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In this paper we discuss the quantum features of cooperative radiation processes in a two-level sys-

tem taking into account non-Markovian effects. If the initial condition is spatially uniform, the many-

mode atom-field master equation which has been derived and semiclassically discussed in a previous

paper, reduces to the well-known single-mode model laser master equation. Hence, using a suitable
projection operator, we derive a generalized non-Markovian master equation which turns out to be cor-
rect already in the first Born approximation, This master equation incorporates the effects both of
stimulated emission and absorption and of spontaneous emission. When stimulated processes can be
neglected, it reduces to a previously known Markovian superradiance master equation, whereas in gen-

eral it describes non-Markovian oscillations of the radiated intensity. Finally we derive a linear system
of equations for the probability of occupation of the Dicke states which generalizes a previously dis-

cussed system, taking into account the contribution of stimulated processes.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I),
we have given a first-principles treatment of co-
operative emission from a system of N two-level
atoms. Cooperative emission occurs when the
radiation rate is proportional to N'. In particular
we have studied superfluorescence, which is de-
fined as the cooperative emission from an atomic
state initially excited with a zero macroscopic di-
pole moment, and a uniform population difference
between the excited and the fundamental states. In
I a general atom-field master equation (ME) was
derived for the system atoms plus field internal to
the active volume; in such an equation the atoms
are described by means of collective dipole opera-
tors and the field internal to the active volume by
damped quasimodes. The damping arises from the
free propagation of the Maxwell field from the in-
side to the outside of the active volume. Inhomo-
geneous broadening appears simply via a time-de-
pendent atom-field coupling constant. In I we dis-
cussed superfluorescence deriving from the atom-
field ME in the semiclassical approximation, a
pendulum equation for the Bloch angle. The initial
state with no polarization corresponds in the semi-
classical theory to the unstable equilibrium point
of the pendulum. Therefore we have simulated a
uniform initial "noise" polarization which starts
the movement of the pendulum. This polarization
corresponds to the initial value

y(0) = (2')-" (1.1)

of the Bloch angle measured from the unstable
point.

In the present paper we want to give a fully quan-
tum-mechanical treatment of superfluorescence.

Our first aim is to justify the initial condition (1.1)
for the pendulum equation. In Sec. II we study the
atom-field ME for a pencil-shaped geometry. Re-
phrasing the semiclassical treatment of I, we show
that with our initial condition all nonresonant modes
can be neglected. In this way we reduce to a two-
mode ME which, in the self-consistent-field ap-
proximation (SCFA) leads to the pendulum equation
with the correct initial value (1.1) for the Bloch
angle.

Furthermore in Sec. IV we show that such a two-
mode ME can be suitably reduced by means of two
independent one-mode models, in each of which
the single mode interacts with —,'N atoms with cou-
pling constant g,v2. Therefore in the following we
restrict ourselves to consider the one-mode ME,
which for T*,=~ coincides with the laser model,
which is the starting point of the analysis of Ref. 2.

The main purpose of this paper is to derive a
generalized master equation, ' appropriate for
treating both pure single-pulse superfluorescence
and oscillatory non-Markovian superfluorescence.
As shown in Ref. 2 pure superfluorescence occurs
when the "cooperation time" v, is much larger than
the maximum transit time of photons in the active
volume 21./c =K '. In fact for KT, » 1 the photons
escape from the active volume so rapidly that they
cannot react with the atomic system; in this con-
dition the photons follow the motion of the atom
adiabatically, so that non-Markovian effects are
negligible. As a result one can eliminate the field
adiabatically, obtaining a Markovian ME for the
atomic system alone. Such a master equation has
been generalized to the case of many modes in Ref.
4 and has been translated into a Fokker-Planck
equation by Narducci et a l.' and by Glauber and
Haake. '
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In Sec. VII, along the lines of a general theory
for open systems developed by one of us7 we intro-
duce a suitable projection operator which yields a
generalized non-Markovian ME. The Peculiarity
of our projection operator lies in the fact that this
equation is already exact in the first Bor22 aPProxi-
mation. For K7;»1 non-Markovian effects are
negligible and one obtains the superradiance ME of
Ref. 2. In contrast, for K,z, -1, the reaction of the
field on the atoms, i.e., stimulated processes, be-
come relevant and one obtains non-Markovian os-
cillations in the radiated intensity as observed in
Ref. S.

Finally in Sec. VIII we deduce from the general-
ized non-Markovian ME the equations for the prob-
abilities of the Dicke states. Such equations are
closed only for E7,» 1, in which case they coin-
cide with the ones treated in Ref. 2d. For KT, -1
the stimulated terms make these equations non-
closed and one gets a hierarchy of equations which
describes the effect of higher and higher-order
atom-field correlations. However, it is shown
that the hierarchy can be reasonably truncated in
such a way that one is left with a closed linear
system of equations, which gives back the exact
equations for the mean values of the photon num-
ber and of the population difference. The truncated
hierarchy can be solved exactly and its solution is
equivalent to a resummation of infinite terms of
the Born series one would obtain with the projec-
tion operator used in Ref. 2.

