Errata

Erratum: Hartree-Fock values of L x-ray emission rates [Phys. Rev. A 10, 1507 (1974)]

James H. Scofield

The ratios of the radiative transition rates $L_1O_{2,3}/L_1M_3$ and $L_1P_{2,3}/L_1M_3$ were incorrectly listed in Table I. The corrected nonzero values are listed below in Table I. The remaining entries for these two ratios are zero.

Ζ	$L_{1}O_{2,3}/L_{1}M_{3}$	$L_{1}P_{2,3}/L_{1}/M_{3}$	Z	$L_{1}O_{2,3}/L_{1}M_{3}$	$L_1 P_{2,3} / L_1 / M_3$
50	0.01038		73	0.0694	
54	0.0491		77	0.0818	
50	0.0647		82	0.1045	0.00368
00	0.0847		86	0.1236	0.01826
60	0.0629		92	0.1545	0.02870
62	0.0619			0.000	0102010
65	0.0605				
70	0.0588		94	0.1650	0.0305

Erratum: Landau-Ginsburg equations for an anisotropic superfluid [Phys. Rev. A <u>9</u>, 2676 (1974)]

V. Ambegaokar, P. G. deGennes, and D. Rainer

The procedure of generating the current density from the bending energy Eq. (8) by a gauge transformation is incorrect because the free energy contains a contribution

$$-\sum_{p} 2iK_{T} \operatorname{curl} e\vec{\mathbf{a}} \cdot (\vec{\mathbf{A}}_{p}^{*} \times \vec{\mathbf{A}}_{p})$$

which is not included in our $(\bar{a}=0)$ calculation. This term, which does not contribute to the bending energy, gives rise via Eq. (10) to an orbital current density $-2 \operatorname{Im} \sum_{p} K_T \operatorname{curl} \vec{A}_p^* \times \vec{A}_p$. The corrected current density agrees with the one given by Wölfle and Blount.¹ The addition of the above missing contribution to the free energy removes the ambiguity in the current density referred to below Eq. (18). Starting from any one of the possible expressions for the bending energy, which differ by "surface terms," one obtains the same current density

$$\mathbf{\tilde{j}} = 2 \operatorname{Im} \sum_{p} \left[K_L \vec{A}_p^* \operatorname{div} \vec{A}_p + K_T \vec{A}_p^* \times \operatorname{curl} \vec{A}_p \right]$$
$$- K_T \operatorname{curl} (\vec{A}_p^* \times \vec{A}_p)]$$

if the coupling to the vector potential is included correctly.

¹P. Wölfle, Phys. Lett. <u>47A</u>, 224 (1974); E. Blount (unpublished).

12 345