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The method of complex basis functions proposed by Rescigno and Reinhardt is applied to the calcu-
lation of the amplitude in a model problem which can be treated analytically. It is found for an impor-
tant class of potentials, including some of infinite range and also the square well, that the method does
not provide a converging sequence of approximations. However, in some cases, approximations of rela-
tively low order might be close to the correct result. The method is also applied to 8-wave e-H elas-
tic scattering above the ionization threshold, and spurious "convergence" to the wrong result is found.
A procedure which might overcome the difficulties of the method is proposed.

INTRODUCTION

The method of complex basis functions has been
suggested' as a means of performing scattering
calculations at energies where several open chan-
nels are present. It offers the possibility of cal-
culating the amplitude for scattering from one
channel to another without the need for the expli-
cit inclusion of any of the other channels, open or
closed. An important example of a basic, non-
trivial problem where such a technique would be
very useful is electron —hydrogen-atom scattering.

Originally, complex basis functions were used
in the framework of the Fredholm method, but
the approach might just as well be applied to the
direct evaluation of scattering amplitudes. This
gives rise to the possibility of a new method for
calculating ionization aI'~&.~.udes, which so far
have proved difficult to obtain.

These possibilities indicate that a study of the
complex-basis-function method to determine its
validity for different types of potential is worth-
while. In particular, it is of interest to atomic
theorists to investigate whether or not it applies
to potentials of infinite range, and this is the main
object of this paper.

Unfortunately, our conclusions are largely nega-
tive. In important examples with long-range po-
tentials that we have studied analytically and
numerically, we find that the method does not
converge. Moreover, there are cases where the
sequence of approximations appears for a time
to be converging to the wrong answer. An incau-
tious use of numerical results could lead to in-
correct conclusions.

We suggest a modification of the complex-basis-
function method which overcomes the above dif-
ficulties, but is of unknown practical value. A
single sequence of approximations is constructed
in which the angle of rotation decreases to zero
as the number of trial functions increases. It is
shown in all cases studied that it is possible to

find a relation between the angle and the number
of trial functions that ensures that the sequence
converges to the correct answer. Practical use
of this result would probably depend on finding an
optimum choice of the angle-number relation.

MODEL PROBLEM

We can learn much about the method of complex
basis functions by applying it to a model problem
in which analyti. c results may be obtained. I.et
us consider the determination of

I =lim(f, (E+ie —H, ) 'g),
0+

where E = lP, k real, H, = —d'/dr', and the scalar
product of two functions f(r), g(r), 0& r, is de-
fined as

(f, g) = drf*(r)g(r) .

The second term of the Born series for the am-
plitude for single-particle 8 -wave scattering
could be written in this form.

To obtain an approximation to I using the method
of complex basis functions, we chose a set of
basis functions u„(r), n =0, 1, 2, . . . . The functions
u„(r) are analytic in r, satisfy u„(r*)=u„*(r), and
decrease exponentially at infinity, but are not
necessarily orthogonal. For a particular choice
of the complex parameter t=e', n&0, we define

u„"(r)=u„(tr),

f„=(f,u„" ),

g, = (u„g),
m„„=(u„,(E-II,)u- ) .

The approximation I~ to I which uses the first N
basis functions is

I„= P f„(M ')„g
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where M ' means the inverse of the N&N matrix
Mn, n, ~=0, ..., N-1.

The attraction of the method is that the matrix
M„may be written in the form

M =t '[t'E(u„, u ) —(u„, H,u„)],
from which it follows that M „cannot be singular
for n &0. Thus the singularity of the resolvent of
Ko which complicates the calculation of I has been
rendered innocuous.

We now proceed to discuss the convergence of
this method for a particular choice of basis func-
tions. After Schwartz, ' we take u„(r) to be ob-
tained from the generating function U(s, r) by

xa 1+sg u„(r)s" = U(s, r) = (1 —s) 'r exp ——
2 1 —8

and c,=0, cN=0.
To solve (11}, let us define

C(s) = g c„s",
n=0

G(s) = Pg„s"= J dr U(s, r)g(r)
n%) 0

Then (11) gives

g„s"+'
-As'C+BsC -A.(C —c,) = g„, n+1

S
ds' G(s'),

0

which may be solved to give

(13)

(6)

This means that u„(r) is a polynomial in r of de-
gree n multiplied by e '"/".

