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Many-body theory of the nuclear quadrupole coupling in the boron atom
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The linked-cluster many-body perturbation theory is utilized to obtain an accurate value
of the electric field gradient for the lowest P3/p state of atomic boron. This diagrammatic
method permits us to examine the relative importance of angular-polarization and dynamic
correlation effects on the electric field gradient. Also, a detailed comparison with another
many-body theory of contributions classified by Hartree-Fock labels is made. The re-
sulting quadrupole shielding factor 8 =0.0989 + 0.0099 yields a field gradient q = 0.279 57
+ 0.002 76 a.u. Finally, we obtain from the quadrupole coupling constants the nuclear
quadrupole moments of 108 and iiB as (8.543+0.104) &&10 and (4.099+0.047) x10 b,
respectively.

I. INTRODUCTION

A knowledge of the quadrupole moments of nu-
clei is useful for several reasons. Prominent
among these is that one can utilize the nuclear
quadrupoLe moment Q to extract from the quadru-
pole coupling constants in molecular and solid-
state systems, electric field gradients at the nu-
clear sites. The field gradients themselves are
useful parameters to test our knowledge of the
eiectronic structures of these systems. Quite
often the field gradient exhibits sensitivity to the
fine details of the electronic wave function. Addi-
tionally the nuclear quadrupole moments are also
important parameters from the point of view of
theories of nuclear structure and of course NMR

spectroscopy. At the present time, the most con-
venient and widely employed procedure to obtain
nuclear quadrupole moments is to extract them
from measured quadrupole coupling constants in
isolated atoms using calculated field gradients.

The evaluation of the field gradient for an atomic
state leads us to the phenomenon of shielding' of
the outer-electron field gradient by the inner
cores, an effect that has been widely studied in the
framework of one-electron theory. In the present
investigation, we study the field gradient and con-
sequently the shielding by the linked-cluster many-
body perturbation theory (LCMBPT). By this in-
vestigation, not only do we want t:o derive an ac-
curate value of the electric field gradient and hence
the nuclear quadrupole moment, but also obtain
an understanding of the convergence of the per-
turbation approach and the role of correlation
effects on the shielding. Such effects are of great
importance in boron due to the strong correlation
between 2P and 2+ electrons. Several investiga-
tions of the single particle and correlation con-
tributions have been reported, """" in the litera-

ture by various one-electron and configuration-
interaction procedures, including the role of three-
electron correlations. " The relationship between
our LCMBPT results and these earlier results
will be discussed in detail in Sec. III. In the case
of magnetic hyperfine interactions, particularly
of the contact type, the relative importance of
correlation effects is accentuated by the cancella-
tion between different core contributions. ' '

In Sec. II we shall describe the basis set for the
LCMBPT calculation and present the most signifi-
cant diagrammatic contributions to the quadrupole
shielding constant &. Section III will involve a
discussion of these results and detailed compari-
sons with previous calculations by other proce-
dures.

II. DIAGRAMS AND RESULTS

Since the LCMBPT method has been thoroughly
discussed in the literature, ' ' we will only describe
those points that are of special relevance to the
present calculation and to the boron atom. First,
the single-particle basis sets were generated'
by a numerical integration of the following radial
differential equation appropriate for the 1'2&'2P, ',
'P, /, configuration:

(
1 d' l(l+ 1) 5

d&2 + 2+2 + nl+~l Pnl( ) 0

The nonlocal V", ' potential is represented dia-
grammatically in Fig. 1 in terms of its matrix
elements between arbitrary single-particle states

It is to be noted that the V", ' potential for
& orbitals is that arising from the above configura-
tion with the omission of the Coulomb and exchange
contributions due to one of the 2 orbitals. With
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FIG. 1. Matrix elements, (k& iV& tlk&), of the V&

potentials for the 1s 2s 2P&+, P3g& configuration of boron.

this choice, the 1& orbitals will not see the proper
Hartree-Fock potential and require certain cor-
rections discussed below. In addition, we have
used a spin-restricted potential as indicated by the
factors & in front of the exchange contribution
with the 2P orbital.

