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A derivation is given of free-space Gaussian modes described by six parameters. For a beam traveling in the
z direction, three parameters describe the beam properties in the planes of constant y and three parameters de-
scribe the beam properties in the planes of constant x. It is further shown that the beam waist for the proper-
ties in the planes of constant y need not coincide with that for the properties in the planes of constant x. For
special values of the parameters the six-parameter modes reduce to the familiar three-parameter modes.

I. INTRODUCTION parameters'

In describing laser beams in free space, a
Gaussian beam ansatz has been used as the start-
ing point for obtaining a solution of the Helmholtz
equation. Presumably such an ansatz arose in
analogy to properties of the mode solutions devel-
oped for laser cavities. The ansatz assumes that
the beam intensity has a Gaussian distribution
laterally and that the beam is characterized by
three "longitudinal" parameters: The wave-front
radius of curvature R, a width W, and a phase $.
All of these parameters change with values of the
beam-drift coordinate z. When this ansatz is car-
ried out in rectangular Cartesian coordinates, one
obtains a set of Hermite polynomial modes. These
modes constitute a complete orthogonal set in any
plane transverse to the beam axis. We refer to
these as three-parameter modes.

We have approached the description of free-
space laser beams by recognizing that a more gen-
eral ansatz may be useful. We retain the Gaussian
intensity assumption but use theo radii of curvature,
tzvo widths, tsoo phases, and tzvo beam-drift coor-
dinates. These two sets of parameters refer to
beam properties in two orthogonal families of
planes parallel to the beam axis. We again obtain
a set of Hermite polynomial modes which we call
six-parameter modes. These modes provide
greater flexibility within the longitudinal param-
eters and yet are still a complete orthogonal set.

The six-parameter modes are derived as approx-
imate solutions of the Helmholtz equation in Sec. II.
In Sec. III a number of general properties of the
modes are revealed. In the Appendix we obtain an
analytical expression for beam power. The con-
clusion summarizes the results with some per-
spective on why certain results are particularly
important.

II. BASIC THEORY

The free-space Gaussian modes used to describe
laser beams can be written in terms of three beam

Q =tan '(koW', /2z),

W =W'[1+ (2z/koWO)'],

It =z[1+(Waoko/2z) ],

(»)
(1b)

(lc)

u(r, cu) =u, y(x, y, z)n( (u, + ~) ex-p(-ik, z) +c.c. ,

where c.c. denotes the complex conjugate with the
exception that 5(-&@0+A) is replaced by 5(no++).
Neglecting s'y/sz' we get

~X ~X 2P~~ 0ax' ey' 'az

At this point the usual assumption is to write

(2)

X =oPexp[F (z) —(x +y )/F (z)],

where F,(z) describes the change in beam width
with distance and a phase change in the planes of
constant z due to the changing radius of curvature
caused by the changing beam width. The function
F,(z) describes both a change in amplitude at the
beam axis due to the changing width and an added
phase change which occurs as the beam propa-
gates. The function cyP turns out to be approxi-
mately

aP =H (&2x/W, )H„(v 2y/W, ),

where II and H„are Hermite polynomials of or-
der m and n.

We instead propose to write

where W, is the beam-waist radius at z =0 and R
is the radius of curvature of the wave front on the

z axis which is the beam axis. The parameter g
is a phase parameter. We want to show here that
there exists a more general set of modes de-
scribed by six parameters.

To derive these more general modes, we start
with the scalar wave equation'

V'I +k',u =0

and write
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q =H„(W&x/U, )H„( 2y/U, )

x exp[G (z) +G (z) - x'/G (z) - y'/G (z)] (3)

with the expectation that G,(z) and G, (z) describe
beam properties in the planes of constant y while
G, (z) and G4(z) describe beam properties in the
planes of constant x. We also anticipate that
H (&2x/U, ) and H„(v 2y/U, ) describe beam proper-
ties in the planes of constant y and constant x, re-

spectively.
We now proceed to show that we can obtain an

approximate solution to Eq. (2) using the form
given in Eq. (3) and obtain the beam parameters
for this form. Substituting Eq. (3) into Eq. (2) and
neglecting'

