyperfine splitting has been shown
to be proportional to that part of the self-energy
which contains one F{} line per diagram. Especial-
ly in first order A} is proportional to the bare
vertex F/} itself. As is customary in many-body
theories, one attempts to arrive at a compact
expression for the final result by renormalizing
the bare vertex. The symbol we use for the re-
normalized vertex &/ is shown in Fig. 4(a).

The renormalized vertex is constructed from

the bare vertex by a self-consistent equation of
the type shown in Fig. 4(b), where the block sym-
bolized by A is not yet specified. As commonly
done, the block A is connected to & by one-
particle Green’s functions. The only requirement
we have is that &} should contain all the diagrams
involved in Z/y¥. This can be done by introducing
the interaction operator?® y which is the sum of
all linked diagrams which have four free ends and
which are still linked when one free Green’s func-
tion is removed. In a simplified way of writing,
where indices and summation symbols are omitted,
one obtains

¥ F=F+yG'G"F. (21)

On the other hand, we may use the Bethe-Salpeter
equation which relates y to its irreducible particle-
hole part* I:

y=I1+IG"G"y. (22)

It is simply the sum of all diagrams of y which do
not split into two unlinked parts when one-particle
and one-hole lines are simultaneously removed.
By inserting Eq. (22) into Eq. (21) one obtains
A=1I

We have thus arrived at a self-consistent equa-~
tion for the renormalized vertex. Already a finite
number of diagrams belonging to A lead, with
the equation of Fig. 4(b), to an infinite number of
diagrams belonging to Z"**. By renormalizing
the bare vertex we have also retained the one-
particle picture with its simple physical interpre-
tation. We do not have to deal, as in most other
methods, with difficult-to-interpret and difficult-
to-calculate many-particle wave functions. This
is of course also true for the approach given in
Sec. IV, since both approaches are essentially
equivalent.

FIG. 4. (a) Renormalized vertex; (b) self-consistent
equation for the renormalized vertex. The double solid
lines are one-particle Green’s functions. The block 4
is discussed in the text.
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Expanding A up to first order in the Coulomb

interaction yields the simple result A = iV .,. In-

serting this result into the self-consistent equa-
tion for &} and approximating G by its first-
order expression, one obtains

54 =l + 13 [ GO-NCPOViShdt  (23a)
R,
or after integrating over time
5 =Fly+ 3 4 (o - )5, (23b)
T €1~ ¢

where 7, = 1 for k= & and 0 otherwise. It can
easily be seen that this & contains the diagrams
in Figs. 3(a), 3(b), and 3(c) as well as analogous
terms up to infinite order. It should be mentioned
that the direct diagrams which do not contribute to
§V'F have already been omitted from Eqs. (23a)
and (23b).

VI. APPLICATION TO Li and CH;

The zeroth-order term (in the Coulomb interac-
tion) for a hfs is represented by a bare vertex,
and the exact value may be obtained by a vertex
renormalization. To investigate the question as
to whether the bare vertex calculation, which is
most easy to perform, may be an adequate approx-
imation for the hfs of a system with an unpaired
electron having a nonvanishing density at the
nucleus, we shall discuss the well studied Li
atom as an example. It is equally important to
study a system with an unpaired electron having
a vanishing density at the nucleus. For this pur-
pose the hfs of the CH, radical are also calculated.
In addition the hfs of some excited states of these
systems are evaluated.

A. SCF calculations

It is well known that the choice of the basis
functions is very important. Gaussian functions
are very flexible and have computational advan-
tages over Slater-type functions. For calculating
orbital polarizations a much larger basis set of
Slater functions is needed in order to obtain com-
parable results to those obtained with a set of
Gaussian functions. However, hfs depends strong-
ly on the ¢,;(ry), i.e. on the values of the orbitals
at the nuclei, and Gaussian functions have the
disadvantage of having a vanishing derivative at
the nuclei which is contradictory to reality. This
disadvantage can be removed by properly prepar-
ing the Gaussian functions.® We also use a basis
set of Gaussian functions, but without this method
of preparation.

