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We derive quantum numbers K and T which label asymptotic potential-energy curves in e -H
scattering. Zero-order channel states are constructed group theoretically so that the dipole
interaction r&cos0~2 is diagonal in a product space of hydrogenic orbitals for 1 and spherical
harmonics for 2. K and T are analogous to the "electric quantum number" and the z compo-
nent of angular momentum in the linear Stark effect for H, and are closely related to quantum
numbers described recently for doubly excited He. Channels supporting resonances are pre-
dicted from a perturbation expansion of eigenvalues of the effective centrifugal barrier opera-
tor 2r&cos0~2+l 2 in terms of K and T. Comparison with exact H results and experiment is
excellent, and the method accounts for previously unexplained degeneracies with respect to
total parity. A rigorous result is that only channels with K & 0 can support an infinity of states
below threshold. An approximate selection rule for coupling between neighboring channels sug-
gests that decay of H resonances goes preferentially to channels such that 4K = ~1, AT =0.
Application of the method is also made to P-H scattering channels for which the zero-order
basis nearly diagonalizes the long-range centrifugal barrier.

I. INTRODUCTION

In this paper we analyze group theoretically the
long-range dipole classification of resonance chan-
nels in electron-hydrogen compound states. New

channel quantum numbers are derived which lead
to predictions of channels supporting either reso-
nances below threshold or shape resonances. The
quantum numbers are similar to those offered
earlier' ' to classify mixings of degenerate hydro-
genic configurations' and to classify energy levels
and autoionization widths of Rydberg series of
doubly excited states. ' The present results ex-
plain in detail the empirical systematics of the H

spectrum noted in the previous work. The group-
theoretic significance of the present theory is that
at the outset we attempt to classify resonance
channels rather than the individual resonances
themselves ~

The physical characterization of the H resonance
channels to which we apply the group theory is the
long- range dipole approximation. ' ' This method
has been in use for some time to interpret reso-
nances in both electron-hydrogen impact excita-
tion' ' and photoionization' cross sections. These
earlier results were treated in an empirical fash-
ion, although as we now show the problem is actual-
ly quite rich in both physical and group-theoretic
content.

The format of the paper is as follows. A general
statement of the problem and the approximations
involved appears in Sec. II. The group theory
necessary to describe the channels is offered in
Sec. III, followed by the actual derivation and a
physical interpretation of the new channel quantum
numbers in Sec. IV. We show also in this section

that there is an interesting analogy between the
present classification and the SU(3) symmetry' of
strongly interacting particles. Results of our
method, including a perturbation expansion of the
channel interactions, predictions of degeneracies
and shape resonances, and comparison with exper-
iment and other theory, appear in Sec. V.

In Sec. VI we apply the channel quantum numbers
to the related problems of positron-hydrogen and
proton-hydrogen resonances. In the latter case the
group-theoretic classification of channels de-
scribed herein is in fact a classification of the adi-
abatic molecular H,' potential-energy curves in the
region of large internuclear separation. Inclusion
of the molecular centrifugal barrier as a small
perturbation then provides a concise description
of the dynamical H,' states.

II. STATEMENT OF PROBLEM

We outline in this section a method of describing
the a,symptotic regime of doubly excited two-elec-
tron atoms which allows (Sec. III) a group-theoreti-
cal characterization of the resonance channels.
The Hamiltonian is

].
H = —2 (V, + V2) ————+ —,

~2

with values of the coupling parameter X = 1, &,

3, . . . corresponding in this system of units to the
isoelectronic series H, He, I.i', . . . . At X=O the
energy is hydrogenic:

E(A. =O) = —, (N '+n '), —

where N (=1,2, . . . ) labels the ionization threshold
and n (=N+ 1, N+ 2, . . . ) labels the Rydberg series
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of states below the Nth threshold. When A. & 0 the
doubly excited spectrum (i.e. , N~ 2) is no longer
discrete, owing to interaction of the zero-order
bound states with continuum channels of lower
thresholds, and the states correspond to physically
observable resonances. ' Neglecting exchange,
the wave functions for total orbital angular momen-
tum I and parity 7t can be expanded for x2&r, as

Ie&= Q INl, l';LMz0F(ll', z.,),

where Nl, /';LMm& is a five-coordinate channel
state representing the radial and angular coordi-
nates of electron 1 and the angular coordinates of
electron 2, with

where in the present approximation of fixed N

2~V, (z', ) = (XdLzz I,+———INd'Lzz) .
2 12 2

A group-theoretic classification of the resonance
channels in this approximation thus amounts to
finding the channel basis which minimizes the off-
diagonal V«, , and in the event of an exact symme-
try gives V«, =0 when d'4d. This problem is
somewhat simplier than that of characterizing the
exact wave functions, since only the hydrogenic
radial functions of electron 1 are involved.

Following Seaton, for large x'2 the coupling terms
to order x,2 are

I», I'; LM~& = g INlm&, li'»'&. «~n, I'm'ILM&
V«=2(&-1)~ +(NdL~ AINd»&~

V«, = (NdLv
I
A

I
Nd'Lz&z, z (d 0 d') .