(v 2/U', ) U', xH'. H„+(W&/U', )U,'yH. H„'

in By(x, y, z)/Bz, and rearranging, gives

«(—,— '; ')».»„—( +»a.»,')—»»„(&»+» —". „*»'.»„)

Now add and subtract

to get

4 2ikoGi 2 . , 4m 4 W2x 4mHmHn — +2~& G' + H H +
G U " U n GU m n p2 m n1 1 1 1 1 1

We find this equation holds if W', = W', (1+4z'/W, 'ko) .

and

2= 2=U~=G, , U2 =G2,

G, =A+2z/ik, , G, =8+2z/iko,

G, = -z ln(z + —,'iAk, ) —2mz/ik, U', + C,
G4= —21n(z+wBk, ) —2nz/ikoU, +D,

We similarly find the beam width in the planes of
constant x to be

W2 =W2(1+4z /W2ko).

To identify the contribution from the imaginary
part of G„we note that if R, is a radius of curva-
ture in the planes of constant y then

where for the computation of G,' and G,' we neglect-
ed derivatives of U, and U„respectively.

To evaluate the constants we consider the beam
at z =0. We find

and

A=A 1 (4)

B=W (5)

where W, and W2 are the distances, in planes of
constant y and x, respectively, at which the Gauss-
ian beam factor has fallen to e ' times its value
on the beam axis. Thus they are the beam widths
at the beam waist. The real part of G, gives an
amplitude term in y of the form

exp[-W', x'/(W', + 4z'/k', )] .
We thus identify the beam width in the planes of
constant y as

exp(-ikoR, ) -=exp[-ik, z(1+x'/y')u']

= exp(-ik, z ik,x'/—2z)

where x'/z'«1 has been used. On x=0 we see
R, = z so there

exp(-ik, R, ) = exp(-ik, z —ik,x'/2R, ) .
The contribution to X from the imaginary part of
G, yields

-2izx'/k,
P W41+ 2z ~2k '

so we identify the radius of curvature at x=0 in
the planes of constant y as

R, = z[1 + (W', k,/2z)']. (8)

We similarly identify the radius of curvature at
y = 0 in the planes of constant x as

R2 = z[1 + (Wako/2z ) ] . (9)
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To identify C we write G, as

G, = --,' ln[(z' + —,'k', W', )"'exp(i(t), )]

-2mz/ikoU, +C

D = —,
'

ln(wzW~ko) .
We then find that in X, Q3 yields the contribution

il/2 ~ ex 1 ex

where p, = tan '(koW', /2z). Now we require

G,(0) =0.

This yields

C = —,'ln(-,'iW', k ).
Similarly we find

(10)

We similarly find that in X, Q, yields the contribu-
tion

W~ -g 2 -2nz

It is now an elementary task to assemble u(r, +)
which appears as

W,W~
'I' &2x &2y

u(r, (u) =u, 5(-(u, + (u) exp(-ik, z) i

-i(t), i Q, 2imz 2inz x aiko 1 2i y'iko 1 2i

where

U~ =W~~+2z/iko, U~ =W~ +2z/ik().

Because of the identities

W~ —= 2R, /ko tang,

and

W2 =- 2A, /ko tang,

only four of the six parameters Wl W2 Ay R2,
(3))„and P, are independent.

It is possible to obtain an even more general
solution. For that we start by replacing exp(-ik, z)
in u(r, &u) by

exp[-ik, (z +z')/2]

where z' =z+a with constant a. Thus

8 8
Bz Bz

We now label z as z, and z' as z, . If we replace z
by z, in U„ G„ and G„ and by z, in U„ G„ and

G, then we find the more general solution is

.(, )=..o(- .. ).*p(", (.,",)) (
)*"e.(, '*)e„(," )

-i/, (z,) i Q, (z, ) 2imz, 2inz, x iko 1 2i

y i)po 1 2s

2 )),(z, ) ),,))",(z,)) (12)

To obtain the three parameter modes in terms
of the parameters of Eqs. (1), we set W, =W, =W„
R l R2 R z l = z2 z. The approximation U, = U2
= W'0 is also frequently used.

