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The Feshbach projection-operator technique is investigated using second quantization to construct
approximate optical potentials with Tamm-Dancoff-approximation and random-phase —approximation
descriptions for closed-shell targets. We interpret a recent many-body theory of elastic scattering
(due to Schneider, Taylor, and Yaris) as an approximate form of the equations of this work.
Possible applications and extensions of the method are also described.

I. INTRODUCTION

The optical model, ' which provides a formal
method for reducing a many-channel scattering
problem to an equivalent one-body problem, has
proven to be an effective device in the s tudy of low-
energy electron-atom scattering. There are sev-
eral approaches which have been used to formulate
the optical-model potential.

Because of its conceptual elegance and complete
generality, Feshbach's theory of nuclear reac-
tions' has been applied extensively to the study of
atomic problems. Quite frequently however, Fesh-
bach's projection-operator formalism serves more
as an interpretive tool than a computational one.
Indeed, almost all of the numerical applications of
Feshbach theory have been restricted to two-elec-
tron systems, where the required projection can
be constructed exactly. ' The formulation lends
itself most directly to the study of compound reso-
nance states, and it is.certainly in this context
that most applications have been made, although
there have been a number of successful attempts
to construct a Feshbach optical potential and use
it to obtain nonresonant cross sections as well. '

Another approach to the optical model has been
used which does not require the construction of
projection operators and which can be systematic-
ally applied to larger systems. This approach
is based on the fact that the proper self-energy
of. the one-particle Green's function of many-
body theory can also serve as an elastic optical
potential. .' The self-energy can be approximated
using the diagrammatic techniques of many-body
perturbation theory. ' Alternatively, Schneider,
Taylor, a.nd Yaris' have developed a nonperturba-
tive approximation scheme for calculating the self-
energy based on the Martin-Schwinger Green's-
function theory. ' This approach has met with
great quantitative success in describing low-ener-
gy e -helium scattering 'o

In this paper, we show how the equations-of-

motion technique" can be used to construct an
approximate optical potential which describes the
elastic scattering of an electron by a closed-shell
atom or molecule. The problem is formulated in
the language of second quantization, which is most
convenient when discussing systems of identical
fermions. Bather than working with the proper
self-energy, however, we develop our approxi-
mation scheme in the Feshbach projection-operator
formalism. W'e will also be able to show how an
approximate optical potential, quite similar to the
one derived by Schneider, Taylor, and Yaris'
(hereafter referred to as STY) follows naturally
from the equations-of-motion approach to Feshbach
thee ry.

In the section that follows we derive the optical-
model potential at two levels of approximatiop,
first in the Tamm-Dancoff approximation (TDA), "'
which ignores correlation in the target ground
state, and then in the random phase approxima-
tion" (RPA), which implicitly includes some ef-
fects of target correlations. In Sec. III we com-
pare the results of STY with those obtained here,
and Sec. IV contains a brief summary and a con-
clusion.

II. THEORY

A. TDA description of target

Feshbaeh theory calls for the construction of an
operator I' which projects out the parts of the
exact wave function that describe elastic scatter-
ing; that is, if P denotes the full wave function for
the electron-atom (molecule) system, then I' must
satisfy the requirement that

(i)

where 4', (/&, )) is the ground-state wave function
of the target and E,(&), the optical-model wave
function, gives the correct elastic scattering. In
addition to the projection operator I', we also re-
quire its orthogonal complement Q. An effective
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P= a~ HF HF a~, (4)

Q =Q Q aptly&Sp~ p q (A.'lap',
PP'

(5)

where lHF& is the HF ground state and l && is an

excited TDA target state which is generated by
the TDA excitation operator 0 z,

l»=o'„lIIF&, (5)

Q~ — X „A,a a~.

Hamiltonian can then be constructed which de-
scribes elastic scattering'.

(H,,;; —E)P( =0,

where

H„,;; =PHP +PHQ[1/Q (E —H+ iq)Q jQHP.

In this section we will discuss a model obtained
by making a number of simplifying assumptions.
We first assume that the closed-shell target ground
state is well represented by the Hartree-Fock
ground-state wave function and that the excited
states of the target may be described by the TDA.
Introducing the creation and annihilation operators
ap and ap referring to the particle states Qp of the
Hartree-Fock Hamiltonian, we may formulate the
model as follows.

