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A solution of the Dirac equation for an electron in a point-Coulomb potential is given in the form of an

expansion in the parameter 1/r. The main part of the solution is the Sommerfeld-Maue wave function. We
introduce a correction term. All orders in aZ are kept. The given solution (Sommerfeld-Maue plus correction
term) contains the exact contributions of orders 0 and 1 in the expansion in 1/r. This modified Sommerfeld-

Maue wave function is used to get the cross section for the pair-production process by y rays in the field of a
nucleus. The cross section is written in the form of the Fink-Pratt cross section plus a correction term. The
formula is valid for all a Z. The. energetic relative accuracy should be of order 1/E'. The small-angle

approximation is not introduced.

I. INTRODUCTION

Johnson and Mullin' have discussed the interest
in an approximate solution of the Dirac equation
for calculations of various electrodynamic pro-
cesses such as electron scattering, bremsstrah-
lung, and pair production. They have given a rel-
ativistic Coulomb wave function which is valid to
second order in o.Z for all electron velocities.
This wave function has been used by Deck, Moroi,
and Ailing' to obtain bremsstrahlung and pair-pro-
duction cross sections including a correction term
to the Bethe-Heitler' formulas, of relative order
eZ. In addition, Boric' has performed a first-or-
der calculation for the bremsstrahlung case. We
have shown' that first-order corrections in zZ
seem not to be sufficient in the energy region from
a few MeV to a few tens of MeV, for high values of
Z. Furthermore, they do not give any contribution
to the total cross section for pair production.

In previous bremsstrahlung and pair-production
calculations, "we introduced a different way to
compute higher-order Coulomb corrections to the
cross sections obtained from the Sommerfeld-Maue
wave function. The method starts with expansions
both in powers of aZ and in energy (or I/r). In the
bremsstrahlung case, the theoretical values have
been found in good agreement with experimental
results, while in the pair-production case, Fink
and Pratt' have shown that the correction is still
too small for high Z values.

To improve our previous results, we have given,
in a recent paper, ' a general method to obtain the
exact correction term to the Sommerfeld-Maue
wave function. Nevertheless, it is possible that
the corresponding numerical computations would
be very difficult. Then, we come back to a search
for an approximate correction term which might
be more useful for numerical purposes. We intro-
duce a wave function with only the expansion versus

II. THE MODIFIED SOMMERFELD-MAUE WAVE FUNCTION

A. Definition of the correction term

We look for a solution of the Dirac equation for
an electron in the point-Coulomb potential of a
nucleus:

(—in V+P —aZ/r —E)4'=0; (2.1)

a and P are Dirac matrices, r is the electron's co-
ordinate, E the total electron energy, n the fine-
structure constant, and Z the charge number of the
nucleus. '

The exact wave function 4 is written

+=+sM++, (2.2)

with

~SM = &a+ ~n ~

P, = Ce'~'"Fu,

t/i~= —(i/2E)Ce'~' a VFu,

F=,F,(iv; I;ipse —ip r),

(2.3)

u =u(p) is the normalized Dirac spinor for a free
electron of momentum p, ,E, the confluent hyper-
geometric function, C a normalization constant,
and v= aZE/p.

Bethe and Maximon' have shown that 4, satis-
fies the equation

I/r, all orders in aZ being kept. In Sec. II, we
shall deduce the wave function in the form of a cor-
rection term added to the Sommerfeld-Maue wave
function. In Sec. III, this wave function will be ap-
plied to the pair-production process, the cross
section being written in the form of the Fink-Pratt
cross sectionv plus a correction term.
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g2+P2+ 2
4'= [N+iaZM a (p —r}+I.a (p —r)a. pjg .

(2.9)
Q Z

b y ~2

(2.4)

+gyy +SM+ +g &
(2.5)

Looking for an expansion in I/r, we notice that
4', is of order 1 and 4~ of order 1/r. Then 4, is
also of order 1/r. Our approximate wave function,
valid to order 1/r, will be

00 j ~

N=2~ (-1)"k ' e"' 'x" 'e " '
I'(2y+ 1}

x,F,(y —i v; 2y+ 1;x)(P,', —P~),
with

(2.10)

Here p=p/p and r=r/x; N, M, and I are functions
of Z, E, p, and r. Because of the spin dependence
of X„we shall be interested in the term N only.
The explicit expression for N is

where 4, is a correction term defined by the fol-
lowing equation: y= (k' —a'Z')' ' x = —2iPr (2.11)

(V'+ P'+ 2 aZF/~) @,= —(a'Z'/~') 4, .