(6)

I» l' «&= g INd;L~&ft(d «'»

then there is an induced transformation on the
radial coefficients:

Ie„&=g INd;L~&F(d, z,), (5a)

F(d, z, ) = Q U(d, ll')F(ll', z, ) . (6b)

Using (NdLzIH —E
I
4'„& =0, one obtains the coupled

radial equation

—,+——+u' F(d, ~,) = P V„,(r,)F(d', ~,),
d2 2 d

gt

(6)

Here INlm) is a hydrogenic target state and
(lm, l'm'ILM) is the SO(3) Clebsch-Gordan coeffi-
cient. We use the Condon- Shortley phase conven-
tion" for spherical harmonics, and the radial func-
tions are taken to behave as (-z')' near the origin.
The expansion coefficients in Eq. (2) are radial
functions for electron 2. In what follows we use a
closed- channel close- coupling approximation" to
states below the Nth threshold, in which a trun-
cated wave function I4'„& is obtained by keeping
only terms of constant N in the eigenfunction ex-
pansion Eq. (2). Thus coupling to continuum chan-
nels of lower thresholds is ignored, so that reso-
nance channels are represented as bound states.

Use of the configuz'ation cIzannel basis, INl, l';
L~&, as a starting point is arbitrary. If we define
an orthogonal transformation of channel states
with new quantum numbers denoted collectively by
the label d,

Here A. =A.,+A„with

40 = 2X'v1cos8, A. (10)

The dipole xepxesentatio~'"' of the channel states
is that basis in which the matrix (=A) of A is diag-
onal. Then for large z', (=z') Eq. (6) is uncoupled to
ol"der J'

( + ——+ k' — —~ F .(d, r) = 0, (11)dttdz' '''Y
where a,. is the eigenvalue of A for the jth channel
state in the dipole basis. When X&1 there are an
infinite number of bound-state radial solutions in
each channel j, owing to the long-range attractive
Coulomb potential. Qailitis and Damburg, using
the analysis of the x ' potential by Landau and Cif-
shitz, " noted that for H (i.e. , X=1) only resonance
channels in which a,. & —

& could support asympto-
tically an infinite number of states —and thus cor-
respond to observable resonances below threshold.
This criterion follows also from the fact that solu-
tions to Eq. (11) are bases for irreducible repre-
sentations of an SO(2, 1)-type radial algebra. " For
negative energies, k2 &0, these representations
are infinite dimensional and discrete only if a,.( 1 14

In the remainder of this paper we describe group-
theoretical properties of the operator A, and show
how they can be used to obtain quantum numbers
for the eigenvalues a, , and hence for the H chan-
nel states. These quantum numbers arise natural-
ly in the zero-order diPole basis, defined here,
in which the matrix of A, is diagonal. Qur use of
the zero-order dipole basis as a starting point
contrasts with the usual formulation of the dipole
representation in terms of the configuration basis.
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III. SO(4), XSO(4)

A. Hydrogenic basis

The states Inlm) of fixed principal quantum num-
ber n (= 1,2, . . . ) are a basis for a finite irreduci-
ble representation of an SO(4) algebra"'" gener-
ated by the orbital angular momentum l and a

vector b:

[Z„,Z,]=lb„„Z, ,

[Z„,b, ]= f g„,,b, ,

[b„,b,]= Zg„„Z, .

Here x, s, t=0, 1, 2 and b, is defined by

(12)

b, nlm) = nl+1m) (n+ l + 1)(n —l -1)(l+m+ 1)(l —m+ 1)
+ Inl —1m)

(n + l ) (n —l ) () +I ) (1 —I )

)
' ~ '

(2l+1)(2l+3) (2l —1)(2l + 1)

(13}

A dynamical representation of b is given by the
Runge-Lenz operator. " It is easily verified that
average values of r and y (—= r/x) are proportional
to b within subspaces of constant ~,

r--,'vb, t n 'b. (14)

The SO(4) algebra invariants b'+l' and 1 b have

eigenvalue s

l ~ b= 0.

Within subspaces of constant N and v, A has the
representation

A = l ', + (3XN/n) (b, b, ) .

The key result to be noted here is that in the limit
e- ~ the matrix of A in the hydrogenic configura-
tion basis is identical to that of A in the channel-

B. Representation of A with hydrogenic states

The two-electron hydrogenic configuration basis
1s

l, Zn'; LM))=Tg INZm)i Inl'm'), &lm l'm' ILM
mp m

state configuration basis. This amounts to repre-
senting the infinite-dimensional space of angular
states Ilm), l =0, 1, . . . , as the limit of a sequence
of finite-dimensional spaces Inlm), l = 0, 1, . . . ,
x —1." A physical interpretation of the procedure
is that the six-coordinate hydrogenic configuration
space reduces effectively to the five-coordinate
channel configuration basis upon adiabatically
ionizing the outer electron by letting v —and hence
the average value of x,—approach infinity. Thus
A may be investigated either directly on the chan-
nel-state basis or on the hydrogenic configuration
basis provided that in the end we let n- . We
choose the latter path since it provides means for
direct comparison with previous' ' doubly-excited-
state quantum numbers.

IV. ZERO-ORDER DIPOLE BASIS

A. Configuration-mixed hydrogenic states

For notational convenience we summarize the
properties' ' of the two-electron "doubly excited
symmetry basis. " Neglecting exchange the basis
is defined for total angular momentum I (we omit
the M quantum number) and parity 7)'

INn, KTLm) = p INZ, nZ';L)D»r~'

!

,'(N —1) —,'(n —1)——,(n —1+K+T)

D» ' = (-)'[(n+K+ T)(n+K- T)(2l+1)(2l'+1)]'~'M g,
2(N —1) 2(n —1) 2(n —1+K- T}

I

K and T are the integer quantum numbers, with
allowed values for fixed I: are related to SO(4) =SO(4),x SO(4), a.lgebra invari-

ants as follows:

T = 0, 1, . . . , min(L, N —1)

K=N-1 —T,N-3 —T, . . . , —N+3+T, —N+1+T.

