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The phenomenon of molecular optical activity is examined in the region of continuous ab-
sorption, When the “excited” state of the molecule describes an infinite (ionized) system,
then the angular distribution of photoelectrons is the sum of coherent contributions corre-
sponding to different magnitudes and interferences of # f, the angular momentum of the photo-
electron. The amplitude for such a process is the sum of terms for each /; thus, since both
even and odd values of I can coexist at a single energy in the continuous spectrum, the elec-
tric and magnetic dipole matrix elements can coexist in this amplitude, making possible the
existence of electric-dipole—magnetic-dipole interference in the angular distribution even for
a molecule with a center or plane of symmetry. For discrete absorption, in which the inten-
sity is the sum of incoherent contributions corresponding to the intensities for populating the
fine-structure levels of a given excited state, the coexistence of the electric and magnetic di-
pole matrix elements in the amplitude is possible only for a molecule with a site which is
asymmetric with respect to inversion or reflection; otherwise both even and odd values of I
could not coexist at a single energy in the discrete spectrum. The signs of the electric~dipole—
magnetic-dipole interference terms are opposite for left and right circularly polarized light;
thus there exists a signal for the angular distribution difference for absorption of left and right
circularly polarized light of order « relative to the angular distribution for absorption of light
of either polarization. This is just the phenomenon of “circular dichroism” which character-
izes molecular “optical activity” in the region of absorption. It exists for the angular distri-
bution of photoelectrons ejected from an oriented molecule with a center or plane of symmetry,
but vanishes for isotropic systems (atoms) owing to the independence of the radial wave func-
tions from the magnetic quantum number. This ensures the orthogonality of atomic radial
wave functions belonging to states of different m and is responsible for the selection rule in
atomic spectroscopy that magnetic-dipole transitions are possible only between the fine-struc-
ture levels of a given multiplet. Measurement of the angular distribution characteristic for
this process would provide a sensitive probe of the parameters of the initial molecular orbit-
al. The existence of even-odd—type interferences of the partial waves of the photoelectron
would provide a test of the time-reversal invariance of the wave function for the ionized sys-—
tem, since these interferences depend on the sine rather than the cosine of the phase-shift
difference and hence on the normalization of the wave function to satisfy incoming boundary

conditions, Calculations are carried out to illustrate these and other points.

1. INTRODUCTION

In a series of three papers'~® we have analyzed
angular distributions for molecular photoelectrons
from the point of view of inverting angular distri-
bution data to determine the parameters of the
initial molecular orbital. In this paper we want to
examine the characteristics of the angular distri-
bution on the inclusion of terms of higher order
in the multipole expansion of the radiation field.

In particular we want to present an analysis of the
angular distribution expected on measurement of
the differential cross-section (angular distribution)
difference for left and right circularly polarized
light. In this experiment the leading terms due to
the electric dipole interaction cancel since each is
identical for left or right circular polarization.
This cancellation leaves a remainder, the electric-
dipole—magnetic-dipole interference term. This
term has resulted from the addition, rather than
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the cancellation, of the electric-dipole—-magnetic~
dipole interference terms of the angular distribu-
tions for light of either polarization because the
signs of these terms are opposite for either polari-
zation. This is just the term responsible for the
phenomenon of molecular circular dichroism, i.e.
the molecular optical activity in the region of ab-
sorption.

In the region of continuous absorption, resulting
in the ionization of the molecule, this phenomenon
can be characterized by measurement of the angu-
lar distribution of photoelectrons, or more pre-
cisely the angular distribution difference for ab-
sorption of left and right circularly polarized
light. These measurements would provide a new
“window” into the molecular process of circular
dichroism. In addition, they would bring togeth-
er a very old field of molecular spectroscopy
(the study of molecular optical activity for dis-
crete absorption®®) and a field relatively new to
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atomic physics, that of molecular photoelectron
spectroscopy.

There exists recent experimental work which
provides evidence that measurement of what we
will henceforth call the “circular dichroic angular
distribution” is possible given present-day instru-
mental means. Among others, these experiments
include the development of techniques® to produce
circularly polarized light in the ultraviolet region
of the spectrum of wavelengths short enough to
provide energy above the first ionization potential
of many molecules. Also, they include measure-
ments of relative differential cross sections” for
keV photoelectrons. Cross sections at these ener-
gies show significant deviations from those ex-
pected from electric dipole radiation alone. The
leading higher-order correction is the electric-di-
pole-electric-quadrupole interference term, of
order w/c relative to the electric dipole term,

where w is the frequency and c the velocity of light.