The operators P and Q are chosen as

scheme and a conventional close-coupling approxi-
mation, in which TDA target states are used for
the expansion and the various channel wave func-
tions are all expanded in terms of Hartree-Fock
particle orbitals.

We now discuss the construction of the operators
in Eq. (3) with the above choice of projectors P
and Q. The Hamiltonian may be written in second
quantization as"

j jkl

where sums on i, g, &, and ~ go over hole and
particle states (spin orbitals), V;,» is given by

V, .kr = - r~ ~ ~, I, ~»~ &2 d'r, d'X,

(12)

&, is a Hartree-Fock orbital energy, and the oper-
ators are normal ordered with respect to the HF
ground state. The Hartree-Fock ground-state en-
ergy has been chosen as the zero of energy and has
thus been subtracted from the Hamiltonian.

The operators PIIP and PHQ may be formed
easily from the above definitions. Repeated ap-
plication of Wick's theorem to the matrix elements
involved yields for II»

Hpp = Q ap l HF &ep(HFlap.

rn and & denote particle and hole states, respec-
tively, and the X„„(&)'sare TDA amplitudes which
satisfy the orthogonality condition

X*a ~ X n ~ =~&~.

In Eq. (5), Spz p~&, ~ is an element of the inverse of
the overlap matrix ~&q,& y,

If we define antisymmetrized matrix elements
V;,.k, by

V;,ki = V;,ki —~&, rk,

the result for PHQ is

PHQ =Q Q Jap lHF&X „(A)Vp,
Pqy' X X' my

xS q,
'

qipi (HFloy' ap'

(14)

(15)

Sp&, p q -(HFloqapap Og lHF&

= 5~pp 6 ~~p — Xpg~ A. Xp~ A,
' .

With these restrictions, it is easy to verify that
P and Q are indeed projection operators and that
they satisfy the necessary conditions PQ =QP =0
and P +Q = 1 within the space of vectors spanned
by the set aplHF&, aplA&. This implies that PP
has the form

P$ =Q Cpap lHF&, (10)

which is consistent with Eq. (1) and our assump-
tions about the target.

It may help to conceptualize the above approxi-
mations if we draw an analogy between the present

In Eq. (15) sums on P, P', q, and m are over par-
ticle states, and the sum on y is over hole states.

The form of Q(E —H) Q is more complicated and
is given in the appendix. To complete the present
approximation consistently, one should diagonalize
QHQ in the (nonorthogonal) basis

(apl�&&)

and then
construct H„;via Eq. (3). However we may de-
velop a diagonal approximation as follows. The
matrix element involved in Q(E —H) Q is

( IIIF,O(apE H)a,', O', I»&.
Following a similar argument by Dietrich and
Hara, "we assume that the states formed by adding
a particle to the TDA description of the excited
target are eigenfunctions of the full Hamiltonian,

Hap'O",
I IIF& = (ep+ ~ ~)ap'O t~l »&,
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where &q is the TDA excitation energy (recall that the zero of energy has been defined as E«). With this
approximation the matrix element above becomes

(HFIO),a~(E —H)a~ 0~~ IHF& = (E —e),- e )Sz (16)

Further, assuming ~ ),p q pi = & ~z &»i we obtain an

H f; — ap HF Ep HF ap+
p qg mn )'o

approximate form of the optical potential:

F&&~ ) (~)&.*.(~)I'yam, I'n, ap &HFI&p

g —(d&, —&p+ jg

8. RPA description of target

One can go beyond the TDA description used in
Sec. IIA and implicitly include some of the effects
of correlation in the target. In this section, we
outline a method for approximating H,.~t in the
random phase approximation (RPA)." If IO) de-
notes the ground state of the target, then excited
states I&) are generated by the RPA excitation
operator 0)„

I~&=o",Io&, (18)

where

0~= Y „Xa a —Z „&a~a

and the sums on m and & run over particle-hole
pairs.

Consider the projection operators

This expression for II„&fhas the analytic struc-
ture one would expect from the exact Feshbach
optical potential, namely branch cuts formed by
the set of continuous energies &, , one such cut
associated with each inelastic threshold labeled
by the &q's. However, II,-&& does not possess the
isolated poles associated with the resonance states
of the compound system which were lost when

neglecting the off-diagonal pieces of QHQ.