We now wish to write the six parameter modes
in terms of another phase convention. For this
we define

Then

and

=im P',

4] = 27( - 4y

= tan '(2zq/koWq), j = 1, 2

and assume that

2z&/koW& « 1, j = 1, 2 .

2inz2

Within this approximation the independent vari-
ables in the Hermite polynomials become v 2x/W,
and v 2y/W, . If we now include the multiplicative
fa,ctor i in Eq. (12) in the phase, we get
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ikx' 1 2i ik y' 1
2 ZZ (z ) 2 W'(z ) 2 22 (z ) 2 W'(z ) )

(13)

When W, =W3 Ry=Rp and z, =z, these become the three parameter modes in their most familiar form. '

III. MODE PROPERTIES

To gain some insight into the nature of these modes, we transform Eq. (13) to the time domain
zzz A

'(W ( )W (z )) "(W ) "(W ) (W'( ) W'(z ))
k ' kxcos ~,t —2'(z, +z, ) +(m+ —,')(t)', (z, ) +(a+z)(t),'(-~) —

2
' (14)

~e have plotted equal amplitude contours of u(r, t)
in Figs. 1-4 for a number of situations. Before
discussing some of the analytical features of these
plots we will first discuss the conventions used in
them.

In each of the four figures, we fix m, n, z„z„
and t. All lengths are measured in wavelengths.
Thus the velocity of light c is measured in wave-
lengths per second. This means that as ct varies
from 0 to 1, one cycle is completed. The plots
are normalized so that with W, and W, fixed and
with

z, =0 and z, =0,

M(r, t) has a maximum amplitude of 1 V/m. It
then follows that with the same W, and W» but dif-
ferent values of z, and z» the maximum amplitude
of u(r, t) cannot be greater than 1. To see why this
is true, let us denote by I' the amplitude of u(x, f);

W~W~ 2x 2y

We then search for extrema of F by requiring

=0, i =1,2.7

Then we have

1 2x dW, (z 2)

2 W2(z, ) dz 2

with a similar expression for W, (z, ). Then either

dw, (z, )

dz~

which identifies the beam waist (which is at z, =0),
or

W', (z, ) = 4x'.

The second extremum is due to the spreading of
the beam. To see this, consider observing the
beam amplitude at a point x removed some dis-
tance from the region of high-beam intensity first
with z, =0 as sl.own in Fig. 5, and then with z, in-
creased enough to produce the second situation il-
lustrated in Fig. 5, where the curves AB are con-
stant amplitude contours of the partial amplitude
factor F„given by

F„= ' ' e - exp

Clearly the partial amplitude as viewed at x is
greater at z, &0 than at z, =0. Since we can write
a similar partial amplitude for the y related pa-
rameters and separate F in the form

F=F F
we see that we can consider the extrema of the
beam due to the x and y parameters separately.
Our argument thus shows that the second extre-
mum in the beam amplitude is due to the spread-
ing of the beam and can therefore be ignored. We

have verified this by comparing the maximum am-
plitude, with z, and z, set equal to 0, with the val-
ue of the amplitude as determined by our second
extremum, with z, and z, both different from zero,
for mode numbers between 0 and 3.

With z, and z, set equal to 0, the maximum par-
tial amplitudes were found by respectively differ-
entiating F„and F, with respect to x and y. The
maximum partial amplitudes were then multiplied
to give the maximum value of F. We chose values
of uo which made the maximum value of F unity.