%'e mention finally that the non-Markovian ME
can be immediately generalized to take into ac-
count pump and loss of the atoms and therefore it
can give a unified treatment of cooperative emis-
sion and of laser phenomena.

, =--[(a, +a, (t)), W(t)]+A, W(t), (2.1)

Hr=h Q(cl n l -(u, )At(u)A(u),

ih
Hz(t) =,72 g(g e '/' 2'(u)R (u) —H.c.),

A, W(t) =I~ P] [A(n), W(t)A'(n)]+ H.c.],

II. ATOM-FIELD MASTER EQUATION: REDUCTION TO
RESONANT MODES

In I we derived from first principles an atom-
field master equation (AFME) in which for a pencil-
shaped active region only axial modes appear:

where W(t) is the density operator for the atom-
field system, I. and v are, respectively, the length
and the volume of the active region, T,* is the re-
ciprocal of the inhomogeneous linewidth, and

g.= (« I
n I u '/h )". (2 2)

A(n ) are modes of the internal field (i.e., the ra-
diation field inside the active volume), obeying
Bose commutation relations:

[A(n), At(u')] =S„- „-.

and the R (u) are collective dipole operators,
obeying angular momentum commutation relations
with the half total population inversion:

[R'(u), R-(n)] =2R„

[R„R'(n)]=+R'(n) .

(2.3)

(2.4)

At the initial time t =0 no field is present and
the sample is totally inverted. The atoms will be-
gin to radiate mainly into the resonant modes
A(+k, ), lkJ=co, /c. Furthermore, the nonresonant
modes will never get energy from the resonant
ones, since the mode-mode coupling arises via
the operator

R, (n —u') =-,'[R'(n), R (u')]

whose mean value vanishes when the situation is
completely homogeneous, as is prescribed by our
initial condition; i.e., we have in the mean

[R'(u), R-(n')] =2R, &„-:.. (2.5)

Then we can eliminate the nonresonant modes and
write the following equation for the two resonant
modes:

[H~(t), W(t)] +—ArW(t),

(t) (ih /pl/2)g e- t/2& 2

(2.5)

yA (k,)R (ko) +At (- k, ) R (- k, ) —H. c.},
ArW(t) =Kf [A(k,), W(t)At(g)]

+[A (- k,), W(t)A (-k, )] + H.c.j,
go = A'0 ~

The argument used to eliminate nonresonant
modes parallels the semiclassical treatment given
in Sec. XI of I, in which the condition of homoge-
neous envelopes reduces the semiclassical equa-
tions to equations for the resonant modes only.
Since our initial state has no photons and all atoms
excited, the initial condition for the master equa-
tion (2.6) is

C 27l'A, n= —n, n=0, +I, . . .
w(o)= lo, +&&o, +I,

with

(2.7)
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A (k, ) ~ o, +& = A (-k, ) ~ o, +& = o,
R, Io, +& = 2Nloi+& ~

(2.8)
and the following equation for (R, )(t):

«.&(t) +[I~+(1/».*)]&R, &(t)

III. DERIVATION OF THE PENDULUM EQUATION

The discussion of superfluorescence given in I
is based on the pendulum equation for the Bloch
angle. We show in this section how such an equa-
tion and the correct initial value for the Bloch
angle can be deduced from Eq. (2.6). From Eq.
(2.6) we can derive an equation for the mean value
of any observable 0 as follows:

(O)(t) =-(i/h) & [0, If, (t)]&(t) +Tr [OA W(t)] . (3.1)

By (2.9) we then easily obtain the equation

—[(A (k, )A(ko)&(t) +(A (-ko)A(- ko)&(t)+(Rs)(t)]

=-2K[&A (k,)A(k, ))(t)+(A (-k, '
-'~.)&(t)] .

(3.2)

Equation (3.2) is a simple energy balance between
the variation of the total internal energy

[&A'(n)A(n)&(t)] &R,&(t)
n= kos-ko

and the energy output

uC g [&A'(n)A(n)&(t)]
koan kp

both measured in units of 8~p. Accordingly, the
total number of photons radiated per unit time I (t)
is given by

We give the following useful identity for A&'.

Tr [A™(+k, )A "(+k, )e &'W(t)]

=e ""'"'Tr [A™(+k,)A"(ak, )W(t)].

(2.9)

&R'(n)R-(n)&(t)+(R,'&(t) -(R,&(t) =-,'N',
n=k pt p

(3.6)

where in the right-hand side we have neglected
corrections of order N, with respect to —,'N'.

Equations (3.2), (3.5), and (3.6) are the quantum
analog of the semiclassical equations (11.6)-(11.8),
from I, which we report here:

—(A'+R ] = —+CA' (3.2')

~ ~

2T,* ' v

R'+8T 3 4

(3.5')

(3.6')

where

A =[(A (k )A(k )&+&At(-k,)A(-k, )&] '~',

Rr =[(R'(ko)R (k,)) +(R'(-ko)R (-ko)&]'~'.

