
PHYSICAL R E VIEW A VOLUME 12, NUMBER 2 AUGUST 1975

Rigorous method for computing photoabsorption cross sections from a basis-set expansion*
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We present a rigorous technique, which should be applicable to both atoms and molecules, for cal-
culating photoabsorption cross sections using square-integrable basis functions. The technique is based
on the method of complex coordinates as developed by Nuttall and co-workers. In contrast to some
other L' methods, the calculations converge directly at real energies. The method is illustrated by
application to the case of atomic hydrogen.

I. INTRODUCTION

A number of studies have recently appeared
which suggest that conventional bound-state tech-
niques may be successfully employed to construct
photoabsorption profiles for atoms and molecules.
For several atoms and molecules accurate photo-
ionization cross sections have been "constructed"
from the results obtained from approximate bound-
state calculations that employ a finite set of
srpiare-integrable (L') basis functions. Typically,
the data provided by such a computation consist
of a finite set of oscillator strengths and excita-
tion energies, from which photoabsorption profiles
are extracted. Several methods for performing
the extraction have been proposed. Langhoff' has
used the theory of moments to develop a Stieltjes-
imaging procedure and has obtained good results
for a number of atoms, including H, H, He, and
Li. Broad and Reinhardt' developed a procedure
based on a numerical analytic continuation of the
frequency-dependent polarizability which they
successfully applied in calculating the photoion-
ization cross section of atomic hydrogen. The
present authors and their co-workers' have also
used this procedure to compute accurate photo-
ionization cross sections for atomic helium and
molecular hydrogen. Dalgarno and co-workers4
have also developed an approximation scheme for
obtaining photoionization cross sections from a
discrete energy spectrum. In this procedure, an
imaginary width is assigned to each energy, which
is computed using a Fermi golden-rule-like for-
mula.

While the above studies certainly demonstrate
that the I' approach to photoionization can be
fruitful, the fact remains that, with the exception
of the work of Langhoff, the formal basis of vari-
ous aspects of these methods is questionable and
that, particularly in the case of numerical analytic
continuation, the computational procedures em-
ployed are somewhat arbitrary.

In this paper, we develop a rigorous method

for computing photoionization cross sections which
employs square-integrable basis functions ex-
clusively. The method converges directly at real
energies and no secondary procedure is needed to
extract the cross section. The technique is based
on the method of complex coordinates developed
by Nuttall and Cohen' for the computation of scat-
tering amplitudes in problems involving short-
range interactions. While this technique cannot
be used to compute scattering amplitudes in atomic
and molecular problems, . which involve long-
range Coulomb interactions, we will show that the
method may still be used to compute photoioniza-
tion cross sections. The theory is presented in.

Sec. II. To illustrate the method, we present
numerical results for the case of atomic hydrogen,
where the exact answer is known.

II. THEORY

Whilethe method of complex coordinates has
been known for some time in scattering theory as
a formal tool for examining the analyticity of the
S matrix, ' it has recently served as the basis for
several new computational advances. Complex-
coordinate methods are presently being used in
atomic and molecular problems to locate the posi-
tions and widths of scattering resonances, ' al-
though this method, as originally developed by
Nuttall and Cohen, ' can only be used to compute
scattering amplitudes in problems involving ex-
ponentially bounded potentials. ' We will now show
how the method applies to the calculation of photo-
ionization cross sections.

Consider the first-order equation for the wave
function of an atom or molecule in the presence
of an electric field, '

(&-&.+~)4'=v4. ,

where E, and $0 are the stationary-state (not
necessarily ground-state) energy and wave func-
tion of the target, is the photon frequency, and
p. is the component of the dipole operator in the
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direction of polarization of the (unit} electric field

p(r)=pe r,

For our purposes, it will be sufficient to consider
the negative frequency solution (j) only; In terms
of (j), the negative frequency component of the
polarizability is9

~ (~) = &s, l v I 0 &. (2)

A solution to Eq. (2) may be obtained by formally
inverting the operator H -E0 —, with the result

or, equivalently, the photoionization cross section

o(~) =4(v/c)~ Im(o. (~)).

We note that the L' methods referred to pre-
viously aQ imply some discrete approximation to
o.' (~) in Eq. (4) of the form

o& S && o

j 0

However, the pole structure of this expression
obviously does not represent the correc~ analytic
structure of o.' (~) in the continuum and conse-
quently some secondary procedure must be em-
ployed to obtain meaningful results from such an
expression.

The method of complex coordinates, however,
can be used to obtain these results directly. From
Zq. (2), we have

which may also be written as.

l&t.l ~14& I' dE~ E -E -(() ' E-E -(()-ie '

(4)

In Eq. (4), the sums and integrals go over all
optically allowed bound and continuum target states
with wave functions and energies by (j), , E, and

(j)z, E, respectively.
For frequencies above the first ionization poten-

tial of the target, the integral in Eq. (4) is com-
plex valued, with imaginary part given by

im(& (&))=vI&4.lull &I'

Thus from Im(o. (&)}we can construct the con-
tinuum oscillator strength, dg/d((),

dg =2—im(o. (~)),

Prom now on we use the symbol & to refer collec-
tively to the coordinates of all electrons.