The wave function for the ions Li~ and CH,~
have been calculated using Roothaan’s finite-

expansion method*' as implemented in the program
system MUNICH.“ The basis set of Cartesian
Gaussian functions used for the calculation on the
Li~ ion consists of 11 functions of s-type,* 3 of
p-type (exponential parameters o, = 2.0, a,= 0.2,
a,;=0.03) and a set of d-type functions (exponential
parameter a,= 1.0) with the s-type functions con-
tracted to 10 functions. The total SCF energy is
computed to ESF= -7,427187 a.u.

The wave function for the CH;~ ion has been
calculated using the experimental geometry of the
CH, radical (planar structure with R_,,= 2.067 a.u.)
and employing the same basis set (10s/7p/1d on
the C atom and 5s/1p on each H atom) as deter-
mined by Driessler etfal.?’ with the only difference
that Cartesian Gaussian functions have been used
instead of Gaussian lobe functions. The total SCF
energy is computed to be E5'= -39.516186 a.u.

B. hfs for the ground state of "Li

In zeroth order in the Coulomb interaction, the
hfs for the ground state of Li is given by

at= $12BE1iBLiDas 025 Vi) (24)

where ¢, is the 2s orbital of Li~, p,, is the pole
strength corresponding to the ionization of the 2s
electron of Li~, We have calculated p,, to be
0.91 in second-order perturbation theory. With
@,s(7;) = —0.279 59 one obtains a'i=2.84 a.u. com-
pared with the experimental value** gli= 2.90 a.u.
The excellent agreement of this zeroth-order
value with the experimental one is however fortu-
itous, since the numerical value of a Gaussian-
type orbital at the nucleus is smaller than the ex-
act value.*®**¢ Roothaan etal.*” have performed a
highly accurate SCF calculation on Li~ with a
Slater-type basis set. With their value for ¢,
we obtain a''= 3.03 a.u. with the aid of Eq. (24).
For such a simple formula as in Eq. (24) the agree-
ment with experiment is astonishing. This means
that for the ground-state hfs of Li, Eq. (24) is
much more adequate compared with the restricted
HF calculation for Li which leads to a value of*®
a"'= 2.07 a.u. It should be mentioned that for Li
the UHF method also leads to a good result: a®
=2.81 a.u.*®

The diagrams which contribute to the renormal-
ized vertex can be divided into two classes. The
diagrams of the first class are energy dependent
(w diagrams) in contrast to the diagrams of the
second class (constant diagrams). When calculating
the constant diagrams up to second order, one
obtains g'i= 3.14 a.u. Adding the w diagrams up
to second order leads to a hfs ali= 2.77 a.u. which
is in good agreement with the experimental hfs.

Thus, it is unreasonable to use a renormalized
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vertex equation which contains only constant dia-
grams for calculating the hfs of Li. For a more
complete discussion of this point see Sec. VIE.

C. hfs for the ground state of 13CH,

The situation in the case of the methyl radical
is completely different from the case of Li. Since
the unpaired electron of CH; has nodes at the
nuclei, Eq. (19) leads to a vanishing hfs. In first-
order perturbation theory one obtains the hfs a©
=0.32 a.u. and a'= =0.14 a.u. The pole strength
has been calculated in second order to be p,,;
=0.85. The experimental values are*® ¢ = 0.83
a.u. and a" = =0.46 a.u.

Considering all constant diagrams up to second
order yields a = 0.80 a.u. and a” = =0.26 a.u. In
contrast to Li the constant diagrams are of essen-
tial importance for CH,. The contributions of the
w diagrams are very small. The final results in
second order are a€ = 0.76 a.u., a" = -0.24 a.u.
From Bishop’s**'*¢ investigation on Gaussian-
and Slater-type orbitals for the hydrogen atom
and molecule, we may conclude that the absolute
value of the hfs for the proton in CH; would in-
crease considerably when the wave function is
properly prepared to obtain a more exact cusp at
the proton. For carbon in the methyl radical such
a preparation is considered to be of little influence
on the hfs.