For each plot, we have also calculated the power
the laser beam would need to produce a pattern
corresponding to that plot. This was done by us-
ing the relation for the beam power which is de-
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rived in the Appendix.
Normalizing in a way that assured us that the

amplitudes were between -1 and +1 made it possi-
ble for us to plot constant amplitude contours,
first in increments of 0.1 between -1 and +1 and
later in finer increments which we will refer to
as subintervals. The subintervals plotted were
chosen as follows: first, the maximum and mini-
mum amplitudes achieved in the plot were found
to an accuracy of 0.1 while generating the first
set of contours. Let us suppose that they were
0.8 and -0.3 respectively. The computer then
searched for subintervals of the form

0.8+8(0.1)~ and -0.3 —J(0.1)',

where a number of values of J were specified and
where I was progressively chosen as 2, 3, . . . un-
til (0.1)' was less than a specified limit which we
will call I . %e have not labeled each co»;~ur in
the plot. Instead, we have labeled each zero-am-
plitude contour, and the beginning and end of each
sequence of contours. The change from contour
to contour within a sequence will be a fixed num-
ber. For example, in Fig. 2(d) we have labeled
the zero amplitude contours and the contours with
an amplitude of -0.1, -0.7, 0.003, -0.73, and
-0.79. The contours between -0.1 and 0.7 change
by 0.1 while the co~tour between -0.73 and -0.79
is -0.76.

To complete the specification of each plot, we
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FIG. 1. m =-0, n =0, z& =10000K, z&-—-10000k,, W& ——100k,, W&
—-100'., (three-parameter mode). Part (a) ct =0.000,

(b) ct =0.125, (c) ct =0.250, (d) cI' =0.375. The power needed to produce these patterns is 20.852A2 W.



604 D. R. TOMPKINS p JRo AND P F RPDNE

1000

800--

I I I I I I I I I

1000

800--

T I I

b
I I I I I

600 -' 600 -—

400--

200--
I-
(9
5 0. 0. 0. 0. 0
IJJ)

-200--

O.O OO IOO Gp 0.0 O.C' Qo 0. 0. 0. 0.0.

(0

(3
bJ

LIJ

400--

200 -—'

0. 0..:0.0. 0. 0.0
0--

-200 -—

0,0 0.0 00

.50
0.53
0.56

0.0 0.0 0. 0. 0. O. IO. O

I
I

-400 —,
'

-600-- -600--

-800 —— 0.9 0.93 0.96 -8OO —
1

Ippp I I I I I I I I I

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
x (WAVELENGTHS)

-IOoO I I I I I I I I

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

x ( WAVELENGTHS)

1000

800—

600—

I I I I I I I

0.0 0.0

1000

800--

600 —-

0.0 0.0

400— 400 —. 3.00

(6 I

200—

UJ
0. 0. 0. 0. 0. P. 0.00.0

0—
LLI

-200—

-400—

0.033
0.0

-0.1

0.00. 0 0. 0. 0
0.0. 0. O. 0. 0. 0.00.0 0.0

CD

p —.

& -2OO—

~ -400 —.

0.0 0.00.0 0. 0. 0. 0. 0.0.

-800—

-600--

-800 —.
07

-0.7

I I I I I I I I I

- 000 -800 -600 -400 -200 0 200 400 600 800 1000

x (WAVELENGTHS)

-IOOO 1 1 I I I I

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

x (WAVELENGTHS)

FIG. 2. »~ =0, n =0, ~p =10000K, ~q =10000A., W(
—-100', W~ =500'. Part (a) et=0.000, (b) et=0.125, (c) et=0.250,

(d) et=0.375. The power needed to produce these patterns is 104.26K~ W.

set the ranges of the x and y axes equal and chose
them so that the plot would definitely include all
contours of constant amplitude whose magnitude
was greater than I'. This was done using asymp-
totic forms for the Hermite polynomials and by
specifying that the largest dimension of the plot
should be an integral multiple of 100 wavelengths.

