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The method of complex basis functions proposed by Rescigno and Reinhardt is applied to the calcu-
lation of the amplitude in a model problem which can be treated analytically. It is found for an impor-
tant class of potentials, including some of infinite range and also the square well, that the method does
not provide a converging sequence of approximations. However, in some cases, approximations of rela-
tively low order might be close to the correct result. The method is also applied to S-wave e-H elas-
tic scattering above the ionization threshold, and spurious “convergence” to the wrong result is found.
A procedure which might overcome the difficulties of the method is proposed.

INTRODUCTION

The method of complex basis functions has been
suggested! as a means of performing scattering
calculations at energies where several open chan-
nels are present. It offers the possibility of cal-
culating the amplitude for scattering from one
channel to another without the need for the expli-
cit inclusion of any of the other channels, open or
closed. An important example of a basic, non-
trivial problem where such a technique would be
very useful is electron-hydrogen-atom scattering.

Originally, complex basis functions were used
in the framework of the Fredholm method, but
the approach might just as well be applied to the
direct evaluation of scattering amplitudes. This
gives rise to the possibility of a new method for
calculating ionization amg.iwudes, which so far
have proved difficult to obtain.

These possibilities indicate that a study of the
complex-basis-function method to determine its
validity for different types of potential is worth-
while. In particular, it is of interest to atomic
theorists to investigate whether or not it applies
to potentials of infinite range, and this is the main
object of this paper.

Unfortunately, our conclusions are largely nega-
tive. In important examples with long-range po-
tentials that we have studied analytically and
numerically, we find that the method does not
converge. Moreover, there are cases where the
sequence of approximations appears for a time
to be converging to the wrong answer. An incau-
tious use of numerical results could lead to in-
correct conclusions.

We suggest a modification of the complex-basis-
function method which overcomes the above dif-
ficulties, but is of unknown practical value. A
single sequence of approximations is constructed
in which the angle of rotation decreases to zero
as the number of trial functions increases. 1t is
shown in all cases studied that it is possible to
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find a relation between the angle and the number
of trial functions that ensures that the sequence
converges to the correct answer. Practical use
of this result would probably depend on finding an
optimum choice of the angle-number relation.

MODEL PROBLEM

We can learn much about the method of complex
basis functions by applying it to a model problem
in which analytic results may be obtained. Let
us consider the determination of

1=££rg(f,(E+ie—Ho)'1g), 1)

where E =k, kreal, H,=-d?/d"*, and the scalar
product of two functions f(¥), g(7), 0<%, is de-
fined as

o= [ " ar g . @)

The second term of the Born series for the am-
plitude for single-particle S -wave scattering
could be written in this form.

To obtain an approximation to I using the method
of complex basis functions, we chose a set of
basis functions «,(¥), #=0,1,2,.... Thefunctions
u, (v) are analytic in 7, satisfy u,(r*)=u}(r), and
decrease exponentially at infinity, but are not
necessarily orthogonal. For a particular choice
of the complex parameter t=¢e'® a>0, we define

ug(r)=u,(tr),

fa=(f,uy®), 3)
&n=(ug, 8),

M, =y, (E=Hyu,*) .

The approximation Iy to I which uses the first N
basis functions is

N-1

Iy= 2 falM ™)t @)

men=0
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where M ™ means the inverse of the NXN matrix
My ®,m=0,..., N-1,

The attraction of the method is that the matrix
M,, may be written in the form

My =t H{PE Uy, 1) = U, Hoth)] ()

from which it follows that M,, cannot be singular
for @ >0. Thus the singularity of the resolvent of
H, which complicates the calculation of I has been
rendered innocuous.

We now proceed to discuss the convergence of
this method for a particular choice of basis func-
tions. After Schwartz,? we take u,(¥) to be ob-
tained from the generating function U(s, 7) by

Z u (r)s"=U(s, r)=(1 - s)‘zrexp(— a li—s—> .
£ 2 1-s

(6)

This means that «, (7) is a polynomial in 7 of de-
gree n multiplied by e,

The value of Iy calculated by the procedure out-
lined above will be the same as thatobtained from
the following modified approach. We use %, de-
fined by

i @, (r)s"=Tls, 7)=(1 - S)'zrexp(-rb 1+s ) ’
n=0

1-s
(7)
where b =3ae~**, Then we set
7= f Ara(r)fr) ,
0
Z= [ @m0, ®)
0
My = f ara, (v)E -H)a, () ,
0
and we find
N-1 _
IN= anan s (9)
n=0
where
N=-1 -
> MunCn=8ny n=0,...,N-1. (10)
m=0

If we write ¢, =(m +1)¢,, (10) becomes, on using
the results of Schwartz,

—AC"_I +Bc, _Acn+1 =§n/(n +1),

n=0,1,...,N=-1, (11)

where

_L 2 _L 2 2
A_8b3(k2+b ), B_4b3(k -5?%),
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and c_; =0, cy=0.
To solve (11), let us define

C(s)= i: c,s", (12)
Gls)= D og,sm= [ arTis, gt (13)

Then (11) gives

As? A o~ Eps™
—As2C+BsC - (C—co)—; ]
S —_
=f ds’ G(s"),
(1]
which may be solved to give

Cls)=[(s =v,)(s - uz))"<>\ -A"fs ds'E(s')> .