The V, ' potential used for the /=1, 2, 3 orbitals
does not suffer from either of the above con-
straints, being the appropriate potential for the
2P orbital or any virtual orbital obtained by re-
moving the 2P. However, when a 2& electron is
excited to any t=1, 2, 3 state, in particular to &~

which is of special importance for the shielding
problem, we shall anticipate that certain potential
laddering corrections will be needed. Such cor-
rection to diagrams exhibiting a 2& to && excita-
tion reflect the fact that the & and d potentials cor-
respond to the respective configurations 1&'2s2P»
and 1~ 2s kd, whereas the virtual configuration in

the diagram is 1&'2&2Pkd. By using a V, ' poten-
tial one can, of course, obtain a basis for each
l consisting of an infinite number of bound states
as well as the continuum states. One advantage
of this V" ' potential over say, the Hartree-Fock
choice, is that the former is physically more
meaningful for the excited states. Thus, the ex-
cited states at large distances from the nucleus
see an effective positive charge instead of a charge
that one would get w'ith the V" Hartree-Fock po-
tential. One thus expects better convergence in
the perturbation calculation with the V" ' basis
set.

In the diagrams which will be presented there
are two other operators besides V ' which appear
as vertices. The multipolar components of 1j&»

Bare With Ladder Sternheimer Fully
(unmodified) corrections (Ref. 9) Modified

M s
ts

2s
2p~

8.79

3.97

9.391

3.975

9.366

3.847

9.328

3.368

-4.31

2s —3.92

-4.653

-3.806

-4.666 -4.635

-3.766 -3.412

NET (DIRECT+EXCHANGE)(%) 4.52 4.907 4.781 4.650

FIG. 2. First-order (0, 1) diagrams and their contribu-
tions to A (in %) classified by the one-electron state and
method of calculation.

In Eq. (3), 1J, MJ = &) represents the exact many-
electron wave function. We have preferred to ex-
press all contributions in terms of the quadrupole
bhielding factor R defined by Eq. (4). Thus, in
our diagrams, a wiggly-line vertex with a q is
given as a R contribution in percentage. Note that
the zero-order (Hartree-Fock) value in electro-
static units in &0=0.31025a.u. or equivalently'
1.00565&&10'esu/cm'. Our calculations are done
for the ~=-,' multiplet since the field gradient van-
ishes in the ~ =

& state.
The first-order contributions to A arise from an

admixture of d-orbital symmetry to the 1& and 2&

states. This d admixture, as shown in Fig. 2,
comes from the direct Coulomb and exchange in-
teractions with the 2py occupied state where the
M, (1s or 2s) orbital is promoted to a virtual d,
orbital. This process is often referred to as
angular polarization and results in a net contribu-
tion to the field gradient by the polarized &-core
orbitals. The R contribution labeled "bare" in
Fig. 2 corresponds to the diagram as shown except
that the energy of the 1 state has been shifted to
correct for the use of the V ' potential as men-
tioned previously. We note that the 1s direct con-
tribution is more than twice as large as for 2&,
whereas the exchange contributions are both com-



12 MANY-BODY THEORY OF THE NUCLEAR QUADRUPOLE. . .

parable and of opposite sign to the direct. Also
there is near complete cancellation in first order
of the 2& direct and exchange contributions.

There are a number of ladder-type corrections
to these bare diagrams. Most of these arise from
the potential as mentioned above. One order of
each such ladder correction for the 1& direct bare
diagram is indicated by the first seven diagrams
in Fig. 3. There are corresponding ladder dia-
grams for 1& exchange and the 2s cases. The in-
fluence of these ladder corrections to all orders is
included approximately by applying a geometric-
series summation using the ratio y of the sum of
all the first-order corrected diagrams, as in Fig.
3, to the value of the corresponding bare direct
diagram in Fig. 2. This means that all possible
higher-order mixture corrections, like those in-
dicated by the remaining diagrams in Fig. 3, are
taken simultaneously. The contributions of the
resulting diagrams with these ladder corrections
are shown in the third column of Fig. 2. These
effects are more pronounced for the 1+ state than
the 2s since in the 2s case there is considerable
cancellation among ladder effects. We shall con-
tinue to refer these ladderized diagrams as first-
order effects since they are primarily effects due
to the first-order (single-particle) change in the
wave functions plus corrections to the single-
particle basis states.