Let us make the "neoclassical" approximation

«;&=«.)'. (S.V)

Let us introduce the "modified Bloch angle" as
follows:

(R,)(t) ——,
' = —,

' Nco spy (t) . (3.8)

' e '~"2 g &R'(n)R (n))(t)
n=kp, -k

0

'e 2 A. a 3 n R, t .
n= k, -k

(3.5)

From (3.4) and the initial condition (2.V) we have

I(t) =2m g &A'(n)A(n))(t).
n

koan

kp

(3.3) Hence substituting into Eq. (3.6) and neglecting —,

with respect to —,'N' we obtain

We stress that, because of the symmetry under
the exchange k, -k, in the equation of motion
and in the initial condition, one has

&A (k,)A(k, )&(t) =(A (-k,)A(- k,))(t) .
Furthermore, taking (2.5) into account one gets
from (2.6) the constant-of-motion relation

&R'(n)R (n)&(t)+«', &(t) -«, &(t) =O,
-n= kp' ko

(3.4)

n koan kp

(R'(n)R (n))(t) = ,' N' isn(p(t) . -(3.8')

Furthermore we perform the SCFA as follows:

&At (n )A (n) R, &(t)= &At (n)A (n))(t)[-,'N cosy(t)] .

(3.9)

The "semiclassical approximations" (3.7) and (3.9)
can be removed solving the equations for the atom-
field distributions that we derive in Sec. VIII. Sub-
stituting Eqs. (3.8} into (3.2) and (3.5) we see that
these equations are equivalent to
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(3.10)

1{i)=,(((' (i)]'e""' .
2g ()

(3.i2)

The initial condition of fully excited atoms and
vacuum field gives

1 1

(()(0) =are cos, - (2/N)'~', 9)(0) =0,
(3.i3)

which is the initial condition for Eq. (3.11), which

we have used in 1. The expression (3.12) for the
radiation intensity coincides with that found in the
semiclassical tr eatment.

))())+ (K+ )
))( ) )— e ') 's)n)())=0. ().)1)

Equation (3.11) is the pendulum equation, whereas
Eqs. (3.8) and (3.10) link the population inversion
and the radiation intensity to the motion of the
pendulum. In fact we have by (3.3)

&(i) + &(2) (4.6)

From Eqs. (4.5) and (4.6) one gets the commutation
rules (2.3) and (2.4); furthermore one gets

H(') (i) + H(') (i) = H (t), (4. 1)

A~ +A~ -Ap.(s) (2)

Then, if we assume that the density operator W(i}
for the full system 1+2 has the factorized form
W(t) =W("8 W(" it is easy to see that W(t) obeys
the two-mode ME (2.6). One has furthermore
from (4.5) and (4.6) that

The same OMME (4.2) is assumed for the density
operator W ')(t) of system 2. For T,*=~ Eq. (4.2)
coincides with the one-mode-model laser ME,
which is the starting point of the analysis of Ref. 2.

Now let us put

R'(k0) =R', +iR,', R'(-k0) =R', —iR,'

A (k, ) = (At, + i A, )/v 2, A (- k, ) = (A, —iA, )/v 2,
(4.5)

IV. REDUCTION TO THE ONE-MODE MODEL
A",A, +A2A, =A (k~)A(k0)+A (-k0)A(-k0) (4.9)

[A„A', ] =i,
[R'„R,] =2R,', [R,'), R,'] =+R,'.

The same commutation rules hold for A„A,', A3'.
Furthermore all operators of system 1 commute
with all the operators of system 2.

I.et W ')(t) be the density operator for system 1;
we assume the one-mode master equation (OMME)

d W') il(i) W(i)(i}+J)(oW(i)(i)
dt (4.2)

I."W "(i)=(I/ff) [H"(i) W"(t)],
H„",{i)=(i@/v") g'e-"" (A'R-, + If.c.)

it(~ W("(t) =Kj[A„W "(t)A~t]+ H.c.j,
g ()

=
g

0')) 2

(4.3)

(4 4)

The pendulum equation (3.11) follows also from
a one-mode master equation, as it is shown in Ref.
2 in the case Z7;» 1. Hence one would expect that
in some way the two-mode problem can be reduced
to a single-mode problem also at an operatorial
level. At the moment we are not able to perform
rigorously this reduction; however, we can show
that the two-mode ME (2.6) can be reproduced by
means of two independent one-mode models, in
each of which the single mode interacts with N'

,' N atoms with -coupling constant g0 =g,&2. Spe-
cifically, we consider two independent systems.
System 1 is described by the field mode A, and
the angular momentum operators A, A,'; similarly
for system 2. One has

and

[R'(k,),R (-k,)] =2[R", -R'"] (4.10)

Then we get relation (2.5}, valid in conditions of
uniformity, provided the state of the system is
such that all moments of R,' and 83'- are equal.
In fact, in this sense, we assume that

&(i) &(2)
3 3 (4.11)

As one sees from Eqs. (4.5) and (4.6) we are de-
composing R (+ k, ) into the cos and sin polarization
A,'and 8,. The approximation we are performing
consists in assuming that 8, and 8, obey commu-
tation relations of two independent angular mo-
menta. This approximation can be made plausible
referring to the mean values of the commutators
and using the uniformity conditions. However, we
stress that the real motivation of our decoupling
procedure lies, a posteriori, in the possibility of
reconstructing the correct mean values equations
starting from the two independent single-mode
models. In fact, indicating the mean values by the
same symbols which denote the operators, we get
from Eq. (4.2) the equations

—(A,A, + R '
) = -2 KA,A „d (4.12)

~(i) + ~ + g(1) ~Q e &/2'2

2T~ 3 v

x(2R+,R, +4A,A, R~' ),
(4.13)
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+ (fl(1) )2 1 ~2 (4.i4) by means of a projection operator P, i.e.,

I(t) =4K(A, A, &(t) . (4.is)

In the following we shall analyze the OMME (4.2)
omitting systematically the label 1 in W ', A„etc.

