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The photodetachment cross section of the negative hydrogen ion is calculated for incident photon
wavelengths in the range 1130 to 14040 A. The free-state wave function of the bound-free transition is
calculated from the simplified Kohn-Feshbach variational method. The bound-state wave function is given by
Rotenberg and Stein, who used the Hylleraas correlated wave function with a “tail function” added to it. The
agreement between the results from the length and velocity formulas in the present work is found to be
considerably better compared to earlier theoretical results. The overall agreement with experimental results
also shows some improvement. The cross section is found to rise and fall sharply in the closed-channel
resonance region at the positions of the two singlet P resonances. The shape parameter g is also calculated for

each resonance state.

I. INTRODUCTION

The photodetachment of negative hydrogen ions
is known to be one of the important causes of
stellar opacity.? One of the earlier theoretical
calculations carried out to determine the photo-
detachment cross sections of H™ was due to Chan-
drasekhar.? He derived three expressions for the
photodetachment cross section known as dipole
length, velocity, and acceleration formulas. The
three expressions will give identical results if the
bound- and free-state wave functions are exact.
However, when approximate wave functions are
used, the difference in the three results can pro-
vide a measure of consistency. Although close
agreement between the results may not be inferred
as the indication of reliable wave functions, large
differences can almost always signify inferiority
of the wave functions. This also means that the
results are less likely to be reliable.

Many theoretical calculations have been carried
out using this line of approach. For example,
Geltman® has calculated cross sections using the
70-parameter Schwartz* wave function as well as
the 20-parameter Hart-Herzberg® wave function
for the bound state of H™ together with a variation-
ally determined continuum function. Doughty et
al.’ have also investigated the process with the
Schwartz bound state and a six-state close-cou-
pling continuum function. More recently, Bell
and Kingston” have calculated the absorption cross
sections with the Schwartz bound-state function
and a polarized-orbital continuum function.® A
brief review of all the works associated with photo-
detachment of H™ is given by Risley.®

In none of the existing calculations do the results
from length and velocity formulas fall very close
to each other. For some incident wavelengths the
discrepancy is found to be as much as 30%. A
comparison with the experimental results of Smith
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and Burch!® reveals a significant difference be-
tween the theory and the experiment, especially
for larger wavelengths.

The primary aim of the present work is twofold:
first, to use improved bound- and free-state wave
functions in order to reproduce the experimental
results; second, to investigate the behavior of the
cross section at those energies where closed-chan-
nel resonances occur. This has not been attempted
in the previous calculations. In the earlier study
of e~ -H elastic scattering, the singlet P-state
wave function of H™ was accurately calculated us-
ing the simplified Kohn-Feshbach variational meth-
0d.'*"* The H~ bound-state wave function was ob-
tained by adding to the usual Hylleraas wave-func-
tion** terms which express the correct asymptotic
behavior. This wave function has been calculated
by Rotenberg and Stein.’® With a 33-parameter
bound-state wave function they obtained an H™
ground-state energy of —0.5277499 a.u. as com-
pared to —0.5277475 a.u. obtained by Schwartz
using 70 parameters. Our calculation for the cross
section gives better agreement between the results
of the length and velocity formulas as compared to
the previous results. The agreement with the ex-
periment is also found to be somewhat better. In
the closed-channel resonance region, a very steep
rise and fall in the cross section is observed at
the positions of both P resonances. The shape
parameter’® q is also calculated for each reso-
nance state.

II. WAVE FUNCTIONS AND CROSS SECTION FORMULAS

The usual theoretical description of photodetach-
ment considers a negative ion interacting with an
oscillating dipole electric field. The initial state
is the ground state of H™ ion and the final state is
a neutral hydrogen atom and a free electron. The
photodetachment cross-section formulas are de-
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rived by using time-dependent perturbation theory?!’
and have the form
0 =6.812Xx1072%(K? +21) [ ¥y | (2, +2,) | ¥ p) |? cm?®,
(1)
2
cm?,
()
Equations (1) and (2) are more commonly referred
to as the dipole length and velocity formulas, re-
spectively. ¥, and ¥, represent the bound and
free states of H™, % is the momentum (in a.u.) of
the free electron, and / is the electron affinity of
a neutral hydrogen atom (in a.u.). The wavelength
of the incident photon is given by