These first-order ladderized diagram contribu-
tions to R can be compared with the corresponding
quantities calculated by the method of Sternhei-
mer. ' This method treats the quadrupole inter-
action as a perturbation to the one-electron states
and solves the resulting coupled differential equa-
tions numerically. Contributions for boron ob-
tained by this method are given in column four of
Fig. 2 and are in excellent agreement with our

D =D, +E,(M, )+D, Q(M, ).

In Eq. (6), D, is an energy denominator which
includes the influence of ladder corrections and
is given by

(6)

where D, is the denominator in one of the bare
diagrams in Fig. 2 and y is the corresponding

results from perturbation theory. We note that
the sum of our 1s direct and exchange diagrams,
here, is 4.740%, whereas the differential equa-
tion method gives 4.'t00%. For 2 the correspond-
ing sums are 0.169/p and 0.081%, where the dif-
ference, in part, reflects the importance of can-
cellations between the direct and exchange effects
on the 2s orbital. It should be pointed out that
similar agreement between LCMBPT and the Stern-
heimer method at this level of perturbation was
found in the excited 'P state of Be by Ray et al."

In addition to the potential ladders to the first-
order diagrams of Fig. 2 there are higher-order
(rearrangement)" diagrams which are of a differ-
ent nature. These effects, as indicated in Fig.
4(a)-4(d), arise primarily from double excita-
tions (that is, correlation) between the hole state
and other occupied unexcited states. The two time
orderings of the vertices in Fig. 4(a) and (b) allow
a separation of the two parts, as discussed else-
where, " and thus can be summed to all order as a
correlation energy correction to the energy de-
nominator, as shown below. Diagrams 4(c) and (d),
on the other hand, do not factor ize in a similar
manner. However, we can approximately treat
these as corrections to the denominator of the
ladderized first-order diagrams as follows.

The effect of the ladder corrections already
discussed (Fig. 3) and the rearrangement dia-
grams in Figs. 4(a) through 4(d) are given by the
modified energy denominator D„namely,

1$
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FIG. 3. Examples of ladder corrections to the 1s direct
diagram of Fig. 2.

FIG. 4. Form of renormalization-type corrections as-
sociated with the (0, 1) diagrams of Fig. 2.
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ladderization ratio already discussed. The quan-
tity E,(M, ) is the sum of all correlation energy
diagrams in which hole state M, can interact. The
quantity Q(M, ) is an analogous quantity except that
everywhere an energy denominator occurs in the
corresponding energy diagram, it is squared in
the Q(M, ) case. Thus both contributions, E, and

D, Q, to D, tend to have the same sign and it is
found for boron that these are often of comparable
significance. We refer to ladderized first-order
diagrams having these denominator modifications
specified in Eq. (6) as being fully modified.

These fully modified first-order diagrams are
given in the last column of Fig. 2. Such correla-
tion-type modification does not change the 1s dia-
grams significantly but, as expected, do reduce
the size of the corresponding 2s cont ibutions
by about (10-15)%. It is interesting that such
correlation effects change the net 2& contribution
from 0.169% for the ladderized diagrams to
-0.044% for fully modified. The total first-order
(fully modified) contribution to the shielding factor
is 4.650%.

In second order there is a large number of dia-
gram contributions to the field gradient. All sec-
ond-order diagrams have been computed, but we
shall restrict our attention to the leading 25 which
have bare contributions to A larger than 0.4~jp.

The leading and possibly most interesting sec-
ond-order diagram is shown in Fig. 5. This con-
tribution to the shielding factor arises from the
correlation between the 2s electrons in which both
are promoted to the unoccupied 2P states. Due to
the strong correlation among the 2s pair and their
large overlap with and similar radial structure to

2s*I' q 2p' ' 2s+

Bore

With I adders

Fully- Modified

R{'Z)
12. I47

5.887

5.872

EXAMPLES OF RELATED LADDER DIAGRAMS:

2p
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2S 2g 2s

2s
2$
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2p
2s
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2s 2p

2p 12s+ 2s I

q
2pl, 2s

2p

FIG. 5. The principal second-order (1, 1) diagram con-
tributing to 8,. Results are given for different levels of
approximation. Also shown are examples of higher-order
ladder diagrams belonging to this (1, 1) case.

li('Pg, ) = C,C (1s'2s'2p', ) +C,e (1s'2p'). (8)

This calculation produced a, contribution to 8 of
5.93% which agrees very well with our ladderized
value from perturbation theory, 5.89%.