We next perform a contour distortion in the
radial parts of the above integral and carry out the
integrations along the rotated paths defined by
g=e'~, y)0. Provided (, and g decrease suffi-
ciently rapidly at infinity, Cauchy's theorem
guarantees that the numerical value of the integral
will be unchanged. Assuming for the moment that
this is the case, we obtain the result

a)(ro';:= 8'" fg (rlt)g(r(t)( (vg)d'I,

The conjugate function (j)0 is defined by taking the
complex conjugate of all angular functions, but not
of the radial coordinates. '

Since (j)0(r) is a bound state and consequently
falls off exponentially as any &, -~, we can always
find a range of values of y )0 such that (|)0(r8}
still decreases exponentially. Furthermore, this
same condition guarantees that )j) (r8) is also
square-integrable. ()) (r8), which satisfies the
differential equation

(H(rg) —Eo —&)(I) (r8) = p(rg)$0(rg), (10)

is again solved formally by inverting the operator
(H(r 8) —E0 —~), yielding for o.'e((()),

(+) = ~ f(' (+~)p(+~)

x p(rg))j) (rg),d'r

In contrast to (8 —Eo —& —ie) ', a discrete spec-
tral representation of the operator [H(r, g) —E —(()] '
is meaningful for all real and converges as the
basis set is improved. This suggests the following
prescription for calculating the photoionization
cross section of an atom or molecule:

(a) Perform the transformation r& - r& 8 on all the
coordinates in the Hamiltonian.

(b} Form a matrix representation of the Hamil-
tonian in a discrete set of basis functions. Note
that for atomic and molecular systems, the coor-
dinate rotation is particularly trivial. The kinetic-
energy matrix elements are simply multiplied by
8*' and all other matrix elements by 8*; no new
types of matrix elements need be computed at this
point. '

(c) Compute the matrix inverse [H(rg} —E, —(()] '.
Note that H(rg) is a non-Hermitian matrix. If
real basis functions are used, it will be complex
symmetric. If solutions are desired for many
values of , it may be most expedient to diagonal-
ize H(rg) and form

H(rg) —E, —&u E, -Eo —(()
' (12)
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The complex eigenvalues E, can also be used in
connection with a resonance search. ' Note that the
conjugate vectors g, are formed by complex-
conjugating angular variables only and not radial
variables.

(d) Form ee(~) from the expression

,„fgt(re)p(re)g, (r) f.g~t(r)p(re. )g, (re)
E, -E, -~

(12)
It is only at this last stage that new types of ma-
trix elements are needed. In evaluating the dipole-
matrix elements of Eq. (12), the basis functions
referring to $0 contain complex coordinates while
the vectors g, are linear combinations (the coeffi-
cients are complex!) of unrotated basis states.
However, since the dipole-matrix elements are
simply one-body matrix elements, the necessary
modifications could be made in any standard bound-
state program with little trouble.

(e) Compute the photoionization cross section
from the expression

v(~) = 4(w/c) ~ Im(o', (~)}.

In Sec. III we summarize the results of a numeri-
cal application of this method to atomic hydrogen.

III. APPLICATION: ATOMIC HYDROGEN

We have tested the method outlined above by
applying it to the case of atomic hydrogen. The
transformation &- &e'~ was applied to the radial
hydrogen Hamiltonian for l =1 and the resulting
operator diagonalized in basis set of N functions
of theformt e ""~', n=l, . . . ,upwith~=1. 8, which
is similar to the basis set used by Broad and Rein-
hardt for this problem. ' Table I shows the con-
tinuum oscillator strengths obtained for a rotation
angle of 30' and varying numbers of basis func-
tions. We have also given the exact answer for
hydrogen which is known in closed form"

dg —", exp[-4(2& —1) ' 'tan '(2& —1)' ']
d~ ~'[1 —exp[-2w(2~ —1) ' "]j

TABLE I. Continuum oscillator strengths for atomic
hydrogen.

Nb=5 N =10 N =15 Exact

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.9461
0.4361
0.2322
0.1371
0.0870
0.0579
0.0399
0.0282

0.9568
0.4331
0.2308
0.1368
0.0874
0.0591
0.0417
0.0304

0.9568
0.4332
0.2309
0.1368
0.0875
0.0591
0.0417
0.0305

0.9569
0.4332
0.2309
0.1369
0.0875
0.0591
0.0417
0.0305

~ Frequencies and oscillator strengths are given in
atomic units.

"N refers to the number of functions used to diagonalize
the Hamiltonian. Basis functions used were of the form
Pe ~"~, n =1, . . . , N. For these calculations we chose
A. = 1.8 and a rotation angle of 30 .

The results indicate the satisfactory answers
may be obtained with as few as five basis functions.

IV. CONCLUSION
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We have outlined a rigorous method for computing
atomic and molecular photoabsorption cross sec-
tions using discrete basis functions and demon-
strated the procedure for the case of atomic hy-
drogen. The method should be of considerable
utility in application to more complex systems and
its implementation can be achieved by making
relatively minor changes to existing many-body
or configuration-interaction bound-state programs.
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