(14)

The constant A must be chosen to give cy=0. In
(14) we have used

(s=v, )N s—v,)=82=(B/A)s + 1,
so that

k—-1ib

= —y-1
=y YetVi (15)

Note that we have chosen the root v, so that |v,{<1.
The solution may be written in the form

C(s)=xD(s)+E(s), (16)
where
D(s)= Z‘: d,s"=[(s —v )(s =v,)]*, (1)

E(s)= i e,s"
=0
A [(s = v)s -v)]" [ ds'G(s"), (18)
v1

so that
c,=\d,+e, . - (19)

Thus Iy may be written
N-1 N=1 _
Iy=Ay 2 Frlan+1)7 4 Ef,,e,,(nn)-l ,  (20)
n=0 n=
with
Ay=—ey/dy . (1)

The quantities d,, e,, f—,, are independent of N,
and to study the convergence of Iy we need to know
their behavior for large n. This is related to _the
nature of the singularities of D(s), E(s), and F(s)
=) faS" that are nearest to the origin.
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Suppose that H(s) is an analytic function of s
typical of those encountered above, and that it has
a single singularity nearest to the origin at s,.
Then if )

H(s)=)_ h,s",
n=0

we may write

_._1_ 7 ot=(nt1) ’
h,l—zm,frds s H(s'), (22)

where T' is a small circle round the origin. To
estimate the form of %, for large n, we distort T
to I'’ in Fig. 1. The dominant contribution to the
integral will come from that part of '’ near s,,.

In evaluating (22) we may approximate H by its
behavior near s, and use the method of steepest
descent or a generalization. The results for some
representative choices of the functions f(7) and
g(7) are set out below, sometimes omitting con-
stant factors:

d,~vi" .

Case 1: g,()=e" ,
Gs)=[(6-Ds+(+1)] 2,
Z,=m+1)1+0)2" (1 -0)",
e, ~O=-1)"(+1)" +v;" |

Ay~ (it [(0-1)/(0+1)] < (v ] .
Case 2: g,(v)=1, *<R,
:0’ V)R,

G(s)=b"2(1+s)"%(1 —exp{-Rb[(1 +s)/(1 = 5)]})

- (Rb)™(1 - s*) " exp{-Rb[(1 +s)/(1 =)} ,
Z,=n""*exp[ 2i(2Rbn)'/?] ,
e,~n"%/*exp[2i(2RbN) /2] +v;" |
Ay~ N34 y¥exp[2i(2RON)/2] |

Case 3: g,(r)=(v+1)"2sinkr .

G(s) has logarithmic singularities at s=v,, s=u,,
and an essential singularity at s=1.

E,~vi/mrvnty,
where |y, | <n7%;

e, ~vi"/n+v;"/n+y, ,
where [y;|<n™

Ay~N1,

CONVERGENCE

With the development of this machinery we are
in a position to discuss the convergence of the
complex-basis-function method in our model for
six choices of the pair of functions f, g used to
define I. It is straightforward to deduce that I,—~1I
as N-, provided that one of the functions f, g
is chosen to be g,=¢~", whatever g;, 7=1,2,3 is
chosen for the other. It also may be easily shown
that the sequence I, does not converge when both
f, & are chosen from g, and g,. In these cases,
however, there may be apparent convergence for
a range of values of N. By this we mean that
|Iy -1y, decreases with increasing N and the
sequence of I, appears to be approaching a limit,

To illustrate how this apparent convergence can
come about, consider the case of f=g=g,. If the
factor exp[2i(2Rbn)!/2] were not present in the ex-
pressions for A,, f,, e,, then I, as given by (20)
would converge to

Zm:f,,e,,(fwl)'1 23)

as the first term in (20) would approach zero.
However, because of the exponential factor, (23)
does not converge and the first term in (20) does
not approach zero. For small @ the exponential
factor will not begin to dominate and cause diver-
gence until N>O(a™?). Thus the divergence will
not appear in calculations for small values of o
until N has a value larger than that reached in
many numerical calculations. The value to which
Iy appears to converge in such a case may be
wrong, although if @ is small it may be close to I.