The value of I„calculated by the procedure out-
lined above will be the same as thatobtained from
the following modified approach. We use u„de-
fined by

S

C(s)=[(s —v)(s —v)] '(S-d ' ds'G(s')) .
&x

(14)

The constant A must be chosen to give c„=0. In
(14) we have used

(s —v, )(s —v, ) = s' —(B/A)s+ 1,

g u„(r}s"= U(s, r) = (1 —s) mr exp rb-1+s
1-s

(7)

so that

k —ib
k+15 '

where b= —,'ae '~. Then we set

f„=I drg„(r)f (r),
C(s) =AD(s)+E(s), (16)

Note that we have chosen the root v, so that ~v, ) &1.
The solution may be written in the form

g„= dr u„(r)g(r),
0

M = dru„(r)(E -H, )u„(r),
0

and we find

where

D(s) = P d„s"= [(s —v, )(s —v, )] ',
n=0

E(s) = Q e„s"
n=0

(17)

(9)
so that

8
= —A '[(s —v, )(s —va)] ' ds'G(s'), (16)

where

N-1
M))mcm gn s

m=0
n=0, . . . , N-1 . (10)

If we write c =(m+1)c, (10) becomes, on using
the results of Schwartz,

c„=Ad„+en .
Thus IN may be written

N-X N-$
I»=A. »Q f„d„(n+1) '+ g f„e„(n+1) ',

n=0n=0

with

(19)

(20)

-Ac„,+Bc„Ac„+,=g„/(n+ -1),

where

n=0, 1, . . . , N-1,

A=, (k +b2), B=,(k2 —b'),

&„=-s»/d» .
The quantities d„, e„, f„are independent of K,
and to study the convergence of IN we need to know

their behavior for large n. This is related to the
nature of the singularities of D(s), E(s), and E(s)
=Q„",f„s" that are nearest to the origin.
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Suppose that H(s) is an analytic function of s
typical of those encountered above, and that it has
a single singularity nearest to the origin at sp.
Then if

H(s) =Q h„s",
n=p

we may write

b„= . ds's' &""&H(s'),1
2' (22)

where F is a small circle round the origin. To
estimate the form of h„ for large n, we distort F
to F' in Fig. 1. The dominant contribution to the
integral will come from that part of F' near sp.
In evaluating (22) we may approximate H by its
behavior near s, and use the method of steepest
descent or a generalization. The results for some
representative choices of the functions f(&) and

g(r) are set out below, sometimes omitting con-
stant factors:

CONVERGENCE

With the development of this machinery we are
in a position to discuss the convergence of the
complex-basis-function method in our model for
six choices of the pair of functions f, g used to
define I. It is straightforward to deduce that I„-I
as N-~, provided that one of the functions f, g
is chosen to be g, = e ", whatever g, , i = 1, 2, 3 is
chosen for the other. Et also may be easily shown
that the sequence I„does not converge when both
f, g are chosen from g, and g, . In these cases,
however, there may be apparent convergence for
a range of values of N. By this we mean that
~I„—I„„~decreases with increasing N and the
sequence of I~ appears to be approaching a limit.

To illustrate how this apparent convergence can
come about, consider the case off=g=g, . If the
factor exp[2i(2Rbn)'~'] were not present in the ex-
pressions for A. „,f„, e„, then I„as given by (20)
would converge to

6f Va 1
Qf„e„(n+I) '
n=p

(23)

Case 1: g, (y) =e ",
G(s) = [{b—1)s + {b+1)]

g„=(n+I)(1+b) ' "(1—b)",
8„-(b —1)"(b+1) "+v,",
Z„-v'," [if /(b —I)/(b+I)J & fv, f] .

Case 2: g, (&) =1,

=0, x)R,
G(s) =b '(1+s) '(I —exp[-Rb[(1+s)/(1 —s)]))

—(Rb) ~(1 —s') 'exp(-Rb[(1 +s)/(1 —s)]]

as the first term in (20) would approach zero.
However, because of the exponential factor, (23)
does not converge and the first term in (20) does
not approach zero. For small n the exponential
factor will not begin to dominate and cause diver-
gence until N&O(a '). Thus the divergence will
not appear in calculations for small values of n
until R has a value larger than that reached in
many numerical calculations. The value to which
I„appears to converge in such a case may be
wrong, although if n is small it may be close to I.

g =n ' 'exp[2i(2Rbn)' '],
e„-n ' exp[2i(2Rbn)' ']+v "

-N '~~ v,"exp[2i(2RbN)'~']

Case 3: g, (x) = (r+1) 'sink& .
G(s) has logarithmic singularities at s = v„s = v„
and an essential singularity at s =1.