We shall indicate by W& and W„ the density op-
erators for the field and the atoms, respectively,

An identical set of equations holds for system 2;
adding the corresponding equations and taking (4.5),
(4.6), and (4.11) into account, we get the semi-
classical equations (3.2'), (3.5'), and (3.6').

Because of the symmetry in the exchange of A „
B]with A. » A, in the equations and in the initial
condition, we can consider only one single-mode
master equation, taking into account that by (4.9)
&A. , A,& is one-half of the total number of photons,
so that from (3.3)

w(t) = c (f) + r(f),
c (f) = pw(f), r(f) =(1 —p)w(t), p2 = p.

(5 1)

Tr [Ow(t)] = Tr [04 (t)], (5.2)

one can systematically neglect the part r(t) and
concentrate on 4(t).

Let us assume that

PAp =A~P) PI~~P=O, (5 3)

then one can prove that' 4 (f) obeys the so-called
generalized master equation (GME)

The meaning of the subdivision is the following: If
one considers observables 0 of the system such
that

W„(t) =Trz W(t), W~(t) = Tr~w(t) (4.16)

where Tr+ means partial trace on the field Hilbert
space, etc. Since our initial state has no photons
and all atoms excited, the initial condition for
Eq. (4.2) is:

=A C (t)— 6:(t, s)C (s) d s,

6'(t, s)=PL»(t) g(t, s)L»(s)P,
t

g(t, s) = g exp i —d f' Q(L»(t') + iA~}Q
S

(s.4)

w(o) =w, (0)e w„(o),

w, (o) =
I o& &o I, w„(0) = I+& &+ I,

where, by (4.11)

(4,17) with

=1 —P,

(5.5)

(s.s)

z, i+& = —,'x'i+&, (4.18)
provided the initial density operator W(0} satisfies
the condition

Finally, we rephrase identity (2.9) for the one-
mode model:

w(o) =c (0)~r(0) =o. (5.7)

Tr(A™A"e 'W) =e " '"'Tr(A™A"W). (4.19)

V. PROJECTION TECHNIQUE

The OMME (4.2) is still too complicated to be
handled directly: in fact one gets results from it
easily only in a semiclassical approximation. It
is convenient to derive from (4.2), which is a
coupled equation for the system atoms plus field,
a closed equation for one of the two subsystems.
Since the field has the smallest relaxation time
K ', it can in some sense be considered as a
"bath" for the atomic system, so that it is easier
to derive from (4.2) a closed equation for the
atoms.

The main tool to perform this derivation is pro-
vided by the so-called projection technique. ' This
is essentially a skillful way to rewrite the time
evolution equation, which on the one hand makes
the memory effects manifest, and on the other hand

provides in quite a natural way a systematic ap-
proximation scheme (the Born approximation
scheme}. Such a technique is based on the subdi-
vision of the density operator W(t) into two parts

=A,c (f)—dt ds 5(t s)4(s) ds, - (5.4')

6'(t) =PL»(t) e ~'L»(s)P. (5 5')

VI. THE SUPERRADIANCE MASTER EQUATION

In Reference 2 it is considered the case that the
rate K, at which photons escape from the active
volume v, is much larger than the rate v, ' =g,(N/
v)' ' at which the photons and the atomic system
exchange energy. "

Condition r, '«K implies that, to the effect of
the motion of the atoms, the field inside the active

In Eq. (5.5) g is a time-ordering operator, which

orders operators of greater time arguments to the

left; when (T*,) '=0, L»(t) is constant in time and

f is unnecessary. Equation(5. 4) is explicitly non-
Markovian, since the second term in its right-hand
side is a typical "memory" term, the memory be-
ing linked to the time behavior of the kernel P(t, s).
The Born approximation amounts to retain only the
zero-order term in the expansion of g(t, s) in pow-
er series of L». In this way Eqs. (5.4) and (5.5)
become
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volume remains practically in the vacuum state
always. More specifically, the photons escape too
fast from the active volume to give rise to an ap-
preciable reaction on the atoms, i.e., stimulated
emission and absorption do not occur. In such
conditions it is reasonable to eliminate the motion
of the photons by means of the projection operator

P x =
1 0& (0 I» x. (6.1)

Projector operators of this type have been first
used by Argyres and Kelley. "