B2 = (n+K}2 —1+T2 —L(L+1),
(B L) = T (n+K)',

(20)

(21)

g, allows only terms in the summation with (—)'"
= m. M~ is a normalization constant, M~ = 1 if
T =0 and M+=2' ' if T40. The quantum numbers

with L=1,+1, and B=b, —b, .
From the symmetry properties" of the 9-j sym-

bol, we obtain"
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DKTLn &( )L+TDK-& Lw (22)f t

Thus only states with tt = (-)L can have T= 0. We
use the convention that T ~ 0. Then the comple-
mentary set of states having tl = (—)L" must have
T~1.

C»llr, = (-) '[(2I + 1)(2I'+ I)]'~'

n T T 0 -T
(27)

INKTL») = P INl, l';LM)C»', , (26)

B. Infinite-dimensional-limit representation

%e show now that the zero-order dipole basis
(Sec. II C) may be obta. ined as the infinite-n limit
of the hydrogenic basis set. Starting with the
representation of A, = 2Xr, cos8» in Eq. (17),

A, = (3'/n)(b, b, )

= (3'/2n)(b', + b2 —B')

= (3XN/2n)(n' —B'+N' —2 —I ', —i,') . (23)

Substituting the eigenvalues of B' from Eq. (20)
into the last equation gives

Ao = —3'ANK+ (3XN/2n) [N —1 —K' —T2

+L(L+1)—i; —i;] . (24)

For fixed N and L the second term vanishes as
n-~, and thus

(25)

The zero-order dipole basis, denoted INKTtt),
is derived from a straightforward reduction of
Eq. (18) as n-~. The result is

Here we set a = ,'(N ——1),o. = ——,'(K~ T), and p
= 2(K- T). Symmetry properties of the 3 jsym--
bols give

C KT
( ) l+TC -KT

CKT K( )L+TCK-T

(28)

(29)

so that when E= 0 the coefficients vanish unless
E+ T is even.

C, Representation of I2

K, = (1+6, ,)'~2,

=[1—5,+lt(-) 6„,]' '.
(30)

For notational clarity we drop the labels N, L, and
lt and use the double notation IKT(np)), where o.
and P are the equivalent quantum numbers defined
following Eq. (27). Then

Matrix elements of A, = l ', can be derived in a
straightforward manner, and we display here only
the final result. A, does not couple channel states
having different values of N. Normalization factors
are defined as follows:

A, I
K, T (ol, p)) =

I K, T (o, p)) [I (I.+ 1) —2 T' + 2a(a + 1)+ 2 n p]

—IK- 2, T(l2+1, P —1))[(a—o.)(a+ n+1)(a+P)(a —P+ I)]'~'

—IK+2, T(o. —1,P+1))[(a+n)(a —n +I)( a—P)(a+tI+I)]'i'

+ IK+1, T+1(ol —1,P))[(I —T)(I + 7+1)(a+o)(a —o. + I)]'~'Kr

—
I
K —1, T+ 1(n, p- l))[(L —T)(I.+ T+ 1)(a+p)(a —p+ 1)]'~'K r

—
I
K+ 1,T —l(ol, P+ 1))[(L+T)(L —T+ 1)(a —P)(a+ P+ I)]'~ tttr

+ IK 1,T —1(el+I, p)-)[(L+T)(I.—T+1)(a —o)(a+ n+1)]'~'tvr.

D. Analogy to SU(3) symmetry of strong nuclear

interactions

A graphical representation of the allowed values
of K and T channels having parity lt = (—)L appears
in Fig. 1 for thresholds N=1, 2, 3, and 4. A sim-
ilar diagram for channels having tl = (-)L" appears
in Fig. 2. Each lattice point represents a channel
state in the zero-order dipole basis, and is the
exact solution to the dipole problem in the non-
physical limit of large coupling (i.e. , X-+~).
The allowed values of L for each K, T channel

are L= T, T+1, T+2, . . . .
For each N we need consider in what follows

only channels having lt = (—)L. This is valid because
there exists an isomorphic mapping from the N, K,
T, L, tt= (-)L" channels to the N 1, K, T —1, -
I. —1, lt = (-)L" channels, as comparison of Figs.
1 and 2 readily verifies. For instance, the N= 2,
P' channel corresponds to the N = 1, S' channel. In
this particular case the channels can support sta-
tionary states, (2P') 'P' and (1s') 'S', respective-
ly," since there are no lower threshold continuum
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K P- K P- K%- ~

+2-

FIG. 1. Values of K and T quantum numbers labeling
resonance channels of H -like systems having parity
{—)~. The lines connecting the channel lattice points rep-
resent interactions between channels as specified in
Eq. {31).

T
2 3

T
2

KO- & K O- K=O- O

+2- i N=3

FIG. 2. Values of K and T quantum numbers labeling
resonance channels of H -like systems having parity
{-) +~. {Cf.Fig. 1.)

channel, s of the same symmetry.
When X is finite there are interchannel couplings

due to / ,'. These interactions are "weak" for X&1
and low N. They are represented in Figs. 1 and 2

as lines connecting the channel lattice points.
There is an interesting similarity between these
representations of the atomic resonance channels
and the SU(3) symmetry of strong nuclear interac-
tions. For instance our representation of the N= 4
channels is identical to that used by Gell-Mann"
to predict the existence" of the 0 particle in the
2' baryon supe rmultiplet.

This connection is made only for illustrative
purposes, and is not intended te suggest a physical
relationship between the two problems. Indeed,
the electron-hydrogen scattering channels have a
different physical origin than the nuclear SU(3).
For instance, while our quantum numbers K/2
and -T are analogous to the third component of the
nuclear isotopic spin and "strangeness, " respec-
tively, in labeling each "supermultiplet" of reso-
nance channels, there is in fact no physical con-
nection to be made. A description of the precise
origin of the quantum numbers K and T indepen-
dent of SO(4), xSO(4), appears in Sec. IVE.