An interesting property of the plots is that they
can be rescaled according to the following rules,
which are easily verified by examining Eq. (14)
and the functional forms of W, (z;), R, (z, ) and

Q,'(z, ), i = 1, 2. Let u and P be two real numbers
determined by the following relations:

n = (1+P/z, ), P =+1, a2, . . . ,

p = (1 +q/z, ), q =+1, +2, . . . ,

subject to

p+q =0, +2, +4, . . . .
Then if the parameters of a given plot are 8y 82,
W» W» and t, a plot with parameters + pyp P gp

lQTVy PW2 and t can be obtaine d by s cal ing
everywhere by n and y everywhere by P. (As in
the plots, all lengths in the above relations are in
units of wavelengths. )

Finally, we take up a discussion of the zeros in
the beam amplitude. These occur at the zeros of
the Hermite polynomials, which are straight lines
parallel to the x and y axes and are independent of
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the time, and along contours where the phase is an odd integer of z/2, i.e. , along surfaces where

&u,t ——,'ko(z, +z, ) +(m+ —', )Q', (z,) +(n+ —,')P,'(z, ) —k,x'/2A, (z, ) —koy'/2R, (z, ) = —,(2l+1)w, l =0, +1,+2, . . . .
This can be rewritten in the form

where

8 =2ct —(2l+1)w/ko —(z, +z~) +[(2m+1)/ko]Q~(z~) +I(2n+1)/kojpz(z~), l =0, +1,a2, . . . .
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(d) z& =3.50000.00k,. The power required to produce this pattern is 20.852~2 W.

Since we can always find values of l that allow 8
to be positive, we see that at a fixed zy z2 and t,
the zeros of u(r, t) fall along ellipses whose semi-
axes are given by

[QR,(z,)]"' and IUD (z )]'~'

Since 8 increases linearly with time, the semi-
axes of these ellipses increase as t'I'.

It i interesting to note that when

W, =TV~,

and with the beam waist of one parameter (~ or y)
always in the same relation with that of the other

parameter (i.e., always behind or always in front
of it), the semimajor axis of an ellipse of zero
amplitude can be along either the x or the y axis,
or the two semiaxes can be equal. This can be
seen without loss of generality by assuming

then the semiaxes of an ellipse of zero amplitude
will fall into one of the above three categories de-
pending on which of the following conditions is ful-
filled: (a) the semimajor axis will be along the y
axis when

z~g2 & W,ko/4;
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effects dominate over the spreading of the beam in

regard to the dimensions of the contours of zero
amplitude. For example, suppose z„z„and t
are positive numbers, that z2 and t are fixed, and

that z, is increased to a new vat. ue z', where

I

I

AI

I

*=0

SEAM AXIS

8
z&Q

zg —zg+sq s&0

If s is sufficiently large, the result is to decrease
the value of 8, and so to decrease the semiaxes
of the zero-amplitude contours. Pursuing this
further, let us consider what happens to the small-
est contour. Suppose that l is such that

FIG. 5. Illustration of the origin of the second ex-
tremum in beam amplitude. The curves AB are con-
stant amplitude contours of the partial amplitude +„as
described in the text, and the point x is far from the in-
tense portion of the beam. Ate =0, x is located at the
beam waist, while at& & 0, x is near the curve AB.

(b) the lines of zero amplitude will be circles when

z,z2 = W,ko/4;

(c) the semimajor axis will be along the x axis
when

z,z, & W', k', /4.

For example, suppose condition (a) is met; then
if we first look at the beam with the waists at the
same location and of the same width and proceed
to slip the x-z plane waist to greater and greater
distances behind the y-z plane waist while keep-
ing the location of the y-z plane waist fixed at a
value such that

z, & Wacko/2

the lines of zero amplitude determined by the phase
first appear as ellipses with their semimajor axes
along the y axis, then as circles, and finally a,s
ellipses with their semimajor axes along the x
axis. Intuitively one might expect the ellipses to
always have their semimajor axes along the x
axis since the x beam width will be larger than the

y beam width at the plane of observation. This shows
the importance of the phase terms in the expres-
sion for g and is illustrated in Fig. 4. In Fig. 4(a),
the semimajor axes of the zero amplitude ellipses
are along the y axis. Note that the contours interior
to the first zero-amplitude contour have their long
axes along the x axis. In Fig. 4(b), the beam
waists have been slipped further by a half wave-
length. Note that now all contours have their long
axes along the y axis. Figures 4(c) and 4(d) illus-
trate the transformation of the zero-amplitude con-
tours into circles and then into ellipses with their
semimajor axes along the x axis.