The factor w/c is of order unity for keV radiation,
and significant deviations from the angular distri-
bution for electric dipole radiation alone have been
observed by Wuilleumier and Krause.” The ability
to measure this effect suggests very strongly that
the circular dichroism in the region of continuous
absorption can be measured using these or similar
experimental apparatus and techniques. In Sec. II
we will show that the circular dichroic angular
distribution is of order (aq,)?, where « is the fine-
structure constant and q, is the Bohr radius.

This cross section close to threshold is on the
order of about 1072° ¢m?, or about 1% of the cross
section for direct electric dipole photoionization.
The magnitude of the cross section in the keV
region, as measured by Wuilleumier and Krause,”
is likewise about 1% or less of the cross section

at threshold. Thus, we can use the measurability
of keV angular distributions, replete with electric-
dipole-electric-quadrupole interference, as a

J

a’a

doy p_ady (-N5 % 2 <
s —"Z‘W_Epkl (% 1P, & T19: )% +Im
_alafik

27

The quantities are defined as follows: « is the
fine-structure constant, @, the Bohr radius, E,
the energy of the photon in atomic units, % the ve-
locity of the ejected electron in atomic units,

-zpik') the wave function for the ionized system nor-
malized to satisfy incoming boundary conditions,
¥; the wave function for the neutral system, T the
summation over the positions of all of the elec-
trons in the system, 1 the summation over the
angular momenta of all of the electrons in the sys-
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crude guide for the measurability of the circular
dichroic angular distribution near threshold, since
each cross section is about 1% of the largest possi-
ble cross section in either energy regime. The
ability to measure a cross-section difference ac-
curately by substracting the cross sections mea-
sured separately for light of either polarization is
questionable; however it may be possible to design
instrumentation for use in the region of continuous
absorption, analogous to that for discrete absorp-
tion, by which the cross-section difference is
measured divectly. In discrete absorption, this
difference is measured directly by measuring the
ellipticity of the absorbed light, where this ellipti-
city has resulted from unequal absorptions of the
left and right circularly polarized components of

a plane-polarized beam.

II. THEORY

A. Basic considerations

In this section we will present formulas for the
differential cross section for photoionization using
left or right circularly polarized light, where we
retain terms through order @? in the multipole ex-
pansion for the radiation field. Formally these
terms are closely related to terms already pre-
sented by Tully, Berry, and Dalton (TBD),® using
linearly polarized light. In the present work we
want to stress the dependence of the angular dis-
tribution on the polarization of the light,® and in
particular we want to present a detailed study of
the angular distribution difference for left or right
circularly polarized light. As we have stated pre-
viously, a remainder exists because of the addition
rather than the cancellation of the electric-dipole—
magnetic-dipole interference terms for left or
right circular polarization. The angular distribu-
tion for absorption of left or right circularly po-
larized light is given by

o Bk WP, m T UL 3 (R, X By )1 0)
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tem, £, the unit vector in the direction of propa-
gation of the photon, whose magnitude is w/c, and
Pr,r is the unit vector in the direction of polariza-
tion of the photon. Explicitly,

pr,r=UN2){F £1)) ' (2)

where 1 :a.nd—]r are unit vectors along x and y, re-
spectively, and the normalization factor 1/v2 en-
sures that the average energy density in the ran-
dom-phase approximation'® is normalized to the



12 THEORETICAL STUDIES IN PHOTOELECTRON SPECTROSCOPY. ... 569

value Ffiw/c, where F is the flux.

All matrix elements in Eq. (1) are evaluated in
atomic units. Figure 1 illustrates the geometry
of the experiment. pL r lies in the x-y plane, and
k,, is normal to this plane along z. The molecule
is assumed to be oriented such that its axis of
quantization is along z. The vector %Kk is the mo-
mentum of the ejected electron, and the angle be-
tween %, and 7K is the angle of ejection. In an ex-
periment in which the principal axis of quantiza-
tion of the molecule does not lie along the polar
axis in the laboratory frame, the set of Euler
angles would define the position of the molecule-
fixed frame relative to the laboratory frame, and
this set would simply be a constant set of parame-
ters in an experiment involving oriented mole-
cules. In an experiment involving randomly ori-
ented gas-phase molecules, the angular distribu-
tion must be averaged over this set of angles.!~3:8