Conditions (5.3) hold with P=P~ The. initial
condition (4.17) satisfies Eq. (5.7) with 4 (0)
=P~W(0). Since the field inside remains "prac-
tically" in the vacuum state, the Born approxima-
tion (5.4 ) with projection P~ is well justified. One
gets the following closed equation for the density
operator W„(t) of the atomic system alone:

t2

W„(t) =

W~(t) = (go"/KU) j[R,W„(t)R']+ H.c.] . (6.3)

Equation (6.3) is usually called the "superradiance
master equation". Therefore no actually observ-
able non-Markovian effect arises from the GME
(6.2); in other words, the elimination of the mo-
tion of the photons made in Ref. 2 is an adiabatic
elimination. In fact, a formula is derived in Ref.
2 that reduces the calculation of the mean values
of photon operators to the calculation of mean val-
ues of atomic operators; e.g., for the mean photon
number, one has

ds e +' '~] [R W„(s)R'] + H.c.j,
(6.2)

where, as in Ref. 2, we have put (T,*) ' = 0. On the
other hand in the condition w, '&& K the memory in-
volves only the initial time interval of order K ',
so that for t»K ' (6.2) reduces to the Markovian
master equation

&&ln, r, m&=nln, x, m&,

R'ln, ~, m) =~(~+ 1)ln, ~, m&,

R, ln, r, m)=min, r, m),

(7.1)

where

A'=8 A +83-A3 (7.2)

is the square of the "total angular momentum. "
For the sake of simplicity we have neglected an

unessential degeneration index to label the states
lr, m&. We consider the projection P, defined as

follows

P,X=
n, n',

(n-n') /2 = integer
pm p mI I

x l n, ~, m) (n', ~', m' l,

(7.3)

where the first sum is restricted to the couples
n, n' such that —,'(n —n') is an integer. Conditions
(5.3) hold for P=P» the initial condition (4.17),

projection (6.1) becomes very poor and one should
take into account infinite terms of the Born series
(5.6), which is presumably an exceedingly difficult
task. This drawback is related to the fact that for
T, '& K the photons no longer follow the atoms adia-
batically, so that the field variables become rele-
vant and we must use a projection operator which
does not eliminate the field so drastically as (6.1):
Projections of this type have been introduced in a
general theory of open systems recently developed
by one of us. '

Let l n, x, m& (n = 0, 1, . . .; r ~ 0, r = ,' N', ,' N—'—
—1, . . .;m= —r, —r+1, ~. ..x —1, r) be an ortho-
normal basis such that

(A."A.) (t) = ( g,")Z2u)(R'R &(t),
- (6.4) l.e.

q

which shows explicitly that the field follows the
atomic system adiabatically.

In the experiment of Ref . 8 the condition 7 «K
is badly violated, so that Eq. (6.2) cannot account
for the results of such an experiment. We want
therefore to derive a new GME incorporating the
stimulated effects (or, equivalently, the non-Mark-
ovian effects) which become relevant when condi-
tion w, '«K is violated. We shall call such an
equation the "generalized superfluorescence mas-
ter equation" (GME).

w(o)= lo, —,'~, —,'x)(o, —,'x, —,'~l (7 4)

Tr [O(P,W)] = Tr [(P,O)W] . (7.5)

The reason why we consider such a projection is
that on the one hand it leaves unaltered the ob-
servables O~ of the atomic system, i.e.;

satisfies Eq. (5.7) with C (0) =P,W(0) Furthermor. e
P, has the property

PlO~ =O~ (7.6)
VIL GENERALIZED MASTER EQUATION FOR

SUPE RFLUORESCENCE

Since when 7; '~ K the field does not remain in
the vacuum state, the Born approximation with

and on the other hand it has the remarkable feature
that the GME in the Born approximation (5.4') with
projection P, is exact. Specifically one gets:
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g'2 t
C (t) =A+4(t)- ' dse '" ' ' [(AR'+A R ), e " ' ' [(AR'+AR. ), 4(s)]], 4 (t) =P,W(t) . (7.7)

Equation (7.6) is the generalized master equation
for superfluorescence. A simple derivation of
Eq. (7.7) is given in Appendix A.

Several remarks are in order: (i). Let us con-
sider the projection P2 defined as follows:

P,X= P
n, n r, m, r, mI I I ~

(m-m') /2= integer

(n, r, m~X)n', r', m')

&&~ n, r, m)(n', r', m'~ .

(7 6)

Conversely to P„P, leaves invariant the observ-
able 0& of the field

P20~ -OP. ~ (7.9)

Also P, has the properties (5.3) and (7.5). One has
that P, yields the same GME (7.7). Then if

W(0) = P,W(0) = P,W(0) (7.10)

Eq. (7.7) can be used to calculate the mean values
of all observables OA of the atomic system alone
and of all observables O~ of the field alone. The
initial condition (7.4) fulfills condition (7.10). In
this case it turns out that observables O„with
zero diagonal part in the Dicke basis ~r, m) have
zero expectation value at all times. The same oc-
curs to the observables OF with zero diagonal part
in the photon number basis ~n). This happens, e.g.,
for R,A. and it means that the phase of polariza-
tion and field is completely random at all times,
as it has been anticipated in I.