Another surprising feature is the fact that phase

Then since

2m +1 2n+1
+

2 yi(zi+ s) +
2 y2(z2) ~

(16)

and

0 & P', (z, + s) & v/2

we can certainly write

y', (z, +a) & y', (z, )+w/2.

Inserting this into Eq. (16), we have

x
2R, (z, + 6) 2R, (z, )

1 (2l+1)v z +z2 2m+1~of—
0

s m 2m+1

Making use of inequality (15), we thus have

y2 1 m 5 s&o

2R, (z, + b, ) 2R, (z, ) k, 2 4

Thus, when one increases z, to the point that

k08/2& m

when 8 is evaluated at z„z„and t. Or, stated
more explicitly, suppose l is such that

(2I + 1)z (z, +z, )

2 2

+ y', (z,) + (g(z, ) & s.(2m +1), (2yg+I)
2

(15)

If l is increased by 1, 9 becomes negative, so
this value of l corresponds to the smallest zero
amplitude ellipse. %e know that

x'k, y'ko (2l + 1)m z, +s +z,
2R(z +s) 2R(z) o 2 2
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s - —,'x(m + —,')

the innermost ellipse of zero amplitude ceases to
exist .Since u(r, t) is a continuous function, this
means that as s is increased and the innermost
zero-amplitude ellipse shrinks, the absolute value
of the amplitude at points within this ellipse must
decrease. By conservation of energy, this means
that the net power outside of this ellipse increases
as s increases. This explains why lobes frequent-
ly appear in the plots when z, and z, are not equal.

Finally, it is worth noting that the amplitudes
on opposite sides of lines of zero amplitude have
opposite signs as we now demonstrate. For the
lines of zero amplitude generated by the Hermite
polynomials, this is easily seen since

d 2x 2 2 2x

and since the zeros of H (v 2x/W, ) and H, (v 2x/
W, ) never coincide. Thus H (&2x/W, ) is never ex-
tremal at its zeros, and therefore changes sign as
it crosses a zero. For phase induced zeros, we
note first that any ellipse having semiaxes along
the x and y axes is a curve of constant phase. I et
us call the total phase along an ellipse e„, C (e„).
If we consider an ellipse e, just inside of an ellipse
of zero amplitude eo, it will correspond to a phase
slightly larger than the phase along eo, while if we
consider an ellipse e, just outside of e, it will cor-
respond to a phase slightly smaller than that along
eo. Thus, since

I (e, ) =[(2l+1)/2]m, l =0, +1,+2, . . . ,

then

cos (C (e,))/cos (C (e, )) & 0 .
Thus, u(r, t) also differs in sign across phase in-
duced zero-amplitude contours. We see also that,
across a vertex where phase-induced zero-ampli-
tude contours cross zero-amplitude contours gen-
erated by Hermite polynomials, there is no sign
reversal since the sign reversal produced by the
Hermite polynomials and by the phase will then
cancel.

IV. DISCUSSION

dinary modes occur when the symmetry proper-
ties of the g-z and y-z planes coincide.

We have presented identities which relate the
parameters W„R„and P, as well as W„R„and

Thus actually only four of these six parame-
ters are independent so it might seem appropriate
to describe our modes as four- rather than six-
parameter modes. However, we have seen that
we have two additional independent parameters z,
and z, which have essential roles. Because of this
we have chosen to designate the new modes as six-
parameter modes and the usual modes as three-
parameter modes.

We have given detailed illustrations of field am-
plitude contours. We have shown how to scale the
modes. This was achieved by using the periodicity
of the sine and cosine functions. As a result the
scaling is restricted to an infinite set of discrete
scaling factors. These factors allow flexible scal-
ing except near the waist. It is the ability to scale
the modes that makes detailed mode illustrations
useful.

The six-parameter modes do not yield approx-
imate solutions of the Helmholtz equation which
cannot also be obtained by an infinite expansion
using three-parameter modes. This is because of
the completeness of the Hermite polynomials. The
usefulness of the six-parameter modes should,
however, be readily apparent.

