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Using hyperspherical coordinates and adiabatic expansion methods, we obtain the potential curves for the
electron-hydrogen system in 'S states. From the lowest potential curve we compute the ground-state energy of
H to be —1.0547 Ry. We also compute the elastic scattering phase shifts at low energies from the same
potential curve. Results are very good at low energies, The variations of important correlation effects as the
system expands are also investigated.

I. INTRODUCTION

The electron-hydrogen system has been of great
theoretical interest since the early quantum phys-
ics. It is the simplest quantum mechanical system
that cannot be solved exactly and thus serves as a
test for various theoretical models. Even though
its ground-state energy has been computed accu-
rately by large-scale variational methods, ' our
understanding of the two-electron dynamics is
still quite inadequate. '

This lack of understanding is mainly due to the
multidimensional nature of the two-electron wave
functions, which are not mapped as conveniently
as the radial hydrogenic wave functions. Thus,
even though variational calculations give good re-
sults, they do not represent clearly the dynamic
behavior of the two-electron motion. Another con-
ventional approa. ch starts from the independent-
partiele model by neglecting the electron-electron
correlation effect and describing the motion of
each electron in the central potential field that re-
sults from the nuclear attraction and an averaged
screening by the other electron. In this model, the
ground state of H is designated as 1s"S, implying
that each electron is described by a 1s orbital.
Unfortunately, this model does not even predict
the existence of a bound state for the H" system,
which is very diffuse and cannot be adequately rep-
resented by localized atomic orbitals 1s' 'S.

This paper presents results obtained by a method
which has been developed for the study of the
doubly excited states of helium (isoelectronic to
H ),' and which can provide both a suitable descrip-
tion of the two-electron dynamics and fairly ac-
curate quantitative results for the bound and scat-
tering problems for the e-H system. Instead of
solving the two-electron system variationally, we
solve its Schrodinger equation directly by looking
for quasiseparability of this equation and of its
wave functions in a, suitable, hyperspherical co-

ordinate system.
In this coordinate system, the distances x, and

x, of the two electrons from the nucleus are re-
placed by a hyperradius R = (r', +r22)'~' and a hyper-
angle n = arctan(r, /x, ). These two coordinates R
and n, together with the spherical angles (8„$,)
and (8„$,) of the two electrons replace the usual
independent-particle coordinates (x„,8„$,) and

(x„8„$,) of each electron. In this way, the mo-
tion of the two electrons is viewed as that of a
single particle in a six-dimensional hyperspace
under the influence of a multidimensional poten-
tial. The coordinate B represents the size of the
whole system whereas the five angles Q=(o. , 8„
$„8„$,j represent the relative positions of the
two electrons and their orientation in space ~ It
must be emphasized that the exchange part of the
potential does not appear in this picture in its usu-
al nonlocal form but is included in the multidimen-
sional local potential. Furthermore, the constraint
due to the identity of the two electrons is equivalent
to imposing at each hyperspherical surface a
boundary condition on the wave function, as the in-
terchange of two electrons amounts to changing n
into &m —n and interchanging (8„$,) with (8„$,).

In this paper, we present some quantitative re-
sults using the methods of I for the e-O'S system, '
in particular for the ground state of H and the
elastic scattering phase shift of e+ H. We will
see that this approach provides a clearer physical
interpretation of the two-electron dynamics than
the independent-particle model does, while its
quantitative results are better than those of com-
parably modest variational calculations. Further-
more, we treat the bound state of H and the elastic
scattering process by a single set of calculations.

The six-variable Schrodinger equation was re-
duced to a system of coupled differential equations
in I by expanding the wave function in the form
P(R, Q) =Z„&~(R)4~(R;Q). By neglecting the small
coupling terms among the equations, one gets a
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set of ordinary differential equations for the sepa-
rate hyperradial wave functions E (R). Each equa-
tion has an effective potential term U (R) which
can be viewed as the field experienced when the
system expands. The ground state of H is the
lowest bound state for the lowest potential curve
U, (R). The elastic-scattering phase shifts are ob-
tained by solving the potential- scattering problem
with the same potential U, (R).