(ii). In Eq. (7.7) one has a clean separation be-
tween the terms which depend on the relative phase
between the polarization and the field (i.e., [AR',
x e & ' ' [AR', C (s)]] and its Hermitian conjugate)
and the terms which do not (i.e., [AR', e s'~' ')

&&[AtR, 4(s)]] and its Hermitian conjugate). We
remark that the Zwanzig projection which picks
out the diagonal part in the basis ~n, r, m), i.e.,

a Markovian master equation. In fact, in this con-
dition one has typical non-Markovian oscillations
in the atomic decay and in the radiation intensity,
as we have seen in I.

(v). Equation (V.7) allows the elimination of the
atomic variables as well as of field variables.
Then if one adds to the Liouvillian of Eq. (4.2) a
term AA describing pumping and loss of the atoms,
Eq. (7.7) can be generalized in a straightforward
way yielding an equation that can treat in a unified
way both cooperative emission and laser pheno-
mena. Some results for the laser will be given in
Ref. 12.

(vi). Equation (7.6) is still a coupled equation
for the atom-field system. In order to obtain a
closed evolution equation for the atomic system
alone, one must do further work, which will be
performed in Sec. VIII. On the other hand, this
work is much easier than summing up infinite
terms of the Born series of the GME with projec-
tion (6.1).

(vii). To give a quantitative comparison between
Eqs. (6.3) and (7.7), let us consider the equations
for the mean value of R, . We have from Eq. (7.7)
with (4.19):

I2

) (t) Zn ds (ett )lss Ts e-K(s s)-
V ()

x [2(R'R )(s) + 4(AtARs)(s)],

(7 . 12)

or equivalently

—(g,"/v)e ' -" [2(R+R )(t) +4(AtAR, )(t)] .

(7.12')

From Eq. (6.3) we have, on the other hand,

P X= n xmXnrm n xm n rm
(R, )(t) = -(2 g,'s/Kv)(R'R ) (t) . (7.13)

ns1'sm

(7.11)

yields in the Born approximation an equation like
(7.7) but u)it&out the relative phase-dependent
terms.

(iii). Equation (6.2) is immediately derived from
Eq. (7.7) for (T,*) '=0 taking the partial trace Trr
of Eq. (7.7) and putting C (t) =

~ 0) (0
~

(3 W„(t). This
confirms that the condition considered in Ref. 2 is
that of atoms emitting in the vacuum of photons.

(iv). For 7, '-K Eq. (7.7) cannot be reduced to

Clearly Eq. (7.13) exhibits only the cooperative
spontaneous emission term (R'R )(t), whereas it
lacks the stimulated emission and absorption term
(AtARs)(t). Such a term, together with (R, )(t), is
responsible for the non-Markovian ringing in the
decay which occur for ~, '-K. In fact, from Eq.
(7.12') one derives the pendulum equation in the
same way as it has been derived from Eq. (3.5).
On the other hand, replacing Eq. (7.12') by Eq.
(7.13) one gets the equation of the overdamped pen-
dulum
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rp(t) = (I/Ts) sing(t),

(7.14)

VIII. EQUATIONS FOR THE PROBABILITIES OF THE .

DICKE STATES

Ts=KT,' =Kv/go'N',

where 7& is the time duration of the hyperbolic se-
cant pulses which arise from (7.14).

The relative order of magnitude of the two terms
on the right-hand side of Eq. (7.12') can be evalu-
ated using the SCFA for (A AR, )(t) and (6.4) for
(A A)(t). In this way one obtains

(AtAR ) 1
(R'R )

so that stimulated effects are negligible only if
K7-, » 1.

In order to arrive to a closed equation for the
atomic system, let us consider the equations for
the probabilities of occupation of the Dicke states
(r, m):

p (r, m, t ) = g ( n, r, m~ e (t )~ n, r, m), (8.1)
n

following from Eq. (7.7). Since the constant of
motion R' has the definite value 2N'(-', N'+1), the
motion involves only the subspace spanned by the
elements ~n, —,N', m), so that we can drop the index
& in the following.

By (4.19) and

R~~,nm) = [ (~N'+m)(~N' am+1)]'
~
n, mal), (8.2)

the equation for P(m, t) arising from (7.7) is

p(m, t) = —2 ' ds e ~'" ' 2 e ' ' fg(m)p(m, s) —g(m+1)p(m+1, s)+[g(m)+g(m+1)]'X(m, s)
0

—g(m+ I)'X(m+ I, s) —g (m)'X(m- I, s) +g'~'(m)g'~'(m- 1)g(m, s)

where

—2g't'(m)g't'(m+1)Z(m+1, s)+g't'(m+1)g't'(m+2)g(m+2, s)j,
(8.3)

B,nd

(-,'N'+m)( ,'N' —m+-1) for ——,
' N' &m& —,

' N',
g(m) =

0 otherwise, (8.4)

SI (m, t ) = g n(n, m( e(t )~ n, m) =(m( Trina ae(t)~m)
n

2 (m, t ) = Bei(m, t ),

(8.5)