/N

Fig. 1. Contour I’ used to write %, in terms of H(s) and
contour I'* used to evaluate %, for large ».
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This behavior is illustrated by the results shown
in Figs. 2 and 3, where we plot sequences of val-
ues of Iy for f=g =g, with different values of «.
For sina =0.1, I, appears to be converging to a
value close to the correct answer I=2.825159
— 2,081 998 (shown by a star) for N up to 56, and
this trend continues at least until N=200 (not
shown in Fig. 2). However, for sina =0.175, ap-
parent convergence occurs at N~45 and then a
steady divergence appears. In each case results
of sufficient accuracy for many practical purposes
could be obtained.

In Figs. 4 and 5 we give some typical results for
the case f=g=g,, which have a similar behavior
to the previous case. (We have not calculated I
in this case.)

With this background, it is interesting to con-
sider the results of a more realistic calculation.
We have applied the method of complex basis func-
tions to S-wave elastic electron-hydrogen-atom
scattering in the singlet spin state at a kinetic
energy of 1.69 Ry, which is 0.69 Ry above the
ionization threshold. We augmented a set of Hyl-
leraas trial functions (using the notation of Ref. 3)

Upn(1,757) = (VL VG + 7T 775 e 0072
by the function

0=r;tee*2(1 —e™2) + (¥, = 7,), KP=E-1.

The coordinates in the functions u,,,, were trans-
formed by 7 - 7e™®, but this was not done to the
function 8. The amplitude was calculated in a
manner similar to that of Ref. 3. The results

-2.066

-2.086

-2.106

-2.126

3l

2.800 2820 2.840 2.860

Fig. 2. Plot in the complex plane showing values of
Iy for N=31-56 in the casef=g=g,, R=3,a=1,k =1,
sina =0.1. Successive values are joined by straight
lines.
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-2.078 1

—2.082 -

—~2.086 \ - -
155

2.822 2.826 2.830

Fig. 3. Plot in the complex plane showing values of
Iy for N=31-155 in the casef=g=g,, R=3,k =1, a=1,
sina =0.175. Successive values are joined by straight
lines.

21
—0.134 1
-0.138 A
—0.142 A
—=0.146 A
-0.150 —J
70

T A T T

—0.002 0.002 0.006

Fig. 4. Plot in the complex plane showing values of
Iy for N =21-70 in the casef=g=g3,#=1,a=1, sina=0.1.
Successive values are joined by straight lines.
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15

-0.132

-0.36 -

-0140 1

-0.144

PSP

—0.148
—0.152 A
—-0.156 -+

~-0.160 +

60

T T T T T T

-0.006 -0002 0002 0.006 0010

Fig. 5. Plot in the complex plane showing values of I
for N=15-60 in the casef=g=g3, k2 =1,a=1,sina=0.15.
Successive values are joined by straight lines.

are shown in Table I for several values of @ and
N=max(l +m +n). There appears to be conver-
gence to within an accuracy of +0.01 for the real
part of the amplitude for each value of a, but the
results differ significantly. In each case the re-
sult differs from the value of 0.34, which was
found by the energy-extrapolation method, and a
similar value obtained by Rescigno and Reinhardt*
using a different extrapolation procedure. Note
that extrapolation in @ would yield a value close
to 0.34. The differences between imaginary parts
for different o and previous calculations are less

significant.

These results demonstrate that apparent con-
vergence:for a particular value of o does not
imply that the correct result has been obtained.

DISCUSSION

The method of complex basis functions was
originally suggested in the context of the Fred-
holm method,! whereas we have applied it to the
calculation of amplitudes. We expect that prob-
lems similar to those we have found will also
appear in the Fredholm method. In some cases
the Fredholm method with complex basis functions
can be justified because it is equivalent to using
a rotated Hamiltonian with real basis functions.
Thus we believe that the Fredholm method with
complex basis functions will be valid for scat-
tering of a particle in an analytic potential, even
one of infinite range. It should also apply to a
many -body problem with Coulomb potentials in
the region where only one channel is open.

We presume that difficulties with the Fredholm
method using complex basis functions will appear
in any problem containing potentials with a local,
infinite-range part, and also some of short range,
when we are working at an energy at which two or
more channels are open. In the method as de-
scribed by Rescigno and Reinhardt! it is necessary
to calculate substituted determinants in order to
obtain physical scattering amplitudes. One of the
terms that arises in the expansion of such a de-
terminant for a two-channel problem such as that
treated as an example by Rescigno and Reinhardt*
is
J= gr&Tr[(E +ie —Hy) "V ,(E +B - ie - H)'V,,] .

Here V,, and V,, are potentials and B>0. The
method of complex basis functions approximates
J by

N~1
JN= Z W_l)mn VI'%(MEI)“VZ" ,

Jimn

where

TABLE 1. Real and imaginary parts of approximations to the S-wave singlet e”-H scatter-
ing amplitude at 2 = 1.3 a.u. for differing values of rotation angle @ and N = max(l + m +n).