Putting

4,= Cg,u, 4', = a'Z'C~u,

we have

(2.6)

(2.7)

(2.8)

Pk is a Legendre polynomial of argument coso.
=p x, and Pk denotes the derivative with respect
to the argument.

Johnson and Deck showed that the Sommerfeld-
Maue wave function results from the approxima-
tion y=k. Therefore, we shall try to solve (2.8)
using

B. Derivation of the correction term

We shall solve Eq. (2.8) using a form derived
from the exact wave function given by Johnson and
Deck. ' This form is interesting in our case be-
cause it expresses the spin dependence in terms
of the Dirac plane-wave spinor, just as is given the
Sommerfeld- Maue wave function.

The Johnson and Deck wave function is

&Na'Z'C}f=N-N(y= k) = (y —k)

We expand y- k to first order in (aZ/k)',

y —k = —a'Z'/2k,

and notice that

C = r(1 i v)e"—'~'.
Then

(2.12)

(2.13)

2kI'(k —i v}

k=1

(2.14a)

OO

k=1

(2.14b)

Using

P~, —P~= (-1)"'Q (-1)'(2l+1)P, ,

reversing the order of summations, and performing the sum over k, the expression of g, can be trans-
formed into a form given by Gordon" (we have also changed the sign of the wave function):

y. = g (-)'(2l+1)P, (cosa)e "k . xF, (l 1+—iv; 2l+2; x) .I'(l +1 —iv)
(2.15)

In the expression for y, the sum over 0 cannot be reduced. We obtain

}i=—g (-1)'(2l+1)P,(cosa)e " ' — . x",F,(y+1 —iv; 2y+2; x)
I'(y+ 1 —i v)

By „,I' 1 —iv I' 2y+3
Z=0

8 I'(y+ 2 —i v)
By „(2y+2)I'(1 —i v) I'(2y + 5)
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I et us recall that we are looking for a solution of (2.8) and that )t, is of order I/r. Then, in Eq. (2.16),
we are led to investigate the limit ~x ~- ~. We have

I' y+1 —iv . I'(y+ 2 —iv) „„. 1
I'(2y+2) ' ' ' ' I'(2y+4) ' ' ' ' x

'x",F,(y+1 —iv; 2y+2; x)- x"",E,(y+2 —iv; 2y+4; x)-—.

As a result of the factors in the denominator, the last sum in Eq. (2.16) may be omitted.
Next, we compute (V'+P'+2nZE/r)){, with

X= —g (—I)'(2l+1)P, (cosn)e " ' — . x",F,(y+1 —iv; 2y+2; x) .
a I'(y+ 1 —i v)

&y „,I'1 —iv I' 2y+3 (2.17)

We get (see the Appendix)

V'+p'+ ){=——,g (-1)'(2+1)P,(cosn)e "~' . x', E(l +1-iv;2l+2; x).2nZZ 1 ", „(,(2l+ 1)I'(I+I —iv)

L=0

(2.18)

Comparison with expression (2.15) shows that (2.17) would be a solution of (2.8) if we had I/I'(2l+2) in-
stead of (2l+ I)/I'(2l+3) in (2.18). Then, it follows that, changing (2l+1)/I'(2y+3) to 1/I'(2y+2) in (2.17),
we get the solution of Eq. (2.8) (see Appendix). We have

){,= —p(-1)'P(cosn)e "~' —
&

.
& 2 2

x",E,(y+1 —iv; 2y+2;x) .
8 1 (y+1 —iv)

(2.19)

The interest in the derivation from the Johnson
and Deck expression is that we get directly the
right asymptotic behavior for the correction term.
It is important to point out that the correction term
g, contains only outgoing spherical waves.

C. Expression for the modified Sommerfeld -Maue

wave function

For the asymptotic behavior of a plane wave plus
outgoing spherical waves, the modified Sommer-
feld-Maue wave function is then given by

I'(y+1 —iv)

E(y+I —i v; 2y+2; x) . (2.23)

For applications, the partial-wave expansion of
the Sommerfeld-Maue function can be of interest.
4', can be expressed using (2.7), (2.13), and (2.15').
For 4,'~, we have

@If gt +~Ig
a

I'(l + 1 —i v)
}I,'*= g(2l+ I)P, (cosn)e " '

(
.

)
)x'

4 = 4'~ M+ 4, + 0(1/y'), (2.20) x,F,(l I+—iv; 21+2; x) . (2.24)

4"= @,'iu+ 0,"+0(l /r') (2.21)

with

pig @If
SM il +

Q ~ ge-fg'rut~ &gu

where 0'~„ is defined by Eqs. (2.3) and (2.13), 4,
by (2.7), (2.13), and (2.19).