In addition to ladders we also must consider the
rearrangement-type corrections analogous to
those computed for the first-order ladderized
diagrams. Here we compute the correlation ener-
gy correction for a 2s hole with all other occupied
states including the other 2s. For each correla-
tion energy term in the modified denominator of
the ladderized diagram a ratio like Q in Eq. (6)
is also computed. The fully modified diagram in
Fig. 5 gives anR contribution of 3.872%. This
reduction shows that for correlation sensitive
pairs, such as 2s, the rearrangement-like cor-
rections, as computed here, can be quite signifi-
cant and should not be neglected.

Finally, then, the principal contribution from
the 2s pair to the quadrupole shielding factor is
3.872%. This reflects a substantial influence of
ladders and correlation effects in higher order.

The remaining 24 leading second-order dia-
grams are summarized in Fig. 6 and Table I.
These diagrams all involve some degree of elec-
tronic correlation. The (0, 2) diagrams [Fig.
6(a)—6(f)] have correlation usually between the
2s-2p pair which is combined with either a 2p
radial excitation or a 2s angular [Fig. 6(c)] ex-
citation contribution to the field gradient. On the
other hand, the (1, 1) diagrams, Fig. 6(g)-6(k),
are comprised of two orders of 2s-2s or 2s-2p
correlation corrections to the wave function with
a contribution to the field gradient occurring in
the correlated intermediate state. In the first

the 2P orbitals, this contribution is 12.147% when
completely unmodified. This is larger than any of
the first-order diagrams. However a number of
important ladder- and rearrangement-type correc-
tions exist for this case. The hole-hole, hole-
particle, and particle-particle ladders, some of
which are indicated in Fig. 5, can all be done to
all orders exactly. The ladderized value of this
diagram is 5.887% which is almost half of the
bare value. This reflects the importance of high-
er-order interactions among the hole and 2p par-
ticle states in this nonspherical open-shell system
in which unoccupied near-degenerate (with 2s)
orbitals are available for excitation. The virtual
excited configuration which is participating here
is 1s'2p' which is known to have a very significant
contribution to other properties of the ground state
of boron. In this connection we thought it would
be of interest to compute the corresponding field-
gradient contribution using a variational configura-
tion-interaction function of the form:
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FIG. 6. The leading 24 second-order diagrams. For
shielding-constant contributions see Table I.

column of Table I we list the diagrammatic con-
tributions in the completely unmodified form ex-
cept for two cases. These two cases, Fig. 6(c)
and 6(g), are seen to have a, part of the diagram
which is exactly of the same type as the 2s-2s
correlation diagram of Fig. 5 and should have the
same type of denominator correction as computed
there. The correspondingly corrected values of

these two diagrams are given in parentheses in
the next to the last column of Table I.

In the last column of Table I we give the con-
tribution after the diagram has been fully ladder-
ized and corrected for rearrangement-type cor-
rections to the hole lines. The ladderization in-
cludes, in approximate ways, particle-particle
ladders which may involve, in principle, a five-
fold integration over the continuum. Such inte-
grations have been done approximately in a way
determined by the particular diagram. The tech-
nique suggested by Kelly" was not always found to
give meaningful results here and appropriate
changes have been introduced. Each diagram is
treated separately in detail for higher-order cor-
rections.

From a comparison of contributions in Table I
with and without modifications it is seen that the
bare diagrams have about equal likelihood of being
increased or decreased in magnitude by higher-
order modifications. Nevertheless the 8 contri-
butions of these 24 diagrams is 1.879% in the un-
modified form and 0.471% after modification. This
reflects a reduction by 1.408% owing to higher-
order modifications.

The largest diagrams in Fig. 6 are (6a) with

M, =2s' and k, = kp, k, =ks and diagram (6b). These
diagrams represent similar effects and are seen
to be nearly canceling, especially after modifica-

TABLE I. Second-order contributions to R (in percent) corresponding wit'h . '. ~. 6(a)-6(k).