Section II summarizes the method of this calcu-
lation which is explained in greater detail in I.
Section III presents the lowest potential curve for
the e-H'S system using two different representa-
tions of C, (R;0), namely, one in the adiabatic
representation which includes the mixing of s', P',
and d' components, while the other is an inter-
mediate representation that includes only s', thus
attributing orbital angular momentum l = 0 to each
electron. The ground state energy of H is ob-
tained from the lowest potential curve. In Sec. IV,
we compute the elastic scattering phase shifts from
this same potential curve. Nonadiabatic coupling
with the next higher potential curve is also investi-
gated and comparisons are made with large-scale
variational calculations.

II. METHODS OF CALCULATIONS

R'~'P(R, 0) = g F, (R)C (R; 0), (2)

where R is treated as a parameter in C (R;0) and

(C,(R;0)) forms a complete basis set at each R.
With this expansion, the Schrodinger equation (1)
is reduced to the matrix form

d ' 1/42+, +2E I —U(R)+W(R) F(R)=0, (3)

where I is the identity matrix;

P 12
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and

W „()))=2(5„(B;()),—C„(R;())

mately an eigenfunction of A'. As R increases, the
Coulomb interaction operator C becomes more im-
portant and the eigenfunctions of A' no longer pro-
vide a suitable representation. We thus expand
$(R, A) as

d2 p2 15' '~ —+2E (R"2y)=0 (1a)

where

1 sin'n cos'a. —
sln Q cos Q dQ dQ

1, 1,1 2

cos cy sin'z (lb)

is the squared grand angular momentum operator
and

2Z 2Z , 2
coso, sino. (1 —sin2n cos8»)' ' (1c)

is an effective nuclear charge. In Eq. (1b), I, and
1, are the usual orbital angular momentum opera-
tors for electron 1 and 2. In Eq. (1c), Z is the
nuclear charge. The structure of this equation is
similar to that of the radial equation of the hydro-
gen atom, except that A' and C are now noncom-
muting operators of the angular variables Q.

At small R, the behavior of Eq. (1) is dominated
by the effective centrifugal potential term —(A'
+ '4')/R'. The angular part of g is then approxi-

In atomic units, the Schrodinger equation for the
two-electron wave function ())(R, Q) (0 = (n, 8„$—„
8„(t),)) in hyperspherical coordinates is

cE
+ 4 RQ, C„RQ

In Eqs. (4) and (5), the parentheses indicate inte-
gration over Q. The evaluation of (5) is discussed
in I.

Equation (3) is completely equivalent to the
Schrodinger equation (1) without approximation so
long as (C (R;0)) forms a complete basis set at
each R. However, if the coupling term can be ne-
glected in a particular representation, Eq. (3) re-
duces to the simple ordinary differential equation

(( „(A)—,—W„„(R) +2zIF„(R)=0,

where the terms in the square brackets represents
the effective potential field for the motion along R.

In I, we have chosen two representations for
C, (R;0). Since each C, (R;A) reduces at R-0 to
an eigenfunction u, , (0) of the A' operator where

1 2
ly l2 are the usual orbital angular momentum
quantum numbers of the two electrons and m is a
quantum number for the excitation in o. , C, (R; 0)
was computed by expanding it in terms of u» „(0)
at each R. We obtain the adiabatic representation
of 4 by diagonalizing the complete matrix of Eq.
(4) in the basis u« „(0). The potential matrix U
thus obtained is diagonal and the only off-diagonal
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matrix elements in Eq. (3) are those of W. In I,
however, we also found it convenient to diagonal-
ize separate submatrices of (4) with fixed (l„l,).
The potential curves and basis functions thus ob-
tained, called v"~'2'(R;0) and QI,'i'2'(R;0) respec-
tively, correspond physically to taking into ac-
count radial correlations due to the electron-elec-
tron interaction while neglecting the angular cor-
relations due to coupling of different pairs of (f,l, ).
This representation, to be called intermediate
representation, regards (l,l, ) as good quantum
numbers and has the property that Q", &'&'(R; 0) is
separable or almost separable. 4 This separability
is essential for sorting out the behavior of the
multivariable wave functions for the complicated
doubly-excited states of helium. In this paper, we
use both the intermediate representation and the
adiabatic representation; as a matter of fact,
v~'&'2'(R) is obtained as an intermediate step in the
calculation of the adiabatic representation to avoid
diagonalizing a large matrix directly. That is, we
first obtain the potential matrix (4) in the inter-
mediate representation which has nonzero off-di-
agonal elements only between pairs of Q", ~'2' and