A function 4' with the asymptotic form of a plane
wave plus incoming spherical waves can be ob-
tained via time reversal. The adjoint of the func-
tion 4' can be written

0, and 4,' can be deduced from the work of John-
son and Deck:

4'„=inZM(y=k)n (P —r) u,

4,'i =i nZM'(y = k) urn (p+ i),
(2.25)

M and M' being given by Eqs. (32) and (44) of Ref.
11.

III. APPLICATION TO THE PAIR-PRODUCTION PROCESS

A. Matrix element

The matrix element including the Cculomb cor-
rection, but neglecting the atomic electron screen-
ing effect, is

e,"= (i/2Z)C'*e *"u'n VE"-, .
E'* =,E,(iv; 1; ipse +ip r),
C'*—= C [cf. Eq. (1.13)];
e"= a'Z'C'*~'* u'e A e r

(2.22) M= d'r %2t z E e'"' 0 (3.1)

where the 4's are solutions of the Dirac equation
(2.1). In the expression of M, indices 1 and 2 refer
to the positron and the electron, respectively; k
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and & are momentum and unit polarization vectors
of the photon.

Writing each 4 in the form 4 = 4,+ 0 b+ 4„we
are led to an expansion of the matrix element in
nine terms. Our aim is to Compute the main cor-
rection term M, to the Bethe-Maximon matrix
element M/M, ""

c 2a, le+ 2e, la & (3.3)

M, = o'Z'C,*Ct(tt,
~

(t. g ~ut)I4, (3.4)

using the 4, functions obtained above.
From (2.7), (2.13), (2.15), (2.19), (2.23), and

(2.24), we have

BM ™2a,la+ 2a, lb+ 2b, la & (3.2) with

I = d're'" "(}i*„}f„4-}i*„}f„),

}!„=Q(2lt+1)P, (cosot)e "t. ' .' ' xtt&tF, (l, +1+iv, ;21,+2;x,),I'(l, +1+iv, )

l,=o

(3.5)

(3.6)

P, (cosn, )e "t ' — . ' xP»Ft (y+ 1+iv„2y —2;x,),
8 I'(y+ 1+iv, )

1
l 1-»0 t=ll

(3.7)

C, = I'(1+iv, )e '"l~', (3.8)

and similar expressions for y2*„y*2e,&2*, i.e., Z„
v„x„cosa, instead of Z„-v„x„cosa,.

We shall compute I4 by expanding e'"' in partial
waves:

A = (2(s ))Jd CS p, (cosa)p, (cosa, )p, (cosa, )

16m',1)(2l, 1)]t/. g t„m( 2 &2) t„.(» &t)
m

e'"'= g(2l+1)Pt(cosa)ijtt(kx) .
l=0

(3.9)

Here, coen = k r/kr and j, is a spherical Bessel
function of the first kind. The angular and radial
integrals separate:

xT(l, l „l„m) . (3.11)

k is taken along the polar z axis. 8„(t), and 8„(t),
define, respectively, the momentum directions of
the positron and the electron. The Y, are spheri-
cal harmonics and T contains the Wigner 3-j sym-
bols

4i g tsttst2 t, lt, l2 '

l, ll, l2

(3.10) Z Zl Z2 Z Z, Z,T(l, l„l„m)= (2l+1) ' ' ' ' . (3 12)
0 0 0 Oc m -m

The angular integration is easy to perform. We

get
The radial integration is more difficult ~ It in-

volves integrals of the type:

dzt "t'"e "t't't'2'"j, (k4 ),E, (l, + 1+iv„2l, + 2; -2iP p),E, (y+ 1 —iv„2y+ 2; -2iP, r) .

Similar calcu! ations have been discussed and performed by Qfverbd. " After computing the derivatives
(8/ay) and (8/sy)& t, we finally obtain

1

z,tlz,t2 1 (b, ) I'(b, )
'

(l +n)! I'(tt)z" ((2l, + 1)[2C„Im(EQ + 2 Im(E„') —ttE„*]
n=o

+ (2l, + 1)[2Cs Im(Fs) + 2 Im(Est) —ltEg]'I,

with
(3.13)
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k'+p, +p, 2p, 2p

a=l, +l2 —n+2,

la+ 1+iv» ca= 2li+

b2 = l2+ 1 —i v» c2 = 2l2+ 2,
C„=4(a) + 4'(b2) —24'(c2) + In@2,

Cs = 4(a) + 4(b, ) —24(c,) + Inz, ,

F„=Es = E—2(a; b„b,; c„c,; z„z2),

(3.14)