Part of figure 6

Hole state Particle states

Bare Fully modified

(a)

(b)
(c)
(d)
(e)

(f)
(g)

(h)

1s'
2s
1s
2s
2s
2s
2s
2s
2s

kp
kp
kd
kd
ks
kf
ks
2P
kd

kp
ks
A'd

ks
2p
As
kd
2p

ks
ks
kp
kp
kp
kd
2p f
A'd

2P

ks
kp
2P

kp
kd
kp

po, -f
kd

k'p
k'd

-0.418
-6.211
—1.505
-1.395
-0.522
—0.517
—0.789
-0.426

0.944
5.646
1.936 (1.093)
1.713
0.647
1.016
0.434

-0.944
1.800 (1.014)

-1.589
-0.543

0.767
0.689
3.776
0.402

-1.403

-0.468
-7.524
-1.840
-1.326
-0.638
-0.630
-0.556
-0.238
0.546
7.516
1.063
1.244
0.696
1.099
0.405

—0.948
0.257

-0.991
-0.372

0.589
0.447
2.637
0.441

-0.938
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tion. These field-gradient contributions come
from changes in the 2p radial distribution which
are induced by 2s-2p radial correlation. That is,
the 2p orbital undergoes a, modification in its radi-
al structure due to correlation with the 2s orbitals
and this results in contributions to R.

From the other diagrams in Fig. 6 we observe
that only two involve Is -2p correlation I (6a)],
whereas all the rest result from 2s-2s or 2s-2p
correlation. This, of course, reflects the im-
portance of intrashell correlations in boron. Most
of these diagrams also make leading contributions
to the magnetic-orbital and spin-dipolar hyperfine
interactions in boron. '" In genera, l, the elec-
tronic structure of the open-shell system, boron,
is very sensitive to L-shell correlations and to the
availability of unoccupied 2p states for virtual
excitation. Thus any accurate theoretical treat-
ment of this system must account for these in-
fluences on the electronic wave function.

To summarize, the results of our I.CMBPT
calculation of the quadrupole shielding fa.ctor are
given in Table II according to different levels of
approximation and orders of perturbation. Col-
umn I has only bare-diagram contributions (ex-
cept, of course, that the usual potential modifica, -
tion to the Is energy has been taken. ) Column II
reflects all the modifications to the large 2s-2s
diagram in Fig. 5 and the corresponding modifica, -
tions of the two structurally related diagrams in
Fig. 6 mentioned above. &viumn III conta. ins con-
tributions from the fully modified diagrams (that
is, ladderization plus renormalization-like ef-
fects). Unless otherwise stated we shall hence-
forth refer to our final results as those of Column
III. It is seen that, in second order, it is the
(1, 1) type of diagrams which have the larger net
contribution to K Actually, of the net 6.17% con-
tribution from second order, 3.87% is from the
2s-2s diagram of Fig. 5 with the rema, inder,
2.30%, coming from other (1, 1) diagrams The.
fact that (1, 1) is substantially larger than (0, 2)
again emphasizes that the electronic structure of

boron is strongly influenced by correlation (es-
pecially in the I. shell). Thus the quadrupole
shielding constant receives about half of its mag-
nitude from the single-particle angular polariza. -
tion effect represented by the fully modified (Q., 1)
diagrams and the remainder is primarily due to
the influence of correlation on the open-shell
structure.

The net theoretical value of 8 =9.89x10 ' is
estimated to have a maximum uncertainty of about
10% of R. Thus, including this estimate of error,
our theoretical quadrupole shieMing constant for
B(2I'„,) can be quoted as R =0.0989 0.0099 leading
to a net q =0.27957 +0.002 76 a.u. The range of
error we have quoted covers the contributions of
ladders and other modifications to the remaining
smaller second-order diagrams plus possible
significant higher-order diagrams not already in-
cluded in the modifications to the diagrams of
Figs. 5 and 6. The positive sign of 8, of course,
means that the ground-state electric field gradient
q~ is smaller (i.e., shielded) than the bare Har-
tree-Fock contribution (see Table III).