B. Choice of phase for the magnetic dipole matrix element

We will focus our attention on the second term
of Eq. (1) The magnetlc d1pole operator is of the
form T -H, where H= z(k,XpL z) is the unit vector
in the direction of the magnetic field associated
with the radiation. Explicitly,

H=i[K,xAF)],=[VxA®)],, (3)

where the subscript 0 means that _t_he curl is eval-
uated in the » =0 limit and where A(Y) is the part
of the vector potential depending only on ¥. Expli-
citly,

FIG. 1. Coordinate system. 7k and mg, are the mo-
menta of the e;ected electron and incident photon, re-
spectively. 1 and J are unit vectors in the direction of
the polarlzatlon of the light. R is the relative position
of the nuclei, r r the position of the photoelectron, and
Fc the position of the core electron.

- 211F>‘/2 - . 3T
={— V X p° T 4
H (aw e( PL,r€ )o, (4)

where e is the charge of the electron and the other
quantities have been previously defined. Evaluat-
ing the curl and taking the dot product, we obtain

Tef=+ AN, £ i) =+ AN, (5)

for the operator. Matrix elements of the raising
and lowering operators are given by**

(mx1L jm)=e* " 2[(jrm+1)(jFm)]V?,
(6)

where n=0,+1,+2,..., +©. That is, these ele-
ments are arbitrary to within a phase. The exis-
tence of the electric-dipole-magnetic-dipole in-
terference depends on the choice of this phase.
For example, if the light were linearly polarized
along z with k, along x, as in TBD,? then the mag-
netic field H would be along y. The magnetic di-
pole operator would then be of the form ¢,. Ac-
cording to Eq. (1), the interference is proportional
to the imaginary part of the complex conjugate of
the electric dipole matrix element times the mag-
netic dipole matrix element. Now, below the ioni-
zation threshold (case for bound-bound transitions)
and for linear polarization along z, the electric di-
pole element is real; therefore, recognizing that
1,=(1/2i)(l, —=1_), the interference exists only for
n in Eq. (6) equal to the set of odd integers. On
the other hand, for a choice of linear polarization
along z but 17.,, along y, such that the magnetic field
is directed along x and the operator is of the form
il,, then, recognizing that [,=3(I, +1_), the in-
terference exists only for » equal to zero or the
set of even integers. Going through an analogous
argument for circular polarization show that the
interference term does not exist unless » is chosen
to be the set of odd integers. Still, the interference
is arbitrary with respect to sign. This ambiguity
of sign is a consequence of the condition, as dis-
cussed by Condon,* that the interference is a pseudo-
scalar and not a true invariant. A pseudoscalar is
the product of a vector (the electric dipole opera-
tor) and a pseudovector (the magnetic dipole opera-
tor) called by Condon* “polar” and “axial” vectors,
respectively. The sign of the pseudoscalar changes
on transformation of coordinate frames from left
to right handed or vice versa. As a consequence,
“optical isomers” or molecules one of which is
the mirror image of another rotate the plane of
polarization in opposite directions, and the abso-
lute value of the sign of the rotation for either di-
rection must be fixed by convention.

The above analysis holds for “polarized” discrete
absorption—that is, when the molecule can be ori-
ented such that its principal axis of quantization is
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directed either along the axis of polarization of the
light, if linearly polarized, or along the axis of
propagation of the light, if circularly polarized in
a plane normal to this axis. Choice of phase for
the case of bound-bound transitions puts us in a po-
sition to extend the analysis above the ionization
threshold to bound-free transitions. Physically we
must have an analytic continuation through the
threshold region. Had we begun the analysis in the
continuum, we would have discovered that the
second term contained both real and imaginary
parts for any choice of phase of the Eq. (6), be-
cause of the complex factor multiplying the radial
partial waves chosen to ensure normalization to
incoming boundary conditions. This factor has the
well-known form (7)’e*'™ for incoming-outgoing
boundary conditions in the central-field problem
(its generalization to molecular fields has been
given in Ref. 1 and references therein). Further,
circular polarization of the light entails the selec-
tion rule, m; =m,y+ 1 for both electric dipole and
magnetic dipole amplitudes, where m; and m, are
the azimuthal quantum numbers of the continuum
and bound radial waves, respectively. Provided
the bound molecular orbital can be characterized
by a single m, value, then the angular part of the
product of matrix elements in Eq. (1) is real.