911.267 o
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In the elastic scattering region, the ground state
of neutral hydrogen is the only open channel. All
the excited states of hydrogen are not assessible
from the incident channel and hence they become
closed channels. If we denote the projection oper-
ator onto the open channel by P and that for the
closed channels by @, the free-state wave func-
tion can be written as

A (—3—+5Z-2>l%>
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¥p=P¥p+Q¥p, (4)
where
Py, =¥, (r,)2,;) + ¥, (r,)8,(r,) . (5)

Here ¥, is the ground state of hydrogen atom and
&, is normalized to have the asymptotic form

8,(r) == 3 cos@gcosnlj,(kr) —tarmn, (k¥)],  (6)

where 6 is the polar angle, n is the phase shift,
and j, and », are regular and irregular spherical
Bessel functions, respectively. The closed-chan-
nel wave function is taken to be

QY =Q(Z Z%(r;"r;e'ﬂne’wzllul 10)

1=0 m,n
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where « and B are nonlinear parameters to be op-
timized. The explicit forms of the operators and
the wave functions along with the computational
aspects are discussed in Refs. 12 and 13.

The bound-state wave function used in the pres-
ent work was calculated by Rotenberg and Stein'®
and has the form

V=V, +¥,, (8)
where ¥, is the Hylleraas wave function,

A
‘I/H = Ta¢f Clratra )iz Z aijh(”l +7’2)i (71 —72)“7’{2 .
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Here a;;, and C are variational parameters. In
Eq. (8), ¥, is the “tail function” which asymptot-
ically approaches the exact wave function:

-sry _ e—trz
qfr=;_ﬂ <e-ne—-y:———+1.»2). (10)

The constant A in Egs. (9) and (10) is referred to
as the “tail coefficient” by Rotenberg and Stein.!®

We have also used a simpler H™ bound-state
wave function for cross-section calculations. This
wave function includes full correlation in the angu-
lar part and has the form

Up= Ciulririe?1e7572[1100) +12),

i, 4,1

(11)
where y and 6 are nonlinear parameters optimized
to obtain the best ground-state energy value. The
reason for carrying out the calculations with this

wave function is discussed in the following section.

III. RESULTS

The closed-channel part of the continuum wave
function for the singlet P state of H™ contains four
configurations namely, sp, pd, df, and fg. In cal-
culating the dipole matrix elements with the cor-
related ground-state wave function, it was found
that the computation becomes very involved if df
and fg configurations are retained in the closed-
channel wave function. Since these configurations
make only a small contribution in the phase-shift
calculation, it would be desirable to neglect this
part of the wave function in the cross-section cal-
culation. To justify this approximation, we use
the simpler H™ bound-state wave function of Eq.
(11) and observe the change in the cross section
by gradually increasing the number of configura-
tions in the wave function of Eq. (7). The simpler
bound-state wave function used in this work con-
tains 68 linear parameters and two nonlinear pa-
rameters. The ground-state energy of H™ obtained
with this wave function has the value of —0.527 447
a.u. As expected, the agreement between length
and velocity formulas is poor with the simpler
bound-state wave function. The result is present-
ed in Table I. It is clear from this table that in
the wavelength range of interest, i.e. near 5280 A
where the cross section is normalized to compare
with the experiment and in the long-wavelength re-
gion, df and fg configurations contribute less than
1% to the cross section. It is also observed that
higher configurations become more important as
the energy of the incident photon approaches the
inelastic threshold of hydrogen. However, in the
closed-channel resonance region the closed-chan-
nel wave function we have used contains essentially
sp and pd configurations, and hence the complete
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TABLE I. The contribution to the photodetachment
cross section (in units of 10~17 ¢m?) from different con-
figurations of the wave function in Eq. (7). For the
bound state of H™ the wave function given in Eq. (11) is
used.

0y, with number of configurations in ¥

k2 @u) A @A) 1 2 3 4
0.02 12167 1.8051 1.7372 1.7433 1.7429
0.03 10734 2.7739 2.6608  2.6709  2.6703
0.05 8687 4.0654 3.8714 3.8923  3.8888
0.08 6755 4.4966  4.2243  4.2546  4.2495
0.125 5065 3.6321 3.3223  3.3593  3.3518
0.16 4241 2.8337 2.5280 2.5653 2.5577
0.49 1672 1.0169 0.7451 0.7784 0.7707
0.64 1311  0.8014 0.5206  0.5503  0.5442

continuum wave function is used for this part of
the cross-section calculation.