We conclude this section with estimates of the
nuclear quadrupole moments of the boron iso-
topes. The nuclear quadrupole coupling constant
b~ has been accurately measured"'" for B" and
the ratio of coupling constants for B"to B"has
also been established. " Thus from the relation-
ship, &~ =egg J, we find the nuclear quadrupole
moments Q as given in Table III in barns. The
estimated error for the quadrupole moments is
composed of both the theoretical uncertainty in q~
and the experimental error in ~~ values. Our value
of q~ and the nuclear quadrupole moments are found
to be in excellent agreement with those obtained
by Nesbet' using a variational many-body proce-
dure including some three-particle correlation.
Nesbet has calculated q =0.28215 +0.000 74 a.u. ,

TABLE III. Final values for the field gradient for the
Pz 3~& state of boron. The resulting nuclear quadrupole
moments for isotopes ' B and '~B are given (in b).

TABLE II. Summary of contributions to A (in percent).
Column I has bare diagrams only. Column II has the
fully modified diagram of Fig. 5 and the two structurally
related diagrams of Fig. 6. Column III has fully modi-
fied versions of all diagrams in Fig. 6.

Quadrupole shielding constant
0.0989 + 0.0099

Electric field gradient
qq: o.279 57 + 0.002 76 a.u.

(9.0619 + 0.0896) & 10' esu/cm3

Boron isotopes o,P (Mnz) q (10 ' b)

(0, 1)
0, 1)
(0, 2)

Z = (1, 1) + (0, 2)
(0. 1)+~

4.52
16.27
0.28

16.55
21.07

4.52
7.21

-0,56

11.17

-0.9,'3
5.24
9.89

2.6927 ~ 0.0010 ' 4.099 ~ 0.047
10B

' References 13 and 14.
"Reference 15.

(2 084~ 0 002)g~(«B) b 8 543~ P ] 0
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In the last decade a number of &6 initio calcula-
tions of the electric field gradient in boron have
been performed with various improvements over
the Hartree-Fock approximation. In Table IV we
list the resulting value of the quadrupole shielding
factor for the 'P,q, state of boron obtained by sev-
eral different methods. The restricted Hartree-
Fock (RHF), of course, has no shielding since it
it the reference wave function defining R. The
first improvement over the RHF was the removal
of the double occupancy of spatial orbitals differing
only in the spin projection quantum number. This
leads to the spin-polarized Hartree-Fock (SPHF)
which yields" ' a small antishielding quadrupole-
shielding constant. If in addition to dropping the
equivalence restriction one also relaxes the angu-
lar momentum (i.e. , central field) symmetry re-
striction on occupied atomic orbitals one has the
unrestricted Hartree-Fock (UHF) scheme. Here
the principal effect of angular polarization of s
orbitals by d admixture is accounted for and the
resulting R is substantially improved. " On the
other hand, the Sternheimer procedure' also ac-
counts for the relaxing of the symmetry restric-
tion by direct perturbation to the Hartree-Fock
equations. A third scheme yielding approximately
the same shielding constant as the UHF and Stern-

TABLE IV. The quadrupole shielding parameters R
(in percent) obtained by several different theoretical
methods.

Method

RHF
SPHF ~

UHF b

Sternheimer
PWF (CI) d

First-order wave function (CI)
Full CI (187 configurations) ~

Variational BG (CI) ~

LCMBPT n

0.0
—0.80

4.18
4.78
4.13

11.90
4.59
9.04
9.89

' References 17-19.
b Reference 19.
c Reference 9.

Reference 20.' Reference 21.
~ Reference 22.
~ References 12 and 16.
"This work.

Q("'B) = (4.065 +0.026)X10 ' b, and Q('OB) =

(8.472 +0.056) x10 ' b all being in very good agree-
ment with our results. We shall compare the de-
tailed contributions to R by these two methods in

Sec. III.