With this choice for I0), it follows that the matrix
element (Ola))a~. o JO& is zero and that the choices
for P and Q are valid.

In discussing the RPA, we are faced with a prob-
lem that was not present when the TDA was used.
The ground state IO& is assumed to be correlated,
yet the RPA equations that are solved for the ex-
citation operators 0&, do not specify the correla-
tion coefficients. If the correlation coefficients
in Eq. (22) are known (e.g. , from Raleigh-Schro-
dinger perturbation theory), the effective Hamil-
tonian can be constructed in a straightforward
manner from the definitions of P and Q —although
the matrix elements involved will be quite com-
plicated. In this section, however, we will take
another approach more consistent with the deriva-
tion of the RPA. We will replace matrix elements
of the form (OIAIO) by equivalent commutator ex-
pressions which lower the particle rank of the
operator A. , and then approximate IO& by the Har-
tree- Fock ground state.

Consider PHQ which requires matrix elements
of the form

(OIa, Ha~ Ot~l0&.

If o~ were an exact solution of the equations of
motion for the excitation operator, we would have
the identity

P = g a~tl0&M~~ (Ola~,

Q =g g at0$0&S ' (Olo„a
pp' lb, '

where

M~~ = (Ola~a~ IO&,

S„~),i~i =(Olo),a~agio) IO).

(20b)

(21a)

(21b)

0),IO&=0. (23)

We apply this relation followed by the approxi-
mation I0&= I HF) to obtain

(0I a~ Ha,', O &I o) = (01 In, «,', O ),j I
o &

= (HFI [a,Ha~, ot]IHF&. (24)

With this approximation PHQ may be easily eval-
uated

To verify that PQ is still zero, we must consider
a matrix element of the form

(Ol a, a~t 0 ), I 0&.

Following Shibuya and McKoy, "we retain terms
in IO& through first order in the correlation coeffi-
cients C"„':

(22)

PHQ = g g .,'IO&M;, (I".„(~)V,„,.
pp'eq' XX mo'

+Z „(X)V,pi j
x S),'„,„(0IO),a, . (26)

To complete the construction of the effective Ham-
iltonian in this approximation, we must evaluate
the matrix elements of QHQ and diagonalize it.
The matrix elements of QHQ are given in the ap-
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pendix. In the spirit of Sec. IIA, we may again
construct a diagonal approximation by following
Dietrich and Hara" in assuming that states formed
by adding an electron in an HF particle state to
RPA excited states of the target are eigenfunctions
of the full Hamiltonian,

Ha~~Otq~0) = ((() g+e~) a~O), ~0), (26)

where z is the RPA excitation energy. We also

assume S qp z pi is the unit matrix. To write an
approximate effective Hamiltonian which can be
constructed from the results of an RPA calculation
on the target without knowledge of the correlation
coefficients, we must replace a~~0) in Eqs. (20a)
and (25) by aJ~ HF) which makes M»i the unit ma-
trix and PHP the same operator used in the TDA
derivation. With these assumptions the effective
Hamiltonian is

H )')' —g a~t ( HF) e~(HF( a~ + g p a)t( HF)(Y y (r()Vrp +Z
y

()()V py }
p pp'~g myna

E —p, —6 (Y.*~(~)V.,~, +Z.*~(&)V&,„,}«Fla, . (27)

III. COMPARISON WITH OTHER WORK

At this point, we wi1.1 analyze the RPA effective
Hamiltonian in its approximate diagonal form and
point out the similarities and differences between
this result and the expression derived by STY.

Equation (27) for H„.(f is an operator expression
which is valid in the subspace of ~+1 particle
vectors spanned by the set a~~HF). It has the form

(28)

(29)

H„t.t- —— ap HF H„,.(- HF api.