E, Physical interpretation of K and T

A conceptual difficulty of the hydrogenic doubly
excited symmetry basis is that there is no simple
physical interpretation of the quantum numbers

x[1+w(-)'"'] ~.
2

(32)

A

Here 0 represents the four angular coordinates
and 'JJ(l/', L) is a bipolar harmonic. Note that T
does not depend on radial coordinates, and from
the Wigner-Eckart theorem matrix elements of
cos6 y2 between states vanish unless 4l = + 1 and
4T = 0. This selection rule has importance in the
full zero-order basis, where in general
(N'K'T'Lw ~t', cos8» ~NKTLw) vanishes unless T'= T.
No similar result holds for K. We emphasize that
these interpretations of K and T are valid only in
the zero-order dipole basis, but do offer some in-
sight to the understanding of K and T in the hydro-
genic basis.

The preceding results indicate clearly the role of
SO(4) in the classification of zero-order dipole
states. K and T are quantum numbers labeling ir-
reducible representations of a new SO(4) algebra
described here. The algebra generators are 1' and
b', defined as the projections of 1, and by onto
axes of an internal coordinate frame in which x,
is the principal axis. The generators commute
with L, but [n, (1,'r)] &0, so that the full rotation-

K and T individually ~ The inseparability of the
quantum numbers is evident in the SO(4) algebra
invariants in Eqs. (20) and (21), and results from
the coupled motions of the two electrons. This
contrasts strongly with the single configuration
basis in which the electrons move independently,
with /, and l, diagonal.

In the zero-order dipole basis K and T do have
a direct physical interpretation as a result of the
uncoupling of the radial motions of the two elec-
trons. From Eq. (25) we see that K is proportional
to the average value of r] cos8]2 and thus de-
scribes a degenerate Stark- effect mixing with re-
spect to the spatial orientation of the outer elec-
tron. The interpretation of T follows upon taking
the n-~ limit of Eq. (21), the result being that
the square of the matrix of I 'r, is diagonal, with

eigenvalues T'. The average motions of 1, and x,
are orthogonal, and thus T describes the magnitude
of the overlap 1, x, . Note for fixed N, K, and I
that states having the larger values of T will have
smaller centrifugal barriers to inward radial mo-
tion of the outer electron owing to a concentration
of angular momentum in the motion of the inner
electron.

Inspection of Eqs. (26) and (27) illustrates the
interpretation of K and T as Stark-effect quantum
numbers. The states ~NKTLm) are linear combi-
nations of functions R»(x, )4(ITLw, 0), with
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inversion group must be considered. K and T ap-
pear naturally in this description as quantum num-
bers for the SU(2)xSU(2) representation of the
new SO(4). In addition, matrix elements of I', ap-
pearing in Eq. (31) are a direct result of the Wig-
ner-Eckart theorem for SO(4).

V. EIGENVALUES OF A AND THE PREDICTION OF 8
RESONANCES

m~A, n, = —A„(k =1,2), (33)

perturbation coefficients of odd powers of X vanish.
Convergence of the perturbation expansion is as-
sured because for each N, L the channel basis is
finite-dimensional.

We offer here a perturbation expansion of the a(KTX)
in the zero-order dipole basis —in which A, is
diagonal —with K and T representing the zero-or-
der quantum numbers. From Eq. (25) it follows
that a natural parameter for the expansion is g
= (3XN) ', with

A = —Zg-'+A„ (34)

A. General properties and perturbation expansion of dipole

eigenvalues

In this section we use the notations A(X) and

a(KTX) to indicate the X dependence of the matrix
of A and its eigenvalues in subspaces of constant
N, L, and m. The eigenvalues are even functions
of X about X = 0. This follows from a perturbation
treatment of A(X) in the configuration basis, where

Ay is diagonal . The conf iguration states have the
one-electron parities, w, and m„diagonal. Since
A, anticommutes with either m] or 7T2,

states. As a continuous function of X each zero-
order state having K, T quantum numbers at A.

=+~ correlates with, and is degenerate with, a
zero-order state at X = —~ having quantum num-
bers -K, T. This implies an "avoided crossing"
interaction of the states having +K, T symmetrical
about X = 0. In addition, the expansion coefficients
satisfy

a~( KT)-= ( )""a-~(i'CT), (37)

—(K/12ÃX) [8L(L+1)+N' —1 —K' —15T']

0 A.
2 (38)+ ( ).

Note that this expression is independent of the
total parity. Neglecting higher-order terms, Eq.
(38) gives a good estimate of the eigenvalues of
A in the dipole basis, provided that X is not too
small and N is not too large. Exceptions may oc-
cur when K= 0, owing to the vanishing of terms
odd in X.

B. Comparison with exact W= 2 results

The N = 2 resonance channels provide an exactly
solvable spectrum for comparison with (38). The
eigenvalues of A for this threshold have been dis-
cussed in a somewhat different form by Seaton. ~

Using the matrix of A in Eq. (31) we obtain the
following:

so that a, (0, T) vanishes if 0 is even.
Using standard formulas" we have evaluated the

perturbation coefficients to second order, the re-
sult being'

a(KTX) = —3NAA+ L (L+ 1) + Q~N2 —1 —K2 —3T2)

a(KTZ) = r)-'g a,(KT)q'.
k=o

(35)
a(KTX) =L(L+1)+1—T'

—sgn(g)K[4L (L+ 1)+ 1 + 36g2]'~2 (39)

The zero-order coefficient is -E, so that de-
generate perturbation theory must be used to cal-
culate eigenvalues for states having the same K
but different T. The zero-order dipole basis is
the correct starting point for the degenerate per-
turbation theory since the interaction matrix A, is
diagonal in- subspaces of constant K.