(3.4), our matrix element M =MeM+M, is

M = C2"C,(u2! o. e (I, + cPZ21, ) + Z e n I,
+ c(' I 2 n) 6!uz) . (3.16)

Then, the differential cross section d'o' can be
obtained directly from previous results [Eq. (6.26),
Ref. 10 or Eq. (1.45), Ref. 15] through the substitu-
tionI, by I, +z'Z'I4. In a second step, we separate
the contribution of I„which yields

8 I 8
Fr=el F~, Fa=

~l Fa
2 1

Here, 4 is the logarithmic derivative of the I'
function and F, is the Appell function.

B. Cross section

The Bethe-Maximon matrix element, Eq. (3.2),
can be written

d o=d ~majn+d ~c. (3.17)

d'0 „,is the main term, while d'0, is the correc-
tion term due to I4.

For d'0'mijn/ we can take our previous result
[Eq. (1.45), Ref. 15] or the more sophisticated ex-
pression derived by Fink and Pratt [Eq. (2.5),
Ref. 7].

For d'o„we write

Ms„=C2C, (u2!Z e&, + n &Z"I2+(2.'I, c. &!u,). 0 =d 0' +d 0'
C C~ C2 ~ (3.18)

(3.15)

[See Ref. 10, Eq. (6.2).] Taking into account Eq.
d'o, being computed from 2 Re(MgMM, ) and d 2a,
from !M,!'. We get

Z2 6

d2c, =dZ, dn, dn, 6, '&'!C,C2!'Q&,„[&»(Z,Z2+I —p„p„)+Z,(p, I,„-p„I, +Z, (p, .l,„-p„r, )],

Z2 6pd'o, =dZ, dn, dn, ', ' '!—C,C, !'(c(Z)'!I,!'(Z,Z, +I-P„P„).

(3.19)

(3.20)

2

!
4»I V2

1 2 I (e22) ~ 1)(1 e 22)'2) (3.21)

Here, v=1 and v= 2 refer to the real and imag-
inary parts, respectively. I4 is given by Eqs.
(3.10)-(3.14). For I„ I„and I„see the work by
Bethe and Maximon [Eq. (6.23), Ref. 10]. The g
axis is taken along k; dQ, and d02 are the elements
of solid angles in the directions of p, and p,

X2a '
y

(3.23)
)...=-tp„( o,)(—) (-')"j„((, )

l j. ~l

Expanding e' " 2" in partial waves, the angu-
lar and radial integrals in I4 separate. Putting

3+eff~r @g ~

To zero order in aZ, we have

(3.22)

with

vi = QZZi/Pip v2 = o(ZZ /P .22
C. Correction term in first approximation in n Z

As a check of the expression (2.20) for the cor-
rection term to the Sommerfeld-Maue wave func-
tion, we perform a first-order calculation of the
integral I„Eq. (3.5). In fact, we give the deriva-
tion for the first part of I4, i.e. ,

s~ = k —p2, cos(g~ = s~ ~ p~/s~p~

we get

with

A'=4wPI (cos((),),
(p,/s, )'x

2S~ S~ —Pj

The summation over l, yields

(3.24)

(3.25)

(3.26)



536 G. ROCHE AND J. JOUSSET 12

p2 -j /2
1 —2 ~costa + ~

s S1 1

We have

s', —p', = 2k(E, -P„)= D, .
Then

I,' = 2w2/qD2,

(3.27)

(3.28)

which is in agreement with our previous approxi-
mate result [Eq. (9.1), Ref. 6].

D, First numerical results

We have performed a numerical calculation of
the cross section do/dE, in the following particular
case:

E,=E, =k/2, Z=82,

for 0 =2.1, 2.6, 3.5, and 5.2 (mc' units).
Table I gives the contribution of the terms do, ,1

da, , do', =de, +do', , and da „,=do» (Fink and
Pratt'). It is seen that da „„is still smaller than
da, at A = 5.2. However, for this photon energy,
do'Fpp J' = do'

+gn +da'c approaches the exact value
dgoMo of @verb@ et al."within 1%. Also, it is in-
teresting to point out that do, is much smaller

TABLE I. Numerical results. The cross sections
are given in b/mc . The calculation has been performed
for Z = 82 and E

&
= E 2

=k /2.

i.
-

Pg = k - p2 - pi. = 9

where q is the recoil momentum of the nucleus, and

than da, ; at higher photon energies, it is supposedC2~

to be negligible.
Figure 1 gives the relative error between do'pppg

and do«o. For k higher than 3 MeV, our calcula-
tion method should be correct with an accuracy
better than 1%.