This means that choice of #» equal to zero or the
even set of integers leads to a cosAn dependence
and choice of » equal to the odd set of integers
leads to a sinAn dependence of the angular distri-
bution, where An is the phase-shift difference for
two partial waves occurring in the interference.
This ambiguity is removed by choice of the phase
of Eq. (6) to ensure the existence of bound-bound
interference, and then analytically continuing this
result above the ionization threshold. For a mole-
cule whose symmetry is high enough so that its
molecular orbitals have only a single m, value,

the angular distribution shows a pure sinAn depen-
dence. This sine dependence, whose sign depends
on the sign of the phase angle An, provides a test
of the normalization of the wave function for the
ionized system to obey incoming boundary condi-
tions and hence provides a test of time-reversal
invariance. For molecules of lower symmetry,
whose molecular orbitals have several m, values,

)

do, dop_-2%(aa,)Ek
aQ  do V2

the angular distribution can exhibit a mixture of
dependences on both cosAn and sinAn and a de-
pendence on the azimuthal angle ¢.

C. Partial-wave analysis

In this section we will expand the bound and con-
tinuum orbitals in a series of partial waves about
the molecular ionic center of mass. We assume
molecules with a center or plane of symmetry.
This analysis has been presented and discussed in
detail in Refs. 1-3. The initial wave function is ex-
panded as follows:

Z/)i = Z ,(plomo(r)ytomo(gn (Pr) ’ (7)
Yo

where the prime on the summation means that only
all even or all odd terms occur. For symmetry
this high, only a single m, value is required to
specify a given molecular orbital. Terms are re-
tained in this expansion until convergence is
reached. The final wave function is expanded

(=) _ (=)
Zpl’( ‘477112 <plil,ijlimj(9r; (Pr)Y;kjmj(ek’ qu). (8)
iti™;

We can write for the electric dipole interaction,
preF=FE0)rY,,,(6, ¢,). )

The subscripts on the angles indicate whether these
are angles belonging to T or k. m Eq. (8) two sets of
quantum numbers {Z;,m;} and {1, m,} are required
to specify the directions of T and k. For molecules
of sufficiently high symmetry, m;=m;. Please
note that from inspection of the operators given by
Egs. (5) and (9), the following selection rules can
be deduced:

mj=mgy+1
for left or right circular polarization, (10a)

l;=1, for a magnetic-dipole transition, (10b)
l,' =‘ loi 1[
for an electric-dipole transition. (10c)

For a two-electron molecule, whose ground
state is a singlet, the angular distribution differ-
ence or “circular dichroic angular distribution”
is given by

(23 +1)Y2(20; +1)Y2(2; +1)V2(21; +1)V2(2L +1)

<A01)\,~><A0 1
“\o 0 0/\my 1 —m,

>(z,. X L><zj A L)
00 0/\m, -m; 0

X[(Lo+mo+1)(Lo = mo) ]2 Re[ (BYNIx )*7idy 1P (cosb) (11a)
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mom _ (% (ko
'1001,-]1j = J; d”'rz*PzitjmjV\onmO; (11b)
momi (7 gy 2ok e
Y1t fo Pryi;m Promys (11c)

where we have ignored the vibrational degree of
freedom and the overlap between ionic and neutral
bound states [these terms can be easily included

in a given case; see Eqgs. (7a) and (7c) of Ref. 2],
and where we have explicitly summed the two
terms for left and right circular polarization. Ac-
cording to the selection rules given by Egs. (10b)
and (10c), Z; and X; of Eq. (11a) must be of differ-
ent parity; therefore L>0 and is of odd parity by
the rule that for the 3-j symbol with m, =m, =m,=0
to exist, I; +1; + L must be even. The condition
that L>0 means that the effect vanishes on integra-
tion over the solid angle. Also, the radial overlap
given by Eq. (11c) vanishes for isotropic system
(atoms), owing to the independence of the radial
functions from azimuthal quantum number, m,

and thus the radial orthogonality for wave functions
of different m. It is this condition which is re-
sponsible for the selection rule in atomic spectro-
scopy that magnetic dipole transitions can occur
only between states of the same principal quantum
number.