Using Eq. (33) we see that A(-A. ) =m,A(X)w, . Thus
if C (KTA.) is an eigenstate of A(A) having eigenvalue
a(KTX) and corresponding to the zero-order state
~NKTLw) at X = ~, then v, C (KTX) is an eigenstate
of A(-X) having the same energy a(KTA). This is
a restatement of the fact that the eigenvalues of
A(X) a,re even functions of X. From Eq. (28) we
see that

(36)

Thus eigenstates of A(-X) can be obtained in the
zero-order basis by letting K- —K in the 4 (KT)

TABLE I. Eigenvalues of the dipole operator A for
R =2 resonance channels with K =+1, T =0. The exact
values are from Eq. {39)and the second-order pertur-
bation values from Eq. {38).

Eigenvalue of A
Second-order

perturbation theoryExact

Se
jPO

De
~O

-5.0828
-3.7082
—0.8102

3.7805

-5.0833
-3.7500
-1.0833

2.9167

There is no X dependence in the K= 0 channel, and
the same eigenvalue [=L(L+1)]is obtained for both
the L' and I ' states.

A comparison of the exact eigenvalues with the
second-order perturbation values appears in Table
I for K=+1, at H (1=1). The agreement is best



RESONANCE-CHANNEL QUANTUM NUMBERS IN. . .

for I =0, but gets worse as L increases. Since
a(+ 1,0) & ——,

' only for I —2, these are the only
channels which can support an infinite number of
states. The K= 0 and K= —1 channels have a(KT)
~ 0. It is important that second-order contribu-
tions to a(KTX) must be included in order to pre-
dict correctly the allowed resonance channels.
To first order only, the K=+1 eigenvalues are
-5, -3, +1, and+7 for I =0, 1,2, and 3 respec-
tively.

C. Comparison with exact dipole eigenvalues for N =3, 4

Eigenvalues of A(X) were obtained for N= 3, 4

by numerical diagonalization. Examples of these
results appear in Fig.3 for the N= 3 D channels
(I = 2) to illustrate features of the A. dependence of
eigenvalues described earlier in this section. In
general as I. increases the parabolic curvature
near X = 0 extends more toward X = 1, indicating
that the second-order perturbation formula will be
most accurate at H for small L.

The exact and second-order a(K, T) eigenvalues of
the H resonance dipole channels for N= 3, 4 ap-
pear in Tables II and III, respectively. The per-
turbation formula gives a good approximation to
the eigenvalues and for N= 3 predicts correctly
each of the channels which can support an infinite
number of states. For N =4 the formula fails to
predict the very weakly bound K=1, T=2, I =3
channel, and incorrectly predicts a resonance for
the K=3, T=0, I.= 7 channel (not shown in Table
III). In general, however, the second-order per-
turbation formula gives good results for the physi-
cally important S, I', and D channels, and should
be applicable to higher-N thresholds.

TABLE II. Dipole matrix A eigenvalues for N =3 H

channels having I. ~ 4, parity equal to (-)~. Values (t)
from perturbation theory through second order are given
for comparison with exact eigenvalues (c).

I, (2, 0)
(z, r)
(0, 2) (0, 0) (-1, 1) (-2, 0)

S c -16.199
t -16.222

3.951
4.000

20.248
20.222

P c -14.897 -5.220
t —15.111 -5.222

5.602 13.220 23.296
6.000 13.222 23.111

D. Dipole degeneracies

An interesting feature of the exact eigenvalues
a(KTX) is that for fixed N, K, T, and I the
eigenvalues are independent of the tota/ parity.
Thus the long-range potential describing each chan-
nel state having m = (-)z" is degenerate with that
of the corresponding K, T channel state having 7T

= (-)z. In Tables III and IV the eigenvalues for
w = (—)

"a.re obtained by restricting T~ 1, while
all the channels are in the m= (-)z spectrum. To
illustrate the difference between the degenerate
states, the eigenvector of the N=3, K=1, T=1,
I =1 channel in the zero-order basis is for odd

pent 2'
20)+1.000

I
ll) —0.285

I
oo&, 0.085 I- »&

—o.o28
I

—2o&,

while for even parity it is

1.000
I
11)+ 0.110

I
-11) .

D c —12.249 -2.300 4.365 9.063 17.935 29.186
t -12.889 -2.111 4.000 10.000 18.111 28.889

c -8171 2361 10701 14503 24938 37668
t -9.556 2.556 10.000 16.000 25.444 37.556

G c -2.560 8.857 18.974 22.012 34.169 48.548
t -5.111 8.778 18.000 24.000 35.222 49.111

4J

&8-
4J

tLI

(0,0) (0,0)

(0,2) (0,2)

(&,t) ( ~,~) Both channel states have the same eigenvalue,
a(ll) = —5.220, even though the zero-order

I
ll)

and
I
-11) states appear with different relative

weights in the even- and odd-parity states.

E. Comparison with experiment and with regularities in

calculated spectra

0.0

FIG. 3. Eigenvalue spectrum of A.{~) for the N=3
threshold channels having I. =2. (K,T) denotes the
exact zero-order dipole basis quantum numbers in the
infinite-coupling limit (i.e. , ~ =+).