D. hfs for some excited states

With Eq. (14) and Sec. V one obtains for the
hyperfine splitting A; for a state specified by ¢ the
simple expression

Ay =pF(-I)), (25a)

where &; is the renormalized vertex and I; is the

ionization potential for the ith state of the reference

system. In Secs. VIB and VIC we have discussed

the case where ¢ stands for the ground state of

the molecule, i.e. I; is the ionization potential of

the outermost electron of the reference system.
When an electron is added to the reference

system (closed-shell), then the hfs of the states

of the resulting negative ion are analogously given

by

A; =pjgj(—Aj), (25b)

where A; is the jth electron affinity of the reference
system.

The same expressions for the hfs hold even in
cases where one electron is removed from the
reference system and simultaneously other elec-
trons are excited and in cases where one electron
is added and other are excited. In such cases p;
is small (p; = 0.1) and -I; is near a pole of F;(w).*°

This means that the w diagrams will lead to the
most important contributions to A;. Therefore,
it is necessary to evaluate the vertex starting
from a irreducible particle-hole part*® I of the
interaction operator which is explicity dependent
on time.

For Li we have calculated the hfs of the state
1s'2s® where a 1s electron has been excited to
the 2s state. The pole strength has been calcu-
lated in second order p, = 0.78. The final hfs is
a,s=302.6 a.u.

Adding a 2p electron to the reference system
Li™ leads to a p,, = 0.93 and to a hfs a,,(1s?2s%2p?)
=0.51 a.u.

For the methyl radical one obtains in second
order the pole strengths p,,-= 0.80 and p,,. = 0.99.
The corresponding hfs are a4 (1a])?(2a})?(1e’)*(1as)]
= —0.17 a.u. and a5 [(1a!)?(2a;(le’)*(1a})?(2¢’)]
=2.107* a.u. for the carbon nucleus and af,
= ~0.15 a.u., all,=2.107% a.u. for the protons.

E. The problem of different behavior of perturbation
expansions for Li and CH;

The bare vertex has been found to be an excellent
zeroth-order approximation for the hfs of Li. In
higher orders the constant diagrams have smaller
contributions to the hfs than the w diagrams. The
situation is completely different for CH,. Here
the w diagrams have nearly negligible contribu-
tions both to a" and a©. It is of great importance
to know whether these results are accidental or
whether systems with an unpaired electron with a
finite spin density at the nucleus behave like Li
and the other like CH,. In case the latter is true,
we may use Eq. (23b) for estimating the constant
diagrams up to infinite order for systems like
CH, and an analogous, or more simply a geome-
tric® type of approximation for the w diagrams
for systems like Li.

To answer this question, the w diagrams are
considered in some detail. In second order only
the seven time-ordered diagrams shown in Fig. 5
are of importance. Some of the diagrams are
equal to one another: (a)= (b), (d)= (e), (f)= (g).
The diagrams are ordered according to their
significance; (a) and (b) have the largest contri-
butions, etc. With the rules given in Sec. IV to
evaluate such diagrams one easily understands
why these diagrams have large contributions for
a system such as Li. The main contribution to
diagram (a) comes from K1=K2 and K3 = i,
especially when K1=K2=K3=1¢{. This term does
not have a contribution to the hfs of CH,, since
the orbital ¢ (= 1a;) has a node at the nuclei and
F{ is zero. The largest contribution to (c) arises
when K1=K2=14, in the case of (d) wheni =K1=K3
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FIG. 5. Seven time-ordered diagrams which lead to
the main contribution to the renormalized vertex in
second-order perturbation theory in the case of Li.

and for (f) when K1=4, Again these terms do not
contribute to the hfs of CH; and of similar sys-
tems. For molecules with heavier atoms where
the unpaired electron has a node at the nucleus
the w diagrams are even less important than for
CH,, since the molecular integrals of interest,
e.g. Vi ks k3,51 in (), are smaller for the large
FY[F¥ s in (a), K2 an inner orbital] and the de-
nominators involved are larger than for CH,.