We can identify H„&; as a matrix element of the
effective one-body Hamiltonian K"' that gives the
optical-model wave function E~(r} and satisfies the
equation

(E ~ 2%2)F,(-r) =If""(r,r')F(r')
H"P'(r, r') is easily extracted from Eq. (27) as

H,"„"„,=V«(r, r')+ g PP([ Y&(X)V& (r)P, (r)+Z &(A)V &(r)P,(r)] —[Y &(X)V&,(r)P (r)+Z z(X)V, (r)P&(r}]}
my n6 qy

4 Y.*(;(~)V, ( (r') 0,*(r') +Z.*(;(~)V(.(r') 0,*(r')l8 —+y —6 + sf/

[Y„*~(A)V,~(r') p„*(r')+Z„*(,(A)V,„(r')Q~(;(r')]} (30)

where the sums on m, n, and g run over particle
states, the sums on y and & over hole states and

V„(r)=-fy,'. (r') (r)')( r)i—lr ()r,r'*(31)

The Hartree-Fock potential V„(;(r,r') which came
from PHP is

V„gr,r') =Q
~

"
(

&(r —r')

4 r 6 x-r' -K„x,x', (32)

where the first term gives the nuclear attraction
and ~& and K& are the usual Coulomb and exchange
operators.

Equation (30} is essentially the same as the ef-
fective Hamiltonian derived by STY by approxi-
mating the proper self-energy of the one-particle
Green's function with some minor differences
which we now discuss. First the cut structure of
Eq. (30) is the same as that of the TDA result of
Eq. (17), i.e., branch cuts associated with each

inelastic threshold. The STY result also has terms
with energy denominators (Z+(d), —e&) where e„
is a hole-state orbital energy. These terms give
rise to discrete poles on the negative energy axis
and a left-hand cut corresponding to the ionization
continuum of the target. From the formal analytic
structure of the proper self-energy, " it might be
expected that such terms would appear in any
approximation scheme. However the Feshbach
optical potential has no singularities at negative
energies (that is, negative with respect to the
energy of the target ground state), and conse-
quently no such singularities appear in our ap-
proximations. In any case we expect such terms
to contribute negligibly to a scattering calculation,
since at physical energies all such terms have
large positive energy denominators. This sup-
position is verified by comparison of the results
on e -He scattering of Pu and Chang' with those
of Yarlagadda, Csanak, Taylor, Schneider, and
Yaris. '

A more serious discrepancy between our result
and that of STY is that at energies at which both
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optical potentials are real, the present result is
symmetric in & and &' whereas the STY optical
potential is not. Consequently the STY optical
potential is non-Hermitian at all energies. If we
use the terminology of STY, we can write Eq. (30)
symbolically as

(indirect li exchange ) (rr direct rr exchange )
t;g HI + E —U

(33)

The STY result does not have the term W...h,.„„.,
and consequently is nonsymmetric, and does not
couple triplet states of the target which only con-
tribute to the term Wxch;, ng W x'h ng /(E —fI). This
apparently did not have a serious effect on the
e -He elastic scattering computations of Yar-
lagadda e~ aE. ,

"but for He, V«alone gives most
of the elastic cross section. '4 This may not be the
case for larger systems where the coupling to
triplet target states might be more important. It
has been kindly pointed out to us by Yarlagadda
and Csanak that the non-Hermitian potential of STY
results from a nonsymmetric choice of operators
in their approximation scheme and may be reme-
died in several ways. "

We should also like to mention tw'o recent studies
on e -He which bear some resemblance to the
method proposed here. Temkin, Bhatia, and
Bardsley" have proposed an optical-potential
scheme and, considering the Q part of the prob-
lem only, successfully calculated the position and
width of the lowest 'S resonance of He . Murtaugh
and Reinhardt, ' using a method which they show to
be equivalent to an approximate optical-potential
calculation, obtained similar results for the reso-
nance position and accurate nonresonant ~-wave
phase shifts as well. While neither of the above
references make use of second quantization in de-
veloping their approximation, it would appear that
both approaches bear a strong resemblance to the
"nondiagonal" optical potential w'e have detailed in

the appendix. "

IV. DISCUSSION

we reiterate that a more elaborate calculation
that would also treat resonances properly could be
carried out by diagonalizing QHQ as given in the
appendix.

It has been shown by numerous authors that the
optical potential, for purely elastic scattering, is
well represented by a discrete-basis-set expan-
sion which gives a finite pole representation. Thus
H, tT as g. iven by Eq. (30) can be formed from the
results of finite basis set Hartree-Fock and RPA
calculations on the target. Once the optical po-
tential is formed, its use in a scattering calcula-
tion is no more difficult than the use of VH,:(x, r'),
which is also a nonlocal operator. The present
authors have recently shown that continuum HF
calculations can be carried out for small mole-
cules by using purely discrete basis-set tech-
niques. " For applications to molecular systems
the restriction to closed-shell targets is not a
severe one since most small molecules of interest
have closed-shell ground states.