The effect vanishes in rotationally averaged an-
gular distributions. This disappearance for the an-
gular distribution for a sample of randomly oriented
molecules canbe understood from the consideration
that use of circularly polarized light causes popu-
lation of a single fine-structure level of the excited
state (or for ionization of a single m wave of the
photoelectron), according to the selection rule
m;=my+1 for left or right circular polarization,
respectively. The distinction between which level
(or wave) is populated depends on the condition that
each level be a component of a multiplet defined
by use of a molecular axis of quantization. In ro-
tationally averaged systems, the angular distribu-
tion cannot contain information (or “memory”)
about an axis of quantization in the molecule fixed
frame. This same condition obtains in discrete
absorption. The difference between absorption co-
efficients for left and right circularly polarized
light disappears for a sample of randomly oriented
molecules in both discrete and continuous absorp-
tion unless the molecule has chirality or “handed-
ness.” Amoleculeischiralif V(r, 6, $)#V(r, 6, —9¢),
where V is an effective potential in which an elec-
tron moves. The most familiar example of a
chiral molecule is a molecule having an “asym-
metric carbon” atom or carbon atom bonded tetra-
hedrally to four distinct groups and existing in the
form of a pair of “enantiomers” or “optical iso-

mers.,”

This means that measurements should be carried
out on molcules oriented either in a solid substrate
or by use of polarizing fields in beam experiments.
The theory would then have to include the details
of background effects on the angular distribution in
a given case. This could constitute a practical
limitation; however recently there has appeared a
large interest in the angular distributions of mole-
cules adsorbed on surfaces, and work is being
carried out on the background effects on such dis-
tributions.'?**®* Qriented molecule beam work has
been performed by Beuhler and Bernstein'* and
other workers, and provided a sufficient number
of oriented molecules were present to overcome
intensity difficulties, this technique could offer
the more desirable alternative, from the point of
view of the simplicity expected for the experimen-
tal and theoretical analysis of the background ef-
fects on the angular distribution produced by the
orienting electric field.

III. TESTOF TIME-REVERSAL INVARIANCE

We want to outline in more detail how the cir-
cular dichroic angular distribution could be used
as a test of time-reversal invariance of the wave
function for the ionized molecule. Quite generally,
interference terms in angular distributions which
arise from the cross product of radial amplitudes
belonging to partial waves of opposite parity will
take a sign which is determined by the normaliza-
tion appropriate for the process—normalization to
satisfy oulgoiny boundary conditions for waves in-
volved in scattering processes and incoming bound-
ary conditions for waves which occur as final
states in transition amplitudes. Yang' has derived
several general theorems applicable to unpolarized
systems undergoing collision by which the forms
of the angular distributions of products occurring
in both nonradiative and radiative processes in
nuclear reactions can be deduced. Table I of his
paper provides a summary of his findings. He dis-
cusses the occurrence of all even or a combination
of even and odd powers of cosf[see our Eq. (11a) in
which only odd powers of cos@ occur|. Even or
odd powers of cos6 will be multiplied by coeffi-
cients formed by use of partial waves of the same
or of opposite parity, respectively. For the radia-
tive processes considered, he finds the occurrence
of only even powers of cos6 (interference of par-
tial waves of the same parity), stating that the odd
powers do not occur because the photon wave has
definite parity. In general, this parity will depend
on the order of the multipole expansion of the rad-
iation field; the electromagnetic interaction is odd
for the electric dipole term and even for the mag-
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netic dipole or electric quadrupole term.

We can gain a physical interpretation of time-re-
versal invariance by reference to the general argu-
ment of Breit and Bethe.'® Their use of the forms
for thc wave functions outside of the region of the
center of force,

¥-= fdic;we-w‘/ﬁ , (12a)

eiikr

(
¥ -

provides the means of arriving at a mathematical
statement and a physically transparent analysis of
the normalization appropriate for a given process.
Equation (12a) gives the time-dependent wave func-
tion written quite generally as the superposition of
the continuum time-independent wave functions,
¥§*), calculated at an infinite distance from the
center of force and normalized to satisfy outgoing
or incoming boundary conditions (+) respectively.
f(¥(8) are the scattering amplitudes for either
normalization. Substitution of Eq. (12b) into Eq.
(12a) and recognition that E =£? in rydberg units
leads to choice of the normalization condition cor-
rect for a given physical process by use of station-
ary phase analysis. In summary, for a scattering
process, at {=-, the beam approaches along
z=—o, Choice of the (+) boundary condition then
leads to the disappearance of all terms containing
e*™" since for t=—, kz=—Fkr, and cancellation
(destructive interference) occurs in the integration
over k. On the other hand, at ¢=+%, the unscat-
tered beam departs along z =+ «, and choice of the
(+) boundary condition leads to the existence of all
terms containing e***", since for {=+ o, kz=ky,
and no cancellation (constructive interference) oc-
curs in the integration over k. Thus, the scattered
waves represented by the second term of Eq. (12b),
produced in the region of the potential, exist at