g„-v, "/n+ v, "/n+y„,
where ~yJ&n ';

e„-v, "/n + v, "/n +y„',

where (y„'( &n-';
Fig. 1. Contour I'used to write h„ in terms of H(s) and

contour ~' used to evaluate h„ for large n.
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y e results shownThis behavior is illustrated b th
in Figs. 2 and 3F'g . , where we plot sequences of val-
ues of I for~~=,~=g=g, with different values of n.
For sinn =0.1 I„appears to be converging to a
value close to the correct answer I=2.825159

this tr
—i2.081998(shown by a star) for N t 56,r up o, and

zs trend continues at least until N= 200 (not
shown in FiFig. 2). However, for sinn =0.175, ap-
parent convergence occurs at N=45 and then a
steady divergence appears. I hn eac case results
of sufficient accuracy for many practical urc ica purposes

0

In Figs. 4 and 5 we give some typical results for
the case,1'=,1'=g=g„which have a similar behav'
to the rev

e avior
previous case. (We have not calculated I

in this case. )
With t 'his background, it is interesting to con-

is ic ca culation.si er the results of a more real' t' 1

We have applied the method of complex ba ' f
tions to S-wave elastic electron —hydrogen-atom
scattering in the singlet spin state at a kinetic
energy of 1.69 Ry, which is 0.69 Ry above the
ionization threshold. We augmented a set ofa se o Hyl-

s rzal functions (using the notation of Ref. 8)

, „(r,r,r, ) = (r,' r, + r fr,')r"e

by the function

8 =r, 'e "&e'""2(1 —e "2}+(r, r,}, k'=E —1 .

-2.078-

-2.082-

-2.086-

I

2.822
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2.826
1

2.830

Fig. 3. Plot in the
for N =31-

the complex plane showing l fva ues o
-155 in the case f =g=g&, A =3, k =1 a =

sin& = 0.175. Succ
t 1t

lines.
uccessive values are joined b t '

hysraig t

The coordinates in the functions
formed b x-y '~

ions u were rions l mn trans-
y &- &e, but this was not done to the

function 0. TThe amplitude was calculated in a
manner similar to that of Ref. 3. The results

—0.134

-0.158

—2.066

-0.142

-2.086 -.

—2.106 -:
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I forN=
Fig. 2. Plot in the corn lp ex plane showing values of

z for N =31—56 in the case f=g =g2, & =3,=g2, —— , a =1,k =1
sin~ =0.1. Successive va ' ' ivalues are joined by straight
M ~

Fig. 4. Plot in thee complex plane showing values of
Iz for A =21—70 in the case f = =, k =

Successive values are joined by straight lines
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-O.I52-

significant.
nstrate that apparent con-

;for a articular value of n does novergence; or a p
has been obtained.imply ath t the correct result as
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Table I for several values oof Q andare shown in Ta e
be conver-+m+n} Ther.e appears to e c

0 01 fo the realence to within an ac yaccuracy of + .
a but the

g
litude for each value of a, upart of the amp x e

each case the re-results deaf er g
' 'fer si nificantly. In eac cas

0 34 which wassuit defers fromm the value of . , w
'

-extrapolation me o,found by the energy- p
ined b Rescigno an einsimilar value obta y

a different extrapolation procedure.using a
ld ield a value close

b tween imaginary parts
xtra olation in n wou yi

to 0.34. The differences be ween i
'ous calculations are lessfor different n and previous ca cu

m lex basis functions wasThe method of comp e ' s
ested in the context of the re-originally sugges e

lied it to theethod, ' whereas we have app ie i
W tth t ob-calculation o p . xpf am litudes. e exp

'1 r to those we have oun wilems same ar
thod. In some casesappear inr in the Fredholm me o .

'th plex basis functionsthe Fredholm mmethod with comp
alent to usingustified because it is equiva en

dh 1 method with
ed Hamil. tonian wi rea

we believe that the Fre o m

of infinite range. It should also apply to a
'th C lomb potentials in

here only one c anne i
e resume that difficulties wit e

n roblem containing potentials wx

i ' ' rt d 1 ome of short range,infinite-range part, di ' ' rt andasosom
which two orwe are working at an energy at w xcwhen we are wor '

In the method as de-more channelsls are open.
ardt' 't is necessaryed b Rescigno and Reinhar x is

ituted de ermina

hat arises in the expansion of such a e-
two-channe pro

treated as an example by Rescigno an ein
ls

J=lim Tr[(E+ie —
0

—H ' V (E +B —ie —Ho) '
V~, ] .

g~ p+

B&0. Theere V and V2i are potentials and B
method of complex asks un
J by

-1 f -1 Vl m
~mn ~i@(~a ~gi 2i ~

where

tions to the S-wave sing ete -8 scatter-arts of approximations o
= max L+ m+n).