III. DISCUSSION

heimer procedures is a configuration-interaction
(CI) function constructed from the RHF configura. —

tion plus all singly excited symmetry-adapted con-
figurations. This is called the polarization wave
function" (PWF) and accounts for the spin and
orbital polarization of the RHF orbitals while re-
taining the L Se-igenfunction property (as opposed
to the UHF wave function). It is clear that these
three methods account for the angular polarization
contribution to R in agreement with the (0, 1) dia-
grams of the LCMBPT method (Fig. 2). The first-
order (FO) wave function" improves on the PWF
method by including, in addition to the singly ex-
cited configuration, all I -S configurations which
are doubly substituted but have at least one elec-
tron in an unoccupied 2P orbital. In particular,
this method includes the so called "near-degener-
acy" configuration, 1s'2P', discussed in connec-
tion with the large diagram in Fig. 5. The FO
wave function makes a substantial improvement by
including this important correlation effect in the
calculation of R. Thus, it is somewhat surprising
that a CI wave function" composed from 187 con-
figurations (i.e. , 1292 determinants) which also
includes this near-degeneracy configuration as
well as all types of double and even some triple
and quadrupole excitations leads to a shielding
constant of only 4.59&&10 '. This elaborate wave
function, which gives 88/0 of the correlation energy
for boron, demonstrates how sensitive the CI pro-
cedure is to the choice of basis functions and con-
figurations even when a very large number of both
are taken.

The variational Bethe-Goldstone (BG) formula-
tipn pf the CI procedure' ' attempts tp pvercome
some of these difficulties by considering separately
that class of symmetry-adapted configurations
which arises from the virtual excitations of a
specific subset of occupied orbitals. For example,
only those symmetry-adapted configurations in

which one or both members of a specific pair,
(ij), of occupied orbitals (i or p) is replaced by a
virtual orbital are to be considered in determining
the contribution of this pair to a specific property.
Furthermore, the set of virtual orbitals appro-
priate for such a subset can be extended until some
degree of convergence in the property being com-
puted is achieved. This procedure is based on the
additivity of the various increments which has been
brought into question by previous analyses. "'"
Nevertheless, the BG method has obtained very
good results" for the magnetic hyperfine structure
and the quadrupole shielding constant. The latter
is 0.0904 which is in excellent agreement with our
calculation. Since the contributions to R have been
classified by configurational excitations, it is
possible and very interesting to make a detailed
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comparison with our results when the diagrams
are appropriately regrouped.

The class of diagrams which contributes to, say,
the (1s) net increment for the electric field gra-
dient is determined as follows. This set corre-
sponds to all diagrams in which a single excita-
tion of ls is made to a virtual orbital (usually
d, type) and all those diagrams through second
order in which symmetry-adapted excitations of
the type 1s2P,'- kt 2P' are made. These excita-
tions in which the occupied 2P, orbital is replaced
by one of the unoccupied 2P' orbitals are impor-
tant for the L', S' character of the eigenfunction
as well as usually being energetically more favor-
able. For a pair excitation increment such as
(2s2P) we consider all calculated diagrams in which
both 2s and 2P,

' hole lines occur, provided that a
unoccupied 2P orbital does not occur simultaneously
with the occupied 2P, . In the latter case, this
would belong to the (2s) class of increments. For
example, in Fig. 6(h) with 0, =2P, we have a (2s)
contribution, wnereas if &, is not a 2P then this is
a (2s2P) diagram Fina. lly, there is a class of dia-
grams in which three different hole lines occur but
with at most two simultaneously (that is, over-
lapping in time where time intervals progress
vertically in our diagrams). This class of con-
tributions is denoted, for example, by (2s'2P),
where the subscript 2 denotes that no more than
pair excitations are being included here. Figure
6(d) is an example of this class. True dynamic
three-particle effects involving simultaneous ex-
citation have not been considered explicitly in the
LCMBPT procedure for this property, although
such effects have been included partially through
the ladderization of the 2s-2s correlation diagram
in Fig. 5. In the BG calculation, the quoted (2s'2p),
contribution includes" the influence of dynamic
three-particle correlations within the L shell.