t =+ but do not exist at {=~, Choice of the (=)
boundary condition would produce the inverse of
the above situation and hence result in an incorrect
description of the process. If the incorrect nor-
malization were used, then the scattering ampli-
tudes (extracted from the asymptotic forms of the
radial equations) would be

a;=[1)/2i](e*'" - 1), (13)

%)

Nei—iv—l?_‘_f(i)(e)

) (12b)

and even-odd interference terms in the angular
distribution would have the wrong sign. Use of in-
coming boundary conditions for particles created
in the region of the potential is necessary because
time-reversal invariance requires that on letting
t=~t and K~ - K the emerging particles must be-
come the particles of an incident beam in a scat-
tering experiment, and as such scattered waves at
t=+ cannot exist. Thus, the test of the normali-
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zation to satisfy incoming or outgoing boundary
conditions is a test of time-reversal invariance,
since the wave functions for either normalization
are related to each other by the transformation,
9 =190 where T, is the symmetry operation
for time reversal (meaning take the complex con-
jugate of y(=) and let K go into -K).

Although the concept of time reversal which we
have briefly reviewed above has a venerable histo-
ry in quantum mechanics, it does not appear to
have had important experimental consequences,
particularly in the study of radiative processes in
atomic physics, probably for the reason suggested
in our brief review of the cases studied by Yang'®
for radiative processes in nuclear physics, namely
that interference phenomena involving partial
waves of opposite parity, which provide a probe of
the boundary conditions of the wave function, evi-
dently were not important in the context of his
studies. In the present work, the importance is
especially striking because the circular dichroic
angular distribution provides a direct measure-
ment of the electric-dipole-magnetic-dipole inter-
ference term, whose sign is determined by the ap-
propriate normalization. This is the first such
test of time-reversal invariance by a molecular
radiative process that we are aware of, and we
hope that the present analysis will stimulate ex-
perimental interest.

IV. CALCULATIONS AND DISCUSSION

A. Use of Coulombic waves for the photoelectron

In this section we will present calculations. We
assume that the molecular orbitals can be put in
the form,

Y ~ PolEg) + Xy (L7 )P, (COSO) + -+ - (14a)
U~ @1(c. 7P (COSO) + g5 (£57 )P4(COSO) + -+ +
(14b)

for a 0,- or 0,-type molecular orbital, respective-
ly. Accurate multicenter molecular orbitals can
be reexpanded about the molecular center of mass
and put in this form. We will assume Slater-type
forms for the radial components in Egs. (14).

This assumption frees us to study angular distri-
butions as a function of the sets of anisotropy and
effective charge parameters, {);} and {¢;}, re-
spectively.® For simplicity, we further set all of
the effective charge parameters equal to a single
parameter ¢. This restriction implies that a given
multicenter molecular orbital can be represented
less accurately by a single center; however, it is
reasonable since we would expect each radial com-
ponent of a given molecular orbital to have roughly
the same “size.”
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We further simplify the calculation by use of
Coulombic waves for the photoelectron. This will
give a crude, but reasonably correct, description
of the process, especially at low energies where,
for waves of order [>0, the centrifugal barrier
will cause a given radial wave to be pushed out-
ward such that (i) the photoelectron is found princi-
pally outside of the sphere swept out by the nuclei
of the molecule and (ii) its motion is determined in
large part by the Coulombic tail of the potential,
namely by -1/». However, photoelectric current
is generated from the region of space occupied by
the initial state, and hence the amplitudes for
photoionization depend on the continuum wave func-
tion in the same region. Thus the phase shifts re-
quired for calculating the angular distribution
should be fairly accurate, while the radial matrix
elements should contain a greater source of error.
The calculations could be made systematically
more accurate by use of methods recently devel-
oped for calculating the wave function for an
ionized molecule.'”