Q,'Il'2' with (f,l, ) O (f,l,). The adiabatic potential
curves are then obtained by diagonalizing the in-
termediate potential matrices at each R. Thus,
in the adiabatic representation, C (R;0) is ex-
pressed as

e, (R;Q) = Q a,",',(R)Q"i'2'(R;0) .
(l g l2p)

The values of the mixing coefficients al~,',(R) at
each R tell us how important is the angular cou-
pling among different pairs of (f,l,).

of basis size, there is no difficulty in achieving
good convergence at small and moderate values of
R because basis functions with large m are ex-
cluded by their associated large centrifugal poten-
tial barrier. At larger R, such basis size is in-
adequate because of the increasing importance of
Coulumb potential term. However, as detailed in
I, since the wave functions are hydrogenic at large
R, we can obtain the potential curves in this region
by asymptotic expansion of (4) using R- ~ and
n-0. The potential curves are obtained by joining
smoothly at some Ro where both methods are ade-
quate. For example, R, is about 6.5 a.u. for the
lowest potential curve of H . As a matter of fact,
if only the lowest potential curve is required, the
basis size can be further reduced, but the same
calculation served also to obtain potential curves
for doubly- excited states.

Figure 1 shows the lowest two adiabatic potential
curves U, (R) and U, (R) for the e-O'S system. No-
tice that the potential wells of U, (R) and U, (R) a,re
located at very different values of R, correspond-
ing roughly to the radius of the ground state and
the lowest doubly-excited state of H . The curve
U, (R) has a. repulsive 0.25/R' behavior at small R
and converges to the potential field of the ground
state of H at large R. In the intermediate region,
we notice a broad and shallow attractive potential
well, sufficiently strong to support a bound state,
calculated to be -1.054V Ry as indicated in Fig. 1
by dashed lines. This energy level corresponds
to the ground state energy of H whose best value
is -1.055502 Ry according to Pekeris. ' Our re-
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III. GROUND STATE OF 8

This section describes calculations for the e-H'8
system. ' This system is expected to exhibit the
largest correlation effects because both electrons
are mainly in the s orbital with antiparallel spins,
thus having greater probability of penetrating near
the nucleus simultaneously and of interacting
strongly with each other. The calculational pro-
cedure is detailed in I. Briefly, we obtain the po-
tential matrix U(R) in the intermediate representa-
tion first. This is done at each R by diagonalizing
the s, P, and d subspaces with 36, 36 and 15
basis functions p« ., p, yy and p», respectively,
with m=0, 2, 4, 6, . . . . The m values are limited
to even integers by symmetry. By obtaining the
resulting lowest 12 eigenvalues and their eigen-
vectors, we construct a 12x12 potential matrix in
the intermediate representation. The adiabatic po-
tential curves are then obtained by diagonalizing
this potential matrix at each R. With this choice

l/l
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FIG. 1. Lowest two adiabatic potential curves U&{A) and

U2{R) of e-H S system, each converges to the ground
state and the first excited state of H, respectively.
Dashed lines indicate the position of the H ground-state
level computed from U&{R).
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suit is comparable to that of an 11-parameter
Hylleraas-type calculation. ' We would like to men-
tion that our method of calculation gives an upper
bound' to the true energy. Better results can be
obtained by improving the accuracy of potential
curve U, (R) and by considering the coupling with
higher potential curves.

Usually the ground state of H" is designated as
1s"S, implying both electrons occupy the 1s orbi-
tal with opposite spin, but a Hartree-Fock calcu-
lation for this configuration fails to give a bound
state. Figure 1 shows the ground state of H to be
very diffuse, being bound by a broad and shallow
potential; its radial wave function E(R), shown in
Fig. 2, extends over a large region of R which
cannot be adequately represented by localized or-
bitals with the 1s"S designation. To examine how

good an s' representation of the ground state of
H can be, we computed the eigenvalue from Eq.
(6) with the intermediate representation vIOO'(R)

instead of U, (R). The result was -1.02617 Ry,
indicating that even an approximation with both
electrons in 3 =0 can yield a bound state for H .
The inadequacy of a Hartree-Fock 1s''S represen-
tation is thus mainly due to its lack of radial cor-
relations.