VII. DISCUSSION

To calculate the hfs of a molecule one usually
has to construct a many-particle wave function
describing the ground state of the system under
consideration. By starting with a RHF wave func-
tion, a well defined one-particle picture is intro-
duced. To proceed further, configuration inter-
action must be taken into account. The contribu-
tions due to configuration interaction are often
subdivided into contributions due to core polariza-
tion and to higher correlation effects.

In the present approach it has been demonstrated
that the hfs of ions and radicals can be calculated
considering the Green’s function of a closed-shell
system. The main technical advantages of this
approach have already been discussed in the In-
troduction. In principle, it is also possible to
investigate the different contributions to the hfs
with respect to core polarization and higher cor-

relation effects. Moreover, the mathematically
completely different approach attempted in this
paper gives us the opportunity to study the hyper-
fine problem from a different physical point of
view discussed in the following.

When ionization potentials are calculated with
Green’s functions one obtains Koopmans’ theorem?®’
as the first-order approximation. The correction
terms to the value obtained by Koopmans’ theo-
rem are due to relaxation (or reorganization) and
correlation effects.®**®* We have the same picture
when calculating the hfs by Green’s functions.

The situation here is even somewhat simpler,
since a closed-shell system has a vanishing hfs.
The contribution of relaxation effects to the ion-
ization potentials are determined as the difference
between the ionization potential obtained from two
HF calculations, one on the molecule and one on
the ion, and the ionization potential obtained from
Koopmans’ theorem. The contribution of relaxation
effects to the hfs is obtained by subtracting the
value calculated with an RHF calculation on the
system having hyperfine structure from the value
obtained with the aid of Eq. (19). All additional
contributions to the hfs arise due to pure correla-
tion effects. It is well known that Koopmans’ the-
orem leads to valence ionization potentials which
are close to the experimental values because cor-
relation and relaxation effects often tend to com-
pensate each other.5275% If it is also the case for
calculating hfs, then Eq. (19) is a good starting
point for obtaining accurate hfs for s-type systems.

However, as Koopmans’ theorm leads to a first-
order (in Vj;,;) approximation, one should include
the first-order diagram which is shown in Fig.
1(b) in order to obtain an equivalent approxima-
tion for the hfs. Inclusion of this diagram makes
this “analog to Koopmans’ theorem” also applicable
for non-s-type systems.

It is possible to collect diagrams according to
their physical significance. Thus the time-ordered
diagram shown in Fig. 6 for the ionization of the
2s, electron of Li~ describes the 1s, state inter-
acting with the 2s, state through the exchange
potential and becoming an excited state which
interacts with the Fermi contact operator to re-
turn to the 1s, state. The mechanism involved
is of the spin-polarization type. To distinguish
between the terms corresponding to correlation
and those which correspond to relaxation effects
in the renormalized vertex, one can employ the
method suggested in Ref. 53.

The present approach seems to be very efficient
when one considers the computational effort in-
volved. The number of diagrams up to second
order is greatly reduced because all direct dia-
grams cancel out. In addition, many of the re-
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FIG. 6. Diagram of first order in the Coulomb inter-
action contributing to spin-polarization in Li. ex,are
excited HF states with spin & and a nonvanishing spin
density at the nucleus.

maining diagrams have equal contributions; the
summation over the spin can be easily performed;
and the number of orbitals involved in a diagram
is relatively small because of F4,:= 0 for ¢, )
or @, (ry) equal to zero. The computer time

needed to evaluate one hfs was about 2 sec on the
IBM 360/91 with an unoptimized program.

Finally it should be mentioned that the approach
discussed in the present paper can, in principle,
also be applied to calculate the hfs of those states
which are characterized by an ionization with a
simultaneous excitation and that more complicated
open-shell systems can be treated in an analogous
way with many-body Green’s functions.
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