Use of these approximations now allows us to
write down the matrix elements of Egs. (11) in
analytic form.3''® The first several elements are
given by

By =—iet 0133(—%%%1@(2@ -1)e-®, (15a)
ﬂlo=ei°°%€zz—°,§zk)—)4[(3és -9¢®+6¢-1)

-3z -2)k%le™" (15a)
ﬁm:—ei"z%%z%}%kz(%—l)e‘“, (15¢)
hﬁ%ﬁo“ (15d)
Va2 =%%)Bm , (15¢)
Cj(k)=<1—_2—2‘éfw7g>l/2ﬁ[sz+(1/k)2]1/2, (15f)

s
a= %arctan(%) , (15g)
o,=argl'(j+1-i/k). (15h)

We note that y,, and y,, vanish at £ =% and ¢ =1,
respectively, as a result of 2p, kp and 3d, kd
radial orthogonality for hydrogenic states. By the
selection rules given by Egs. (10), the initial and
final waves belong to different m; therefore, as
stated in Sec. II, the radial overlap is nonzero
provided the radial waves depend on m2. The hy-
drogenic functions used above do not depend on
m; however, we can mimic m dependence and

therefore nonzero overlap by having ¢ at our dis-
posal as an adjustable parameter.

We perform the calculations taking 2=0.1 a.u.
and assuming that the molecule has an ionization
potential of 0.5 a.u.

B. Results and discussion

We present our results in Figs. 2 and 3 for the
circular dichroic angular distribution for ionization
from a ¢, or 0, molecular orbital, respectively.
The most interesting factor of the results for the
0, orbital is the condition that the leading term in
the molecular orbital, namely the [ ,=0 component,
has a zero magnetic dipole contribution. The dom-
inant term in the angular distribution is the A;,=0,
1,=2 (I, Ao are angular momenta of the initial
molecular orbital) electric-dipole-magnetic-dipole
cross term, whose strength is linear in a,. Clear-
ly then, this measurement would provide a very
sensitive probe of the leading anisotropy parame-
ter of this molecular orbital. Figure 2 shows re-
sults for N, =1, £=1; A, =3, £=1; and A, =3, £=3.
The latter case is interesting in that the A, =0
=X; =1 (A, is the angular momentum of the photo-
electron) electric dipole matrix element vanishes
[see Eq. (15a)] for this value of ¢, and the leading
term is that for A;=2, [,=2, which is quadratic in
A,. Accentuation of the terms coming from higher-
order /; values increases the oscillatory nature of
the angular distribution, since |; = \;ls L< (I; +);)
(I, A; are angular momenta for the photoelectron),
and contributions from Legendre polynomials P; of
higher order become increasingly important, making
possible L number of nodes in the distribution.

0'(‘] Molecular Orbital ;
16 — e Np= 1, 4=
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L 12
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FIG. 2. Circular dichroic angular distribution for a
molecular orbital of g, symmetry.
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FIG. 3. Circular dichroic angular distribution for a
molecular orbital of o, symmetry.

Figure 3 is a similar plot for the o, molecular
orbital. There is greater nodal structure owing to
contributions of higher L. Here, however, the
leading term of the molecular orbital, namely that
for I,=1, has a nonzero magnetic dipole contribu-
tion, so that the leading term in the angular dis-
tribution is not linear in A;, providing a less sen-
sitive dependence on anisotropy parameter than in
the o, case. However, the nodal points in the ma-
trix elements [in Eqs. (15)], if they could be found
experimentally, would provide an enhancement of

RITCHIE 12

effects due to molecular anisotropy. The first
such point occurs at £ =3, where the [,=1 mag-
netic dipole term vanishes, giving an angular dis-
tribution whose leading contribution is linear in
A;. The second occurs at £ =3, where the A;=1—
A;=2 electric dipole term vanishes. This also
leads to an angular distribution whose leading con-
tribution is linear in A;, since the A,=1—x;=0
term is zero by the m; =m,+1 selection rule.

V. CONCLUSIONS

We have presented formulas for the angular dis-
tribution difference for left or right circularly
polarized light. We have emphasized that these
measurements provide a probe of molecular struc-
ture, which can be under certain circumstances
more sensitive than that provided by the ordinary
angular distribution for the electric dipole process.
Also we have stressed another new feature of the
measurement, namely that the electric-dipole—
magnetic-dipole interference provides a test of
time-reversal invariance of the wave function for
the ionized system. To our knowledge, no such
test by a molecular process has been investigated.
We hope that this theoretical analysis will stimu-
late experimental work and further theoretical
work.
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