Finally, let us point out that, for 4=5.2, we
need six partial waves for each particle (positron
and electron), while the exact calculation requires
17 partial waves for each particle to get dopMp
within 1%.

IV. CONCLUSION

We think that the modified Sommerfeld-Maue
wave function of Johnson and Mullin' and the pres-
ent one complement each other. The Johnson and
Mullin function is valid for all 1/r but limited to
first order in aZ. The present one is valid for
all o.Z but limited to first order in I/x They. have
different interests. The Johnson and Mullin func-
tion should be preferable for low aZ and low ener-
gies, while ours has to be chosen at higher nZ and
energy values.

If neither of these two approximations are accu-
rate enough, the exact correction calculation meth-
od which has been investigated elsewhere' can be
applied.

The main interest of the approximate wave func-
tion given here should be for a total cross-section
calculation of the pair-production process in the
intermediate energy region, from a few MeV to a

Ref. k 2.1 2.6 5.2

] doc i
Z dEi
1 d&c2

Z~ dEi

1 doc
Z2 dEi

1 do'F p

Z dEi

1p-io 3x1p ' Sx10 6 1.x 1.p

0.06x10 35x 10 107x 10 6 109x 1.0

0.05x 10 7x 10 45x 10 95x 10

0.06x 10 6 38x 10 8 115x1p 110x 1p 8

10

1 dVFPRJe Z2 dE
0.065x10-' 45x10-' 160x10-'

i
205x10 6

pMp
Z2 dEi

0.125x 1p 62x 1p-' 172x 1.p-' 2p7x 1.p-e

do FpRJR=
do pMp

0.52 0.73 0.93 0.99 10

First correction term [Eq, (3.19)] integrated over the angles.
Second correction term [ Eq. (3.20)j integrated over the

angles.
Total correction term doc =doc i+dfycc 2'
Fink and Pratt cross section integrated over the angles

do'Fp (from Ref. 7) ~

Our approximate result do'FpRJ = dO'Fp+ doc
Exact differential cross section do'pMp computed by @verb/

et al. (Ref. 16).
Ratio R =do'FpRJ /dOpMp .

I

8
FIG. 1. The ratio Y= (da'pMp- do'i:pgJ)/dapMp versus the

photon energy value k expressed in mc units.
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few tens of MeV, because a first-order correction
in eZ yields no contribution. The next step of our
study will be this calculation.

The cross section involved here includes the
Coulomb correction only. At high energies and
small angles, the atomic electron screening effect
has to be introduced.

(2l + 1)I'(y+ 1 —i v)
I (1 —iv)I'(2y+ 8)

In Eq. (2.19),

(A1)

8
L, (r) =e "~' — Gx",E,(y+1 —iv; 2y+2; x) .

r=i

In Eq. (2.17),
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I'(y+ 1 —i v)
I'(1 —iv) I'(2y+ 2)

We take

Applying the angular operator to P„we get

1 ~ . ~P
sinn ' = —l(l + 1)P, .

sinn ~n

Then we have

(A2)

APPENDIX; COMPUTATION OF Y= (V'+ p +2nZE/r)x

We write

y = —g (-1)'P,(cosa)L, (r),
l =0

with

Y = ——, (-1)'P, (cosa)1

l=o x'
X —~ — i. li% (([i.l))L (x)

The derivation with respect to x yields

8 2 8Z= —x2—— +ivx —l—(l+1) L (x)~x ex 4 l

=e-"~' — Gx" (x'F"+xF'(2y+2 —x)+E[ x(y+1 —iv)-+y(y+1) —l(l+1)]],
'Y= 3

with

F=,E,(y+ 1 —i v, 2y+ 2,x),

~1 ytt
~x ~x

Taking into account Kummer's equation,

xE"+ (2y+ 2 —x)F' —(y+ 1 —i v)F = 0,
Z is written

Z —e-"~' — Gx"E[y(y+ 1) —l(l+ 1)] .a

r=t

Finally, computation of the derivative with re-
spect to y yields

Z =e " 'G(l)x'E(l)(2l+ 1),

Y = ——,g (-1)'(2l + 1)P,(cosa)e "~'G(l)x'
l~

x,E,(i+1 —iv; 2l+2; x) .

If we take for G the expression (Al), we get Eq.
(2.18), while the value of (A2) yields Eg. (2.8).
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