The dipole representation has been used previ-
ously for describing long-range properties of the
H resonance channels. '~" However, the new

channel quantum numbers K and T provide a means
for classifying the resonances to a greater extent.
A key result of the present classification is that
K and T can be obtained in the infinite-dimensional-
limit SO(4), && SO(4).„representation of the hydrogen-
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TABLE III. Dipole matrix A eigenvalues for N =4 H channels having L —6, parity equal
to {-)L. Values (t) from perburbation theory through second order are given for comparison
with exact eigenvalues (c).

(3, 0) (2, 1) (1, 2) O, o)

(Jf. , Z )

(0, 3) (0, 1) (-1,2) (-1,0) (-2, 1) (-3, 0)

S c -33.32
t -33.37

P c -32.05 -18.46
t -32.37 -18.50

-5.34
-5.29

-3.86
-3.62

7.92
8.00

19.21
19.21

21.10
21.62

30.54
30.50

39.45
39.37

42.81
42.37

D c -29.48 -15.72 -4.84 -0.86
t -30.37 —15.83 —5.04 —0.29

11.25 19.49 25.03
12.00 19.04 26.29

35.82
35.83

49.31
48.37

F c -25.58 -11.53 -0.34
t -27.37 —11.83 -0.04

3.77
4.71

7.10 16.54 26.62 31.16
6.00 18.00 26.04 33.29

43.62
43.83

58.65
57.37

G c —20.29 -5.77
t -23.37 -6.50

6.22
6.62

10.12
11.37

15.95
14.00

23.86
26.00

35.88
35.37

39.57
42.62

53.86
54.50

70.60
69.37

H c -13.53
t -18.37

1.63
0.17

14.77
14.96

18.30
19.71

26.64
24.00

33.27
36.00

47.25
47.04

50.25
54.29

66.44
67.83

84.97
84.37

I c
t

-5.23
—12.37

10,77
8.17

25.28
24.96

28.39
29.71

39.19
36.00

44.77
48.00

60.71
61.04

63.18
68.29

81.29 101.66
83.83 102.37

ic configuration basis. This establishes a corre-
spondence between the previous' ' classification of
H states with the hydrogenic basis set and the pre-
sent zero- order dipole-basis classification, It
was noted in the earlier work that as A, was varied
continuously from 0 to 1, only channels having
K&0 remained below threshold at H . In the pres-
ent description this selection rule is due primarily
to the zero-order dipole operator A„originating
from 1/x», with eigenvalues Ao- —3NK at X= 1.
These zero-order eigenvalues are lower bounds to

the exact eigenvalues of A in the dipole representa-
A

tion, since the perturbation A, =l, is positive.
Thus it is in general possible only for H channels
having K&0 to support an infinite number of states
below threshold.

The remaining regularities of the H resonance
spectrum below threshold are described qualita-
tively by the a(KT) expansion to first order;

A- —3NK+L(L+1)+~(N —i —K' —3T2) . (40)

Note for instance that with fixed N, E, and I, the

TABLE IU. H resonance channels below the N =2, 3, 4 ionization thresholds as predicted in
the dipole approximation. E and T are the group-theoretical channel quantum numbers. Hes-
onances actually identified by experiment or theoretical calculation are listed for comparison.

Predicted ~

Threshold Parity
resonance
channels

Identif ied
resonances b

N=4

(—)
(-)L

)L+ i

(1, 0)

(2, 0)
0, 1)
(1, 1)

(3, 0)
(2, 1)
(1, 2)
(1, 0)
(2, 1)
(1, 2)

S,P,D,F, G

P D
P, D

S,P,D,F, G, H, I
P, D,F, G

D,F
S,P,D
P, D,F, G

D

i 3g f 3P fD

i,3S f,3P i,3D f,3F
f, 3P 3D

f~3$ f,3jP fy3D

f,3P f, 3D

f,3D
i,3S i,3P
i,3P i,3D
f,3D

Using the dipole approximation and exact eigenvalues of A.
Tabulated data including the E, T classification appears in Hefs. 1 and 3. For N =4 data

are available only for I ~ 2.
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channels having the larger values of T will be more
attractive.

A list of K, T, L channels in which H states
have been found below the N = 2, 3, and 4 thresh-
olds appears in Table IV for comparison with the
predicted resonance channels in the dipole approx-
imation. Note that the existence of predicted reso-
nances below threshold in the X= 2 (1,0) 'D', the
N=3 (1,1)'D', and the N=4 (1,0)'D' channels has
not yet been established.

F. Shape resonances

Although only H channels having eigenvalues of
A less than -& can support an infinite number of
states, it is possible for the remaining channels to
support a finite number of states (usually only one)
if the effective nuclear attraction in regions of
configuration space where x, =x, is large enough.
The dominant correlation effect in this region is
the angular correlation of nearly degenerate con-
figurations due to 1'». Since the zero order d-i-

pole basis diagonalizes the dipole term in a Le-
gendre expansion of 1jr» for large r„we expect
that the K= 0 channel will have the most attractive
short-range potential of the H channels with K~ 0.
This is consistent with the existing' ' interpreta-
tion of hydrogenic configuration mixings.

It is possible for the K= 0 channels to support
states below threshold, as in the case of the
(Is') 'S' ground state and the (2P') 'P' doubly ex-
cited stationary state. More important, however,
is that the present classification scheme verifies
the assertion' that K= 0 channels are those most
likely to support resonances just above threshold,
provided that L is not too large. For K~2 these
states are diffuse, and resonance energies for each
N, L, K, T channel will be independent of "short-
range" quantum numbers such as exchange and, as
we have found in the present paper, parity.