Contributions to R are given in Table V according
to these classifications. Over-all agreement be-
tween the two methods is very good. This is es-
pecially true for those contributions in which one
or both 1s single-particle states participate. How-

ever, the two (Is2P) contributions differ by 0,0037
or about 12%. Those contributions which are most
sensitive to the details of the computational pro-
cedure, namely, (2s), (2s'), (2s2P), and (2s 2P)„
are found to differ more in these cases but, in

general, the relative contributions are in good
agreement. In fact it is found that the sums of
the four increments involving 2s and 2P are quite
comparable with the LCMBPT method giving 7.4
&&10 ' and by the BG-CI method, 6.2&&10 '. The
single-particle increment (2s) is different from
the corresponding (0, 1) angular polarization total,
-0.044~10, because of additional contributions

TABLE V. Comparison of contributions to R classi-
fied by the type of single-particle states participating in
the virtual excitations. The variational Bethe-Goldstone
results are from Ref. 12.

Class This work BG-CI

(1s)
(2s)
(1s )

(2s )

(1s2s)
(1s 2p )
(2s2P )
(2s'2P),
(1s 2P)~
(1s2s 2p )&

Totals

4.669
2.404
0.232
5.690
0.289

-3.177
-2.214

1.542
0,265
0.191

9.892

4.695
1.801
0.275
5.851
0,273

-2.809
-4.000

2.543

0.412

9.041

in which the hole 2P goes into an unoccupied 2P.
Obviously such "symmetry-adapted" excitations
are highly significant for the L shell whereas they
have little effect on K-shell contributions. In
contrast to the very small 1s-pair contribution,
(1s'), the 2s pair is the largest in the table. This
(2s') classification is, in fact, primarily due to
the 1s'2P' configuration-type diagrams of Fig. 5
and the two in Fig. 6 which were mentioned above.
These three 2s-pair correlation diagrams total
5.192&&10 ' out of 5.690&&10 '. It is of interest to
note that classifications (Is2P) and (2s2p) which
are the only net antishielding increments arise
primarily from pair correlation combined with a
2P radial modification contribution to the field
gradient. Finally, those field gradient contribu-
tions in which all three of the L-shell electrons
participate, namely (2s'2P)„are found to produce
a net shielding effect of amount 1.542&&10 in R.
There are only two diagrams of this class in sec-
ond order, namely, Fig. 6(d) and the one in which
2P y is any other virtual P orbital . Such diagrams
again exemplify the influence on the field gradient
of mutual correlation among the 2s electrons in
conjunction with modification to the 2P radial dis-
tribution. The difference between the results for
(2s'2P), listed for the LCMBPT and BG calcula-
tions can partially be explained by the fact that
the quoted results in the latter case also included
explicit three-particle interactions as well as the
effects included in our (2s'2P), results. In the
last two rows of Table V we have listed (Is'2p),
and (Is'2s2P), from our diagrams obtained in the
same manner as (2s'2P), . For the BG calculations,
we have only listed the sum of (Is'2P), and (Is'2s2P),
contributions derived from the results in Table IV
of Ref. 12 by taking the difference of the results
quoted under (total), and (total), . These results
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which include &-shell intershell interactions did
not incorporate explicit three-particle effects in
both BG and LCMBPT calculations and are found
to be very small.

Use of this classification scheme provides us
with a simple means of determining the relative
contributions attributable to one-, two-, or more-
particle excitations. The principal contribution
to the electric field gradient is the bare 2P which
yields 1&&q, (in a convenient measure). The other
one-particle contributions, (1s) and (2s), give
-0.0707q~ and hence the total one-particle amount
is 0.929q, . From two-particle excitations we find
-0.028q, which actually is slightly too small be-
cause this amount contains some multiple-particle
effects. Finally, based on an examination of the
contributions to the renormalization of the princi-

pal second-order diagram (Fig. 5) we deduce a
dynamic three-particle contribution of +0.001qo
to the field gradient. An examination of other dia-
grams involving dynamic three-particle correla-
tions leads us to expect that such effects are not
expected to be larger than 0.002qo. Thus we con-
clude that after considering the important correla-
tion corrections to the single-particle contribu-
tions, the higher-particle effects are essentially
negligible to an amount on the order of about 10%
of the total two-particle contribution.

Finally, we want to point out that our findings
here are consistent with a similar analysis" of
the field gradient in the excited 'I' state of beryl-
lium in regards to the convergence of perturba-
tion theory and the relative contributions to the
electric field gradient.
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