(s.s)
Z(m, t ) = g [(n/1)(n+2)]'~ (n+2, m —2~e(t )~ n, m),

n

',R(m, t ) and Z(m, t) are atom-field distribution functions, meaning that (i) For any diagonal atomic ob-
servable 0„, with

(m(0, (
m') =(0, ) 5.

one has

(8.7)

(A tAO, ) (t) = Q (0, ) (Ytmt ), (s.s)

e.g. , the first moment of X(m, t ) gives the correlation between photon number and population inversion;
(ii) For any atomic operator 0 (as, e.g. , R'R') such that

(m[0
~

m ) =0.6..
one has

(8.9)

(8.10)

In particular

(AAR+R+) (t) = P g'~2(m)g't'(m- 1)Z(m, t).
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This quantity depends on the relative phase between field and atoms, and would be zero in the SCFA. In
fact, when W(0) is diagonal, W„(t ) = Tr+W(t) and Wz(t) = Tr„W(t) are diagonal even if W(t) is not diagonal.

Equation (8.3) is not closed in P(m, t) and must therefore be coupled to the equations for Z(m, t) and

Z(m, t). We have from (7.7), (4.19), and (8.2)

(m t)= —2K''(m t) — ' dse ""' ' 2

0

&&(e " '(-g(m+1)[p(m+I, s)+'X(m+I, s)- Jl(m, s)]
—g'~'(m)g'~'(m+1) C(m+ 1,s)+g'~'(m+1) g' '(m+2) 2 (m+2, s)]

+e ' ' ' 3:(2 X, 'Z„. . . , s)), (8.11)

where P, is a suitable functional of 2(m, t), X(m, t ), and other higher-order distribution functions as, for
example,

%,(m, t) = g n'(n, m[ 4(t)[ n, m) —= (m[ Tr(a')'a'4[ m)
n

Clearly proceeding in this way we get a hierarcy of equations, involving atom-field distribution functions

of higher and higher order. To disentangle this situation one can introduce different approximations. The

simplest one is to retain only the terms with P in Eqs. (8.3) and (8.11). This is possible only for v, '«K,
in which case the Markov approximation also holds. In such a way (8.3) becomes a closed equation for
the P's, which for T*, =~ has been both analytically and numerically solved in Ref. 2. Furthermore, as
is shown in Appendix B, Eq. (8.11) leads to the adiabatic formula

(AtO, A)(t) = e ' ~ (g,"/K'v)(R'O, R )(t),
where 0, is an atomic observable of type (8.7). Hence A and A can be replaced, respectively, by R and
R' provided the A's are on the right-hand side of the atomic operators and the A 's on the left-hand side.
This is a generalized normal ordering prescription for atom-field operators.

A more general approximation is achieved by neglecting in Eqs. (8.3) and (8.11) the effect of off-diagonal
atom-field correlations described by and the rapidly decaying terms e '~ ' ' . In this way one obtains

t2 t

p(m, t) = — ' e ' ' e '' ' I fg(m)p(m, s) —g(m+1)p(m+I, s)+[g(m)+g(m+1)]'Z(m, s)

—g (m+1)'X(m+1, s) —g (m)'X(m —1,s)] (8.13)
I2 t

X(m, t)= —2K%(m, t)+ " dse r ' ' e. '" 'rm (g(m+1)[p(m+I, s)+X(m+1, s) —X(m, s)]) .
0

(8.14)

(R,') (t) = P m 'p (m, t ),

(A A) (t) = Q 3l (m, t ), (8.15)

(A. 'A R, ) (t ) = Q m X (m, t ),
and using the following algebraic identities:

g(m) —g(m+1) =2m,

Equations (8.13) and (8.14) are a closed system
of linear equations with a very remarkable feature:
They lead without approximation to the nonlinear
nonclosed system of equations (7.12) and (4.12) for
the mean values of A A and R,. This can be easily
verified observing that from the above definitions:

Q g(m+1)E(m+1) = Q g(m)E(m),

which hold whatever is E(m).
Hence our truncation of the hierarchy of equa-

tions for the distribution function gives back the
exact equations for the mean values. On the other
hand, we have shown that Eqs. (7.12) and (4.12),
in the semiclassical limit, reduce to the pendulum

equations for the Bloch angle describing both

Markovian and non-Markovian superfluorescence.
Hence Eqs. (8.13) and (8.14) generalize the semi-
classical description, taking fully into account the
effect of quantum fluctuations (R', ) —(R,)' and of
atom-field correlations (AtAR, ) —(A ~A )(R,)
whose explicit expression in terms of p and X
is immediately obtained by (8.15). The analytic
solution by Laplace transform of Eqs. (8.13) and



596 R. BONIFACIO AND L . A. L UGIATO 12

(8,14) for p and 5/ is described in Appendix C for
T2*=~. The explicit form of this solution has,
however, a very complicated structure so that
a numerical evaluation is needed. Here we only
stress that the coupled equations (8.13) and (8.14)
can be rephrased into a closed equation for P(m, t )
with a kernel containing the coupling constant g"
to all orders. Hence this equation is equivalent
to a resummation of infinite contributions to the
Born series with the Argyres and Kelley's pro-
jection (6.1) used in Ref. 2.