Estimates of possible shape resonance energies
have been made' using linear variational wave func-
tions constructed from a finite hydrogenic basis.
This amounts to approximating the E(lf', r) radial
functions in Eq. (2) with a linear combination of
hydrogenic radial functions R„,, (r), n =N, N
+ 1 no Therefore the calculated energies
represent estimates of the shape resonance, as is
well known from the stabilization method. ~' As
n, -~, the energies would approach threshold
from above.

We reproduce in Table V several of the possible
L =1 shape resonances to illustrate the insensitivi-
ty of the calculated energies to spin and parity dif-
ferences. The 'P' resonance at 10.222 eV is well
known and has been found' to dominate the photo-
ionization cross section just above threshold.
This is to be expected upon application of the

TABLE V. Predicted L =1 channel H shape reso-
nances from Ref. 3, illustrating the insensitivity of the
calculated energies to total spin and parity.

Threshold 2$+ig n Energy

N=4

fp 0

3P0

3P0
fpo

3pe
~po

ape
3p0

(O, 1)
(0, 1)

(O, 1)
(O, 1)

(0, 1)
(0, 1)
(O, 1)
(O, 1)

10.222
10.223

12.122
12.124

12.771
12.773
12.787
12.787

' In eV above the ground state of H.

(K, T) = (N —2, 1) "selection rule" noted' for dipole
excitation of He(X = 0.5) from the ground state.
Extension of the rule to higher H threshold pre-
dicts in all cases that the strongest excitation
channel will lie below threshold (i.e., K&0) in con-
trast to N= 2 where K= 0. If indeed this approxi-
mate selection rule is applicable in H", then the
predicted 'P' shape resonances for N ~ 3 should
not contribute significantly to the photoionization
cross section above threshold.

It is possible that shape resonances associated
with the more repulsive E &0 channels may be re-
sponsible for unexplained structure in the experi-
mental" electron impa«excitation cross section
of H above the Ã=2 and %=3 thresholds.

K» L —N+1,

~( )s+ r —1

(41a.)

(41b)

For example, we see from Table II that the Ã=3
'P' channel with K =2, T =0 is more attractive than
the K=1, T=1 channel at long range and we might

G. Inclusion of exchange and parity effects

The eigenvalues of A are essential to the applica-
tion of energy-]eve]. spacing formulas' """"for
the states within each channel. Numerical values
of the energy-level ratio for H were reported by
Burke. '" These formulas cannot, however, pre-
dict which channel will support the lowest energy
resonance since they do not include exchange ef-
fects. Exchange may be handled by using the hy-
drogenic doubly excited symmetry basis to approx-
imate the configuration mixings when r, =r, .' Each
Rydberg series of states n =~, N+1, . . . , at X =0
then correlates with an infinite series of states be-
low threshold in H provided that K and L meet the
criteria outlined in the preceding sections. Using
the properties of the valence states (n =A) in the
earlier work, we note here" that the only chan-
nels supporting valence states are those with
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expect that the lowest energy state lies in the K =2
channel. Inclusion of exchange considerations via
(4lb) shows, however, that this state is not al-
lowed (by the requirement of antisymmetry),
whereas the K=-1 channel can support a valence
state. In fact the lowest-energy 'P' states of each
channel were found' to lie at 11.92 (K = 1) and 12.01
eV (K=2). As expected from (41b) the situation is
reversed for the Ã=3 'P' states, with states at
11.76 eV (K=2) and 12.07 eV (K= 1).

In general the energy-level spacing formulas
are not applicable to relative positions of valence-
type (n=N) and excited (n& N) states. This ex-
plains why the N=2 '$' and 'P' series predicted
by Temkin and Walker" tend to be lower in energy
than the calculated values.

Condition (41b) for valence states includes ex-
plicitly the parity of the channel. Since the H

states are diffuse, we expect that there may occur
near degeneracies between states having the same
N, K, T, and J, but different parity and spin.
This spin dependence arises because of the differ-
ent exchange properties of states with w =(-)~ and

(-) ". Examples were cited in Table V for pre-
dicted shape resonances, but analysis of the cal-
culated' energies shows that degeneracies also
occur for channels below threshold. For instance
the N= 2 'P' (K = 1, T = 1) and 'P' (K = 1, T = 1) states
are found at 11.923 and 11.917 eV, respectively.
Each state is a valence state, n. =3. The first ex-
cited states (n =4) in these channels are also near-
ly degenerate, occurring at 12.088 and 12.087 ev'

for odd and even parity, respectively. Similar re-
sults are found in other channels for N=3 and 4.
It appears then that the predicted parity channel
degeneracies for eigenvalues of A. account for
these previously unexplained energy degener acies.

H. Interthreshold couplings

We have neglected the effects of NcN' couplings
in our classification of resonance channels, pri-
marily because they introduce no essential infor-
mation to the labeling of the asymptotic region of
the channels. We note here that in the zero-order
dipole basis, contributions to couplings in the re-
gion r, » r, due to the dipole term r, cos8» of 1/r»
vanish if the coupling is between states having dif-
ferent values of T (see Sec. IVE). While the pres-
ent group theory does not provide similar exact
selection rules for the full wave function, it is pos-
sible to get aPPxoximate results using physical con-
siderations similar to those employed for He. '
First we note that while A and T were derived here
for the long-range interaction, they reflect angular
correlations fundamental to the full six-coordinate
Hamiltonian, as evidenced by the strong K, T clas-

sifications of H states found in the earlier work.
Nonradiative decay of the closed-channel reso-
nances to the (lskL) continuum is determined
mainly by the properties of the excited state in the
region r„r,=0, but autoionization to higher-N
threshold continuum channels is more dependent
on the relative configuration mixings of the initial
and final channels, since both states will have
small amplitudes near the nucleus. This effect
was noted for He, and should be even more pro-
nounced in H, The situation is simplified in H

since we need consider decay only from the chan-
nels with K&0.