To investigate the convergence of cross section
with respect to the correlated bound-state wave
function, we have used three wave functions given
by Rotenberg and Stein to calculate the cross sec-
tions with both length and velocity formulas. For
the ground-state energy of H™, they have obtained
-0.527621, —-0.527173466, and —0.5277499 a.u.
with 5, 15, and 33 parameters, respectively, in
the bound-state wave function. The results of the
cross-section calculations are reported in Table
II. At those wavelengths where the cross sections
are relatively large, the three calculations differ
at most by 2% or less. This difference increases
to about 4% in the long wavelength region. We have
also checked the convergence of the result with re-

spect to P¥, by increasing the number of linear
parameters in the wave function. No appreciable
change in the result was observed.

The cross sections calculated with the 33-param-
eter H™ bound-state function using length and ve-
locity formulas are plotted as a function of inci-
dent photon wavelength in Fig. 1. The results of
the best previous calculations by Bell and King-
ston” are also included in Fig. 1 along with the ex-
perimental points of Smith and Burch.”® A com-
parison with the best results of Geltman® and with
the results of Doughty et al.® and of Bell and King-
ston” reveals that the overall agreement between
the result of length and velocity formulas in the
present work is better. More specifically, the
maximum disagreement between the two results
in the earlier calculations is over 20%, whereas
it is about 8% in this work.

The relative merit of the length formula and the
velocity formula has always been a controversial
subject in the literature.'® Since the length formu-
la weighs the region far from the nucleus and ve-
locity formula tends to emphasize the region closer
to the nucleus, the relative accuracy of the results
will largely depend on the system of interest as
well as on how the approximated wave functions
are obtained. For H™, the binding energy is small
and the system is loosely bound. Furthermore,
the inclusion of tail function in the H™ ground state
tends to make the wave function more accurate at
large distances. Hence it is conceivable that the
result of length formula in this work is more reli-
able than that of the velocity formula.

Experimentally, relative H™ photodetachment
cross sections have been measured by Smith-and

TABLE II. Calculated bhotodetachment cross sections (in units of 10717 ¢cm?) using corre-
lated bound-state wave function with (I) 5 parameters, (II) 15 parameters, (III) 33 parameters.

I II I
@A) k2 @.u.) g oy oy, oy oy, oy
14 042 0.01 1.4544 1.4606 1.5582 1.4592 1.5314 1.4077
12167 0.02 2.6882 2.7089 2.8500 2.7069 2.8096 2.6675
10734 0.03 3.3963 3.4224 3.5645 3.4142 3.5246 3.4059
9603 0.04 3.7469 3.7662 3.8947 3.7378 3.8625 3.7181
8687 0.05 3.8731 3.8864 3.9894 3.8505 3.9677 3.8564
7931 0.06 3.8686 3.8738 3.9510 3.8330 3.9400 3.8601
7296 0.07 3.7881 3.7798 3.8385 3.7322 3.8375 3.7599
6755 0.08 3.6652 3.6489 3.6873 3.6008 3.6950 3.6415
6289 0.09 3.5199 3.4966 3.5182 3.4494 3.5332 3.4999
5883 0.10 3.3645 3.3367 3.3431 3.2919 3.3640 3.3510
5065 0.125 2.9782 2.9402 2.9243 2.9036 2.9549 2.9740
4241 0.16 2.4985 2.4503 2.4275 2.4225 2.4631 2.4813
2196 0.36 1.0901 1.0812 1.0731 1.0882 1.0941 1.1454
1672 0.49 0.7470 0.7558 0.7538 0.7638 0.7690 0.8166
1311 0.64 0.5544 0.5713 0.5703 0.5771 0.5838 0.6258
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FIG. 1. Comparison of H™ photodetachment cross
sections. Solid line, length curve and dashed line, velo-
city curve in the present work; crosses, length curve
and closed circles, velocity curve obtained by Bell and
Kingston; open circles, experimental points of Smith
and Burch normalized to our length curve at 5280 A.