LE I. Real and imaginary p
f otation angle n and N = maxfor dj ffering values o ro a joing am i~litude at@ = 1.3 a.u. or i

0.1 0.2 0.3 0.4

3
4
5
6
7
8

(0.394, 0.355)
(0.339, 0.452)
(0.360, 0.394)
(0.360, 0.456)
(0.351,0.426)
(0.36 5, 0.442)

(0,405, 0.393)
(0.371, 0.428)
(0.376, 0.422)
(0.372, 0.436)
(0.370, 0.441)
(0.373, 0.445)

(0.424, 0.401)
(0.384, 0.42 5)
(0.390, 0.430)
(0.386, 0.442)
(0.384, 0.447)
(0.389,0.449)

(0.449, 0.394)
(0.392, 0.443)
(0.40 7, 0.428)
(0.402, 0.453)
(0.390, 0.455)
(0.415, 0.445)
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{M,)„=(u„-",(a+a -H, )u".),
~in=(un~ Vuuy) ~

V,'P=(u, ", V„uq ) .
We have calculated J"for the case of a square-

well potential used by Rescigno and Reinhardt'
and find a result similar to that of our previous
calculations. The sequence of approximations
appears to be converging but then diverges (Fig.
6). When a potential of the form (x+1) ' was
used, no sign of convergence was found, and for
larger angles of rotation there was a rapid di-
vergence.

A calculation using complex basis functions of
the first term in the Fredholm determinant ex-
pansion Tr(G, V) is also instructive. With a square-
well potential we could not see convergence, which
indicates that the Fredholm method with complex
basis functions might not work even for one-chan-
nel scattering in this case. Presumably, the
singularity in the potential is to blame. For a
long-range potential without real singularity,
(r+1) 2, the same method gave results for
Tr(G, V) that may be very slowly converging.

The difficulties we have raised here about using
the Fredholm method with complex basis functions
to perform calculations with several open channels
appear to call into question the results of Rescigno
and Reinhardt4 on e-H elastic scattering above the
ionization threshold. However, in spite of the way
in which these authors describe their calculation,
referring to the many-channel part of Ref. 1, it
may be thought of as a one-channel calculation
using an optical potential obtained by a different
method (extrapolation), and therefore it could
well be legitimate. Indeed, it agrees with pre-
vious results. '

The main advantage of the method of complex
basis functions (when it works) ls that ln addi-
tion to the elimination of the need for open-chan-
nel descriptions, the amplitude is obtained as the
result of a single sequence of approximations. In
the alternative method of extrapolation from com-
plex energies' a double limit must be taken. It
is therefore of interest to point out that, in the
model problems we have discussed, a single
limiting procedure can be devised which gives a
sequence of approximations converging to I. In
the Appendix we sketch a proof of the result that,
if N(n) = (e/n) in(e/n), when e is a suitably chosen
constant, then I„& )

-I as n-0 for any of the six
possible forms of I discussed previously. For
the case of f=g =g„ it is possible to choose N(n)
to have the form N(n) =e/n'

It is likely that this result generalizes to cases
of more practical interest. If so, it would be

helpful to know which form of N(n) leads to the
highest rate of convergence.
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APPENDIX

I= gf '„e'„(n+1)-' .
n=0

5.80—

5.70—

5.60—

5.50—

5.40
t

t
)

I
I

t
)

I
I

l

3.28 3.30 3.32 3,34 3.36 3.38 3,40 3.42

I"ig. 6. Plot in the complex plane showing values of
J for iV =10—46 in the case E. =1.0, B=0.375, &=0.3,
a =1, with potential V2&{r) = V&&(&) =1,x~3, and V&&

——V&2

=0, r —3. The correct result is shown by a star.

We consider the expression (20) for I„and as-
sume that positive constants A, P, c may be
found such that

If. l, Ig. l-&n 'e' ",
Ie„I «A(n 8e'""+ Iv, " I) .

These properties hold for all the cases of the
model discussed above.

We may prove that a positive constant c may be
found so that, with

N(n) = (e/n)ln(e/n),

I~() -I ~

The basic elements of the proof are the follow-
ing observations, which are not difficult to verify:

(i) As n-0, f„-f„', e„-e'„ for fixed n, where
the quantities f'„, e'„are related to I by the con-
vergent series
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(ii) If e&P/c, then'. „&„&
-0 as n-0. This fo1-

lows because constants A' and c' independent of
o. may be found so that jtd„i )4'e' ""

(iii) Define

y„(o.) = (X„&„,d„+e„)1'„(n+I) ', n& N(o. )

Then as n-0, y„(o)-y„=f„'e'„(n+I) ' .
(iv) For o. &n. ', n)n', where n' and n' depend

on e, there is a constant C such that

iy„(n)| - Cn- -~'"

so that

=0, n) ~(u) Thus, provided e & P/c, the dominated convergence
theorem shows that, as a-0,

&.(-) = Zy. (-) ~

@=0
I., &=gy.( )-gy. =f .

n=0 n=0
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