We expect from our preceding remarks concern-
ing the conservation of T that the strongest transi-
tions between excited threshold channels will be
those for which AT =0. In addition, the spherical
symmetry of 1/x» allows that the strongest tran-
sitions will be those between states having similar
angular and radial correlation of the electrons.
We therefore do not expect to see large changes
in & for strong decay, so that changes in kinetic
energy occur in the relative radial motions of the
electrons. A measure of the exchange properties
of the states is given by the quantity w(-)~'r=—&u

in Eq. (41b). The strongest transitions will leave
& unchanged. Since g, L,, and S are conserved in
Coulomb autoionization this implies that (-) is
partially conserved. By virtue of footnote 20, this
suggests that (-) ' is also conserved to some de-
gree. Since the strongest interaction is between
channels having AN= -1, K will change by an odd-
integer value.

Together these considerations lead to the follow-
ing prediction for an approximate selection rule
determining the preferred decay channel for an H
resonance state:

(N& K, T& L& v& S)—(N 1,K+ 1, T, L& v—
& S), (42)

representing the transition from a bound channel
state to a continuum channel state. The selection
rule is not exact, and breakdowns will most likely
occur either through the secondary modes AT =0,
b,&=+3 and AT =1,hg =+2, depending upon the lim-
its of & and T for the thresholds involved, or for
LÃ = -2 transitions for which AT =0, AK = 0, +2.

Analysis of the H decay modes for N=3 to ¹2
transitions as calculated by Macek and Burke" '

in the dipole representation shows in fact that the
strongest transitions are those in which hT =0,
6&=-l. A more stringent test of our selection
rule awaits similar calculations for the N=4 res-
onance decay.

While we stressed that (42) may not be applicable
to decay from the 57=2 closed-channel resonance
states it does in fact give the correct result since
there is on', y one possible decay mode, namely,
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@=2,&=1,T =0-N=1, K=O, T =0 for states with
p = (-)~. It is also interesting that application of
(42) to the 'P' shape resonance (%=2, K =0, T = 1)
at 10.222 eV predicts a forbidden transition to the
V=1 channel, suggesting (correctly) that the dom-
inant decay mode is to the M=2 continuum channel.

VI. e'-H AND p-H RESONANCE CHANNELS

While our primary concern has been the classifi-
cation of electron-hydrogen compound states, the
matrix A(X) appears in other problems where a
long-range dipole classification is relevant. "
Most notable are proton-hydrogen (X =918) and
positron-hydrogen (A. =-1) scattering. In the lat-
ter case the classification of channels may be ob-
tained from the electron-hydrogen results by let-
ting R'- -g. Calculations' for S' and I" channels
below the N=2 threshold predict a resonance spec-
trum similar to that of H .

The large X value for proton-hydrogen scatter-
ing is due to the relative masses of the electron
and proton. A direct consequence of the large A.

is that the eigenvalues of A(X) are given to good
approximation by the perturbation expansion (38)
to first order. Thus

a(K, T) = 2NKM+-L-(L+ 1) + ,'(N' —1 ——K'—3T')

(43)

plus corrections of order M '. Here M is the pro-
ton mass in units of the electron mass. With Eq.
(43), estimates of the maximum value of the total
orbital angular momentum L, which support infinite
numbers of H,

' vibrational states below threshold
are easily made. For instance when K = N - 1 and
T = 0, an infinite number of states can exist in the
channel only when L(L+1)& ',MN(N 1) ———,', ow-ing
to the long-range dipole coupling of degenerate
electronic and rotational states. Depending on the
nature of the short-range interactions, K and T
have a potential application in the description of
collisional excitation and resonant charge-exchange
processes involving these intermediate states of
H

From (43) we infer that the adiabatic electronic
potential-energy curves of H, ' have the asymptotic
form

(44)

where A is the internuclear coordinate. A similar
expression was derived by Coulson and Gillam"
using the hydrogenic Stark-effect quantum num-
bers.

Equation (43) can be used also to extend Mittle-
man' s' zero-order formula predicting vibrational
spacings in excited states of H, ', since it includes
the first-order rotational corrections.

VII. CONCLUDING REMARKS

We have described a new classification of H
resonances based on application of group-theoretic
techniques to the diagonalization of a strong asymp-
totic dipole interaction in a close-coupling expan-
sion of the wave function. The method provides
two quantum numbers, K and T, which label the
resonance channels and lead to accurate predic-
tions of observed resonances using a perturbation
expansion of the weaker interactions. Although K
and T are related to the K and T quantum numbers
found earlier for hydrogenic SO(4), x SO(4), config-
urations mixings, the present description is in no
way a rigorous derivation of the hydrogenic re-
sults. This is so because we diagonalize the oper-
ator b, ~ b» thus providing no information as to
which operator, (b, —5,)' or (b, +b, )', is relevant
to the full six-coordinate two-electron problem.
~tie we use (b, —S,P in the present paper (b, +b, )'
serves equally well, the only difference in the end
being the replacement of K with -K.

The present method is an improvement over pre-
vious dipole-approximation resonance classifica-
tions, in which eigenvalues of A were simply la-
beled in increasing order: a„a„.. . . It also is
an improvement over the usual group-theoretic
objective of assigning a full set of quantum num-
bers to each state. Significantly, there exists a
classification of the channel states alone, via the
factorization in Eq. (2). Subsequent classification
of the individual resonance states within each chan-
nel would follow from solution of the correspond-
ing radial equations.
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