APPENDIX: CALCULATION OF BEAM POWER

FOR SIX-PARAMETER MODES

We will use as an approximation, the assump-
tion that the E and H fields are normal to the z
axis. We can then write for the magnitude of the
Poynting vector

(e / )1/2H2

This means that the instantaneous power of the
beam is given by

P = — dxdy.

We deal only with the simple case where E has a
single six-parameter Gaussian mode component
polarized in a direction normal to the y axis. Then

A more flexible set of free-space Gaussian
modes has been described. These modes are
characterized by the independence of the symme-
try properties in the x-z and y-z planes. The or- where

1/2

(go Re I1 +I2

I, = exp[2i at —iko(z, + z, ) +i(2m + 1)P', (z,) +i (2n + 1)p,'(z, ) ]

1 2 1Z1 +1Z1 ~2 Z2 +2 Z2
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RncI !,= 2 "ee!(e/2 )'"w, J H', (
-

) exp ( -, ) de .

-2x
&& exp —,——, dxdy .

w', (~,) w,'(~, )

Since the total power of the beam should be the
same at any point along the beam, we are at liber-
ty to arbitrarily specify z,. It will be convenient
to choose.

=0.

Then, since z, and z, are always separated by a
fixed amount, say 6, we must set

z2 =A.

Then, since

The remaining integrals are difficult to evaluate
in their present form. The beam waists can be
shifted by means of a thin cylindrical lens in the
following manner. Let zoo and z,o be the untrans-
formed drift coordinates at the lens and let W,
and R', be the beam widths at the waists for the
untransformed beam. For the transformed mode
we assume the lens is at ~go and zgp Then the
beam widths at the waists are TV', and 8",. At the
lens the boundary conditions are

WJ (zoo Wy) =Wy(Ego W') j = 1, 2

1 1 1 j=1,2,
R)(zoo) W)) R)(z~o, W~) f;

'

Rnd

Wi(0) =Wi
where f, and f, are the focal lengths of the lens in
a medium where the propagation vector is k. We
then find that

R,(0)- ~,
I, =2 m! (w/2)'I'W, exp[2ieot —ikot). +i(2m+1)$', (0)

+i(2n + 1)(t),'(&)]

t 2 W2$ —2g

RncI

Wj =QjR'j, j =1,2

A

~0 j~j & zjo
~&o= 4

g' (f& ~go) W2k ~JOz joli - j o

where

1+ (2& /k Wo)2

1 + (koW)/2zqo f))' ((f; —z)o)(2@qo/Wq ko)' —2zqo)'j
~~

0
~

2f
~ 0 ~

~
j «

~ 0

~0

0 ~

~0
h 2

~ 0
2 ~

~0

~

~ ~

We choose our cylindrical lens to have f, =~, and

f, such that when the lens is placed at z» =t), then

z,'o =0. Then we have moved the transformed beam
waist W,' to the lens which is also the location of
the waist W, . This simplifies evaluation of the re-
maining integrals since the insertion of such a
lens should not affect the power of the beam. The
appropriate choice of f and 0 is given by

f=e !+( ' ')

RnCI

I, = n2""-'m~ nt ~W,W,

where (t),"(0) is the transformed y-parameter
phase. Since the amplitude of the beam is un-
changed by the lens, we then have

="~")"'e:(w ('o) (' ))o~- -
m .

xmw, w, [cos(2&ot —k~+(2m +1)(t)',(0)

+(2n+ 1)(t),"(0))+1].

The beam waist R", of the transformed beam is
given by

w,' =nw, .
Then

I, =02-'" 'm! n! ~W,m,

xexp[2i&oot —ikon +i(2m +1)(t)',(0)

+i(2n+ 1)(t)o'(0)]

The lens cannot produce any discontinuities in the
beam~ so

Wa(b, ) = W~(0)

or

w, (~) =nw, .

Therefore

(P) =(eo/po)' 'uo2 '" 'm! n! )Tw,w, .
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