We would like to conclude by showing how our
theory allows a calculation of all moments of the
photon distribution. In fact let us define the

normally ordered conditional moments which
suitably generalize the function 0/(m, t ):

5/, (m, t ) =(ml Tr, (A')'A'C (t)lm) . (8.16)

(A"A'), =P 5/, (m, t) . (s.17)

The function 5/(m, t) is obtained specializing to
l =1. It is easy to show that the following equa-
tion holds:

This is the mean value of A 'A' assuming that the
atoms are in a Dicke state lm) . In particular one
has

2lg"
X,(m, t) = —2/KX, (m t)+ ' ds e ' " ' 2e " ""' ' g(m+1)

0

x(/'X, , (m+I, s)+T/, (m+1, s) —X, (m, s)), (8.18)

where Xo=-P (m, t) "
This equation reduces to (8.14) for /=1 and allows

to calculate "X,(m, t ) from 5/, , (m, t ). In this way
we can calculate successively higher and higher
moments from the knowledge of the first moment.

In conclusion we have explicitly shown how to
obtain analytical closed solutions for atomic fluc-
tuations, atom-field correlations, and photon
statistics during superfluorescent non-Markovian
decay. In particular, the problem of the validity
of the semiclassical assumptions is now reduced
to the numerical evaluation of these solutions, which
will be presented elsewhere.
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APPENDIX A

The formal solution of Eq. (4.2) can be written
as follows:

W(t) = U(t )W(0),

where

t
U(t) =e ' i d—s e &~' ' lL»(s)U(s) . (Al)

0

Iterating this equation once one gets

U(t) =e r' —i dse & ' ' L»(s) e &'
0

t Sj
ds, ds, eA& ' 'i L„(s,}

0 0

xe ' " L»(s, )U(s, ) .

(A2)

Substituting Eq. (A2) into (Al) and differentiating
one gets

=A~W(t) iL»(t)e &'-W(0)

t

dsL»(t) eA& ' ')L»(s)W(s) .
0

(As)

Then, taking into account that I', satisfies condi-
tions (5.3) and (5.7) and that it commutes with the
kernel of Eq. (A3}, one has that 4'(t)-P, W(t)
obeys Eq. (7.7).

APPENDIX B

Retaining only the p terms in Eq. (8.11) and
defining 7 = t —s we obtain

i2
5/(m, t)= —2&5/(m t)+ " dve " ' 2 "e i' ' 2g(mal)P(m+1 t —T)

0
(Bl)
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Assuming Kv, »1 and K»1/2T,* we can perform
the Markov approximation on the integral and the
adiabatic approximation, which amounts to
neglecting X with respect to 2K'X. In this way
we obtain

"X(m, I ) = e ' r2 ( g "/K') g (m+ 1)P (m+ 1, t ) .

',Rg(m, 0) =0, (C1)

(C2)

with

one has by a Laplace transform of Eq. (8.17) that

w /2

6f, (m, z)= Q c, (m, s, z)R, ,(s, z),

Let us now calculate (R'O~R )

(S2)
c m s, z)=l KI g(i)

~" (z +2IK}[z+ (2 l —1)K]+/Kig (i)

(R'O~R ) = g (m~ R'O„R 4„~ m}

(m[ R'O~R (m')(m' ~4&[ m)
7' j m

= g g (m) (O~ ),p (m, t )

where we have put as in Ref. 2

I =2g,"/Kv .
In particular, for 1=1 we have

W/2

X(m, z) = g c, (m, s, z)p(s, z) .
g =m+g

(Cs)

(c4)

(C6)

=Q g(m+1)(O, ) p(m+1, t)

= e' ~r2 „Q6f(m, I )(0„)
0 m

with 4~ = Tr~4. Using Eq. (8.8) one obtains im-
mediately (8.12).

APPENDIX C

Let P(m, z), 'Z, (m, z) be the Laplace transforms
ofP(m, t}, 'R, (m, , z), respectively Then. for T*,
=~, taking into account the initial condition (4.17),

Then substituting Eq. (C6) into the Laplace tran-
form of Eq. (8.13}we get the equations for p(m, z):

A(m, z)p(m, z) = (z +K)p(m, 0)
x/2

+ g d(m, s, z)p(s, z), (C6)
g =m+].

where

A(m, z) =z(z+K)+Kl g (m)[1- c, (m-1, m, z)]

(C7)

d(m, s, z) = —KI ( —g (m+1), „+[g(m)+g(m+1)] c, (m, s, z) —g(m+1)c, (m+1, s, z) —g (m) c, (m —1, s, z)]

(C8)

Equation (C6} is equivalent to an integrodifferential equation for p(m, I ) with a kernel containing the coupling
constant g, at all orders. One verifies that Eq. (C6) is solved by

W/2

p(m, z) =(z+K)A '(m, z) g p(i, 0) 6,. + g d(m, k, z)A '(k„z) p d(K„K„z)A '(K„z)
j =2K — g E2= K~+y

(c9)

where the product stops as soon as an index K, takes the value i. We recall the initial condition, following
from (4.17)

p(i, 0) =~(,,g, . (C10)
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