For energies above the first inelastic threshold,
the discrete pole approximation to H,,;; is inap-
propriate as it stands. However in this case one
could follow Nuttall" in performing the calcula-
tion at complex energies and obtain results at
physical energies by extrapolation.

The techniques developed here can be extended
to inelastic scattering by the inclusion of more than
one channel in P. A similar technique has been
used by Burke and Taylor' in calculations on e -H
scattering. " In a later paper we will pursue this
course in developing a many-body approach to
multichannel scatter ing.

APPENDIX: EXPLICIT FORMULAS FOR QHQ

The matrix elements of the Hamiltonian given in
this appendix were generated using a computer pro-
gram which automates the application of Wick's
theorem for arbitrary operators. We are grateful
to Danny L. Yeager for instructing us in the use
of his program and for modifying it to suit our
needs.

We have shown how to apply many-body tech-
niques to the Feshbach projection-operator for-
malism and obtain consistent approximations to the
optical potential for closed-shell target atoms and
molecules in both the TDA and RPA. We have also
interpreted the results of STY as a "diagonal"
approximation to the equations we obtained and
thus have shown why the STY optical potential is
incapable of displaying resonance behavior. The
form of H, tt given in Eq (17) or Eq.. (30) lends it-
self directly to numerical computation, although

A. TDA target

&& (HF~Oh a, Ha, r Otqrr~HF)

XS r hrr t, r hrrr (HF~Ohr„ahr

where 0 z is the TDA excitation operator of Eq.
('I), S is the overlap matrix of Eq. (9), and
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Z F*n(~')F n (~")t5nn 5 5„(e,+e -en)-5nn 5
q 5,(e +e —en)

mnm'a'

+&„~n n +~p ~ n, n+~, Vn n+&m ~n „n
+ nn'1 mqm'q']. (A1)

B. RPA target

&0[o,Ao', .[0& = &0[[o„a,o', , ][0&

+-,'&o(Ao, o', , jo&

+-,'&0[0~op A. i0&, (A2)

where the symmetric double commutator is de-

&&0)oq a„Ha, Og ~0&

-1X S ifyq pl yNI &Oi Oylll gpl )

where 0 ~& is the RPA excitation operator of Eq.
(19) and &~~ ~ q~ is an element of the inverse of the
overlap matrix S~„,~ ~ of Eq. (21b).

Consider a general matrix element of the form
&O~oqAO& ~0). Using the property that 0~~0&=0,
this matrix element can be written as

fined by the relation

[A, a, c]=-,'[a, [a, c]]+,'-[[A, a], c].
In evaluating the above matrix element, we appeal
to the same arguments used in Sec. IIA of the text
in replacing ~0& by ~HF&. We also assume, for the
purpose of evaluating the last two terms of Eq.
(A2), that Oz and 0& ~ are boson operators —the
quasiboson approximation

[o„o'„]=5„,,
so that

&olo, sot& lo&= &HFI[O. , A, ot& ]IHF&

(A3)

Note that if ~0& is expanded as in Eq. (22), then
&01&~0&= &HF~A~ HF) plus terms of orders (C"„)'
and Vns p, C „which we ignore. The results follow:

pg p'), ' — m'n' m nn' p' p ' 'n' n nn' p 'p' + XX. pp'~
m'n' mn

(A4)

&Z~ ~, ffgt,
~

X'& = 5„,g [F*„(Z)1'„(X') Z*„(&)Z P')](e —e„)

A. Y A +Z n ~ Z n ~ ~pp ~ n' +~p ~ n'p n+ p' Vpn of. + ~n pp
mn m'n'

+ ~mn ~ Zmt n' ~ ~p~m~m pnn' + p m Vpmnn + pp Vmm
mn m n

+ Z Z y'. (~')~.* (~)(5p- 1' ~ -p+5~ 1'
~ - 5~~1 - )+5»'5»'~.

mn m'n'
(A5)
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