AN 0.1 0.2

0.3 0.4

[e SIEN IR BTSN VL)

(0.394, 0.355)
(0.339, 0.452)
(0.360, 0.394)
(0.360,0.456)
(0.351, 0.426)
(0.365,0.442)

(0.405,0.393)
(0.371, 0.428)
(0.376, 0.422)
(0.372, 0.436)
(0.370, 0.441)
(0.373, 0.445)

(0.424, 0.401)
(0.384, 0.425)
(0.390, 0.430)
(0.386, 0.442)
(0.384, 0.447)
(0.389, 0.449)

(0.449, 0.394)
(0.392, 0.448)
(0.407,0.428)
(0.402,0.453)
(0.390, 0.455)
(0.415, 0.445)
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(M g)pm=uz®, (E +B ~Hyug) ,
Vid=(ug, Vieu$)
Vi = (u;, Vaitty®) .

We have calculated J¥ for the case of a square-
well potential used by Rescigno and Reinhardt!
and find a result similar to that of our previous
calculations. The sequence of approximations
appears to be converging but then diverges (Fig.
6). When a potential of the form (v +1)2 was
used, no sign of convergence was found, and for
larger angles of rotation there was a rapid di-
vergence.

A calculation using complex basis functions of
the first term in the Fredholm determinant ex-
pansion Tr(G,V) is also instructive. With a square-
well potential we could not see convergence, which
indicates that the Fredholm method with complex
basis functions might not work even for one-chan-
nel scattering in this case. Presumably, the
singularity in the potential is to blame. For a
long-range potential without real singularity,
(r+1)72, the same method gave results for
Tr(G,V) that may be very slowly converging.

The difficulties we have raised here about using
the Fredholm method with complex basis functions
to perform calculations with several open channels
appear to call into question the results of Rescigno
and Reinhardt? on e-H elastic scattering above the
ionization threshold. However, in spite of the way
in which these authors describe their calculation,
referring to the many-channel part of Ref. 1, it
may be thought of as a one-channel calculation
using an optical potential obtained by a different
method (extrapolation), and therefore it could
well be legitimate. Indeed, it agrees with pre-
vious results.®

The main advantage of the method of complex
basis functions (when it works) is that, in addi-
tion to the elimination of the need for open-chan-
nel descriptions, the amplitude is obtained as the
result of a single sequence of approximations. In
the alternative method of extrapolation from com-
plex energies® a double limit must be taken. It
is therefore of interest to point out that, in the
model problems we have discussed, a single
limiting procedure can be devised which gives a
sequence of approximations converging to 7. In
the Appendix we sketch a proof of the result that,
if N(a)=(e/a)In(e/a), when € is a suitably chosen
constant, then Iy,)—~7Ias a—0 for any of the six
possible forms of I discussed previously. For
the case of f=g=g,, it is possible to choose N(a)
to have the form N(a)=€/a?,

It is likely that this result generalizes to cases
of more practical interest. If so, it would be
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helpful to know which form of N(a) leads to the
highest rate of convergence.
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APPENDIX

We consider the expression (20) for I, and as-
sume that positive constants A, B, ¢ may be
found such that

If)‘ll ’ lgnl gAn_Beca" ’
le,| <A@m=Becm+ v ) .
These properties hold for all the cases of the
model discussed above.

We may prove that a positive constant € may be
found so that, with

N(a)=(e/a)nle/a),
IN(O() "‘I .

The basic elements of the proof are the follow-
ing observations, which are not difficult to verify:
(i) As a~0, f,~ 2 e,~ e for fixed n, where
the quantities f9, e9are related to / by the con-

vergent series

1= Foesm+1)™" .
n=0

5.80—. 46

m:: | /
5.60::

5.50:
5.4oi.‘»|n|‘1'l‘lrl

I I
328 330 3.32 334 336 338 340 342

Fig. 6. Plot in the complex plane showing values of
J¥ for N =10—46 in the case E=1.0,8=0.375, ®=0.3,
a =1, with potential Vy () =V,(#») =1, 7=3, and Vy =V},
=0,7r=3. The correct result is shown by a star.



492

(ii) If e <B/c, thenAy,y~0as a~0. This fol-
lows because constants A’ and ¢’ independent of
o may be found so that |d,| = A’e®’*",

(iii) Define

Yl@)= A yydn+ €,) i +1)71, n<N(a)
=0, n>N(a),
so that

IN((!) = 'Z;'yn(oc) .

R. T. BAUMEL, M. C. CROCKER, AND J. NUTTALL

Then as @ ~0, y,(@)=y,=f0e(n+1)" .
(iv) For a<a’, n>n’, where a’ and n’ depend
on €, there is a constant C such that

o)l < Camt=res

Thus, provided € <B3/c, the dominated convergence
theorem shows that, as a -0,

Iy =§)y"(a)» Z;y,;l )
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