As an index of the importance of angular corre-
lation we plot in Fig. 3 the largest coefficients for
P' and d' components of Eq. (7). These mixing co-
efficients peak in the intermediate region R where
the radial correlations are also important.

IV. ELASTK - SCATTERING PHASE SHIFT

The phase shifts for 'S elastic electron hydrogen
scattering, computed from the potential curve
shown in Fig. 1, are given in Table I, column 1-ch,
together with the results of the three-state close-
coupling calculations by Burke and Schey' and of
the variational calculations by Schwartz. ' Our
phase shifts are better than those of the three-state
close-coupling calculation at low energies in spite
of our total neglect of coupling between adiabatic

0.2

I-
LIJ

O
U
Ua O. l

O
O

0.0

R ( in Bohr)

I I I

7 8 9 lO

FIG. 3. Angular mixing coefficients a(P ) and a(d )
of Eq. (7) for the ground-state channel function at vari-
ous B.

channels but they become less favorable at higher
energies.

In order to illustrate the nonadiabatic effect, we
then solved the two-channel coupled differential
equations

U, (R) —W„(R)+, + 2E E,(R)

+ W„(R)E,(R) =0,
(8)

U, (R) —W„(R)+, +2Z E,(R)

+ W„(R)E,(R) =0,
(9)

by an iterative method. " Notice that W,.&(R) con-
tains a differential operator d/dR which is different
from the one included in the close-coupling equa-
tions. Because the coupling terms W, , (R) in Eqs.
(8) and (9) are small, the phase shift converged to
within 0.001 rad in three or four iterations at most.
The phase shifts computed in the two-channel ap-
proximation are shown in column 2-ch of Table I.
Note the improvement of two-channel results es-
pecially at higher energies. However, they re-
main not as good as the three-state close-coupling
results for k &0.5. This indicates the need for
coupling with still higher channels. We did not
develop this approach further because the conver-
gence is not expected to be very fast. A better ap-

TABLE I. Elastic e-H'S scattering phase shift.

3cc 1-ch Schwartz b

F (R)

0,2-

2 5 4 5 6 7 8 9 IO

R (in Bohr)

0.1
0.2
0.3
0.4
0.5
0.6
0.7

2.491
1.974
1.596
1.302
1.092
0.93
0.82

2.513
1.983
1.568
1.242
0.989
0.784
0.618

2.521
2.023
1.659
1.380
1.142
0.928
0.622

2.553
2.067
1.696
1.415
1.202
1.041
0.930

FIG, 2, Radial wave function of the H ground state
calculated from Eq. (6).

~ Three-state close-coupling calculations, Ref. 8.
"Reference 9.
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proach in this energy region would be to depart
from the adiabatic representation of channels but
we still do not have any more suitable representa-
tion.

V. DISCUSSION

Our results indicate that an adiabatic representa-
tion in hyperspherical coordinate affords a useful
approximation to low- energy electron-hydrogen
scattering. This approach treats the scattering
and scattered electron quite symmetrically (in
view of the fact that when they are interacting,
there is no point in separating one from the other).
The lower quality of this approximation at higher
energies is understandable since the main coupling
term between adiabatic channels is velocity depen-

Both the adiabatic-hyperspherical and the close-
coupling method rely on eigenfunction expansion
but use different choices of eigenfunctions. Our
method uses a correlated basis which varies ac-

cording to the radius B of the system while the
close-coupling method uses a basis of target eigen-
functions. Intuitively, the close-coupling method
works better when the incoming particle does not
penetrate deeply into the interaction region while
our method works better when the correlation ef-
fects are important. From a practical viewpoint,
our calculations are much simpler especially
when one goes into the higher-energy region where
inelastic processes are allowed and many channels
are involved. Here the number of coupled differ-
ential equations grows quite rapidly in the close-
coupling method while in our method it grows only
as does the number of physical open channels. We
are now extending this approach to electron-impact
excitation.
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