Burch'® with an estimated uncertainty of less than
3% assigned to each experimental measurement.
These results were put on an absolute basis by
Geltman® from the absolute integrated measure-
ments of Branscomb and Smith,*® with the value

of 3.28x 107" ¢cm? at 5280 A with an uncertainty

of about +10%. Our value of cross section at 5280
A is 3.06x 107" cm? in the length formula and is

in good agreement with the value obtained from ab-
solute measurements. It is also in good agreement
with the result of 3.01x 107*" cm? from the mo-
ment-adjusted method.?° In Fig. 1, the experi-
mental results are normalized to our length curve
at 5280 A for the purpose of comparison.

IV. CROSS SECTION AT RESONANCES

The Feshbach formalism?! has given a firm theo-
retical ground to the closed-channel resonances.
Earlier calculations have shown that there are two
resonances for the P state of H™ in the elastic
scattering region. The eigenvalues and eigenfunc-
tions of QHQ operator for 'P state of e”-H system
are calculated in Ref. 13. With the limited num-
ber of parameters in the wave function, the best
eigenvalues have been obtained with only sp and
pd configurations in the closed-channel segment
of the trial function. The drastic rise and fall in
the cross section is observed near the position
of the two resonances. For example, near the
first resonance, the cross section varies from 0
to 3.104x 107!% cm?® where the background cross
section is 0.6 x10"%” cm?®. Similarly for the sec-

. (P'¥!|H
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FIG. 2. Photodetachment cross sections of H™ near
closed-channel resonances. k% gives the momentum
squared of the outgoing electron.

ond resonance, the cross section varies from 0 to
6.59x 107 cm?®. These results are shown in Fig. 2

To study the g parameter?® which characterizes
the line profile near a closed-channel resonance,
we define

Q' = ¢, bnl (12)
and
P=1-9Q", (13)

where ¢, is the eigenfunction of QHQ operator
corresponding to eigenvalue ¢,. The total contin-
uum wave function can be written as

T U A PH 9,0+ A 6,),  (19)
where ¥ is the solution of

(E-P'HP)¥;=0 (15)
and

An = [H| P'U5)/(E - &) (16)

The first term on the right-hand side of Eq. (14)
represents the background continuum. The middle
term arises from the interaction of |¢,) with the
continuum as well as with all the other ¢,’s where
j#n. This equation can be rewritten as

de+l¢n>>/n<wngf¢n>] (17)
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or
¥, =e *?[cosy ¥} +siny ¥], (18)
where
r,/2
se—n 19
tany E-'G,,-A,,, ( )

with T, and A, being the width and shift, respec-
tively, of a resonance state. Equation (18) has
the same form as that derived by Fano except for
the trivial phase factor. With the dipole-length
operator as the transition operator for the photo-
detachment process, g can be defined as®

(¥lz) +2,[¥p)
ONCHPEATA @

If we drop the phase factor in ¥, ¥ can be written
as

= - P 21
Sin’}’ \IlF COtY \IlE ( )

Thus g becomes

_1 (Uplz,+2,|¥p)
siny (‘I’;s'zl +Zz|‘I’a>

- coty. (22)

If we write € =coty, the ratio of total cross sec-
tion to the nonresonant cross section becomes
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,<‘I’F|31+za|‘1’a>l2 (g +e€)
[(Wglz,+2,[ )7 1+ °

23)

¥, and ¥} have been calculated as described in
Ref. 13, and hence q is obtained from Eq. (22) for
each resonance state. We have calculated g at dif-
ferent energy values in the neighborhood of both
resonances. We obtain ¢ =-19.00 for the lowest

1P resonance and q =-21.00 for the second 'P res-
onance. However, the g value was found to vary
by about +0.03 in the neighborhood of the first res-
onance and by +0.15 in the neighborhood of the sec-
ond resonance.

The maxima and minima of o(e) can be found im-
mediately by differentiating Eq. (23) with respect
to €. This gives a maximum at € =1/q and a min-
imum at € =-g. Substituting this into Eq. (19),
we find that the maximum in cross section occurs
at

E=¢,+A,+T,q/2 (24)
and the minimum at
E=€n+An_rn/2q~ (25)

The maxima and minima in the photodetachment
cross section are shown in Fig. 2. Their positions
are found to be in complete agreement with the
predictions of Egs. (24) and (25).
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