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Calculations on the slowing down of 0.4 —4.0-MeV He ions in solids~
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The localization of atoms in solids leads, in principle, to changes in the electron distribution com-
pared with the free-atom state. The effect of such changes on the calculation of the He-ion stopping
cross section S, in solids has been investigated for an energy range 0.4-4.0 MeV. It is found that at
low energies with free-atom wave functions, a large part of the calculated S, arises from regions at
large distances from the target atom where the electron density is low compared to that in solids. The
experimentally observed oscillations in S, as a function of target atomic number, which have been
calculated from stopping-power theory by other authors, are also obtained in the present work with
simple modifications of the electron density distributions. However, the detail of the structure of the
stopping curves is altered. In addition, the use of an effective charge to account for electron capture
by the He ion at low velocities, without a corresponding modification of the basic stopping-power the-
ory to take into account the departure from point-charge behavior, leads to discrepancies from the
experimental data.

I. INTRODUCTION

The increasing use of accelerated helium beams
as probes for investigating solids plus improve-
ments in experimental techniques have led to a
need for accurate estimates of their stopping pow-
ers in matter. For experimental reasons the in-
vestigations are conducted at moderately high
beam velocities. At these velocities the energy
loss is mainly electronic and is due to the pro-
jectile's interaction with the electrons of the solid.
The nuclear energy loss component arising from
the target-atom recoil is usually included only if
backscattering occurs and then only at the parti-
cular collision causing backscattering of the beam.

The theoretical problem of electronic stopping
powers has been approached from the two limits
of high and low velocity. Low here refers to ve-
locities at which the projectile is neutral, while
high refers to velocities for fully stripped projec-
tiles.

At low velocity the electronic energy loss has
been treated by Firsov' as being due to the ex-
change of electrons between projectile and target.
The electrons picked up by the projectile must be
accelerated to the projectile's velocity, and thus
the flux of electrons from target to projectile pro-
duces a drag force on the projectile. Modifications
by several authors' ' to include atomic shell struc-
ture have led to explanations for the experimental-
ly observed Z, and Z, oscillations in stopping
cross sections at low velocities (Z, refers to the
projectile, Z, to the target).

At high velocities the projectile picks up few, if
any, electrons and the main interaction is through
the electric field of the unscreened nucleus as it
sweeps past the target electrons. This mechanism

for energy loss as formulated by Lindhard-Scharff-
Winther' ' (LSW) has been used by Ziegler and
Chu' to calculate the rate of energy loss of 'He"
ions moving through gases and solids. Their cal-
culations reproduce the general oscillatory be-
havior of the experimental results, but vary some-
what in detailed structure from experiment. A
semiempirical fitting procedure was adopted by
them to scale their theoretical results in regions
where no experimental data existed.

In the following sections we investigate the LSW
theory as it applies to the velocity region spanned
by the tabulation of Ziegler and Chu.

II. LINDHARD-SCHARFF -WINTHER THEORY

Using the random-phase-approximation result
for the dielectric constant of a uniform electron
gas, Lindhard has derived expressions for the
electronic energy loss. ' The rate of energy loss
is given by

dZ 4wZ', e nI. n v
dx rn5

where v is the velocity of the projectile relative
to the electrons, m the electron mass, n the elec-
tron density, and L is a dimensionless quantity.

Lindhard and Scharff' have extended this theory
to an electron gas in which there is a distribution
of densities by carrying out an average over the
possible electron densities present. If there are
N atoms per unit volume, each with a radially
symmetric charge density p(r), then the probabil-
ity of finding the electron density p(r) is propor-
tional to N4mr'dx and the resulting stopping cross
section is
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1 dE 4mZ'e
S,=- —„= ', p(r)L(p(r), v)4mr'dr,

where p(r) is normalized to the charge of the tar-
get atom by

f p(r)4mr ' d~ = Z, .
0

Lindhard and Winther' have studied asymptotic
forms of L(p, v) whose domains of validity are de-
fined with respect to the electron Fermi velocity
(v~) in the target, where

—,'mv~ = (5'/2m)(3w'p)' '. (4)

The expressions for L are then (Ref. 8)

L( )
C~(X)(v/v~)', v ~ v~

ln(y) —3' '/(5Xy) —9/(14 X'S'), v - v

(5)

C ( )
1 1+~sX 1 —3X

2(1-X2/3)' " X' 1+ -', X2

X' = e'/n k v~, Xy = v 3 (v/v~)' .

The expression for C, (X) in Ref. 8 has an incor-
rect sign (see Ref. 9). There are also missing
powers in Eq. A5 and the succeeding definition of

y in Ref. 9.
For v +& v& the LSV result approaches the Bethe-

Bloch form, while for v+v& the stopping becomes
proportional to the velocity.

The expressions for L are approximations and
are generally not continuous at v =v&. In our cal-
culations below, the branch point for the calcula-
tion of L(p, v) from Eq. (5) was determined from
the matching point of the two solutions to avoid a
finite discontinuity in L. The branching value of
vz(r) was always close to v.

The free-electron-gas model may be applied to
bound electrons as long as X'& 1.' This condition
is satisfied for the densities of electrons found in
solids.

III. CALCULATIONS

A. Target-atom size

Ziegler and Chu' use Hartree-Fock-Slater (HFS)
wave functions for a free atom for the electron
density in their calculations. Since most targets
exist in the solid state and thus the exact free-
atom wave functions are not strictly correct, a
less powerful free-atom solution is sufficient for
investigative purposes. We have repeated the
Ziegler and Chu calculations using Slate-type-
orbital (STO) fits to the HFS total density as tabu-
lated by Clementi. ' ' " Figure 1 shows the ratio
of the stopping powers calculated from the Cle-
menti STO's to the stopping powers tabulated by
Ziegler and Chu. The comparison is made at 400
and 4000 keV, corresponding to the low and high
energy range of their tabulation. The deviations
at the gases around Ne are of no interest to the
present discussion as we restrict our further
analysis to solid target materials. We also delete
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FIG. 1. Comparison of
the 4He electronic stopping
cross sections evaluated
using free-atom Slater-type
orbitals (STO) with those
tabulated by Ziegler and
Chu based on free-atom
Hartree-Fock-Slater (HFS)
wave functions as a func-
tion of target atomic num-
ber &2. The triangles and
open circles correspond to
0.4 and 4.0 MeV, respec-
tively.
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the targets with Z values of 46, 57, and 58. Cle-
menti" has cautioned that he had difficulty in ob-
taining a good fit for Z values from 57 to 60. The
origin of the discrepancy at Z =46 is not clear.
For all the remaining targets the Ziegler and Chu
results are reproduced with the simpler STO's to
within 10'%%uo, while for most targets the calculations
agree within 5'%%uo.

The HFS free-atom wave functions do not satisfy
the correct boundary conditions for a solid target.
In a solid the target atom occupies some finite vol-
ume inside of which there will be Z, electrons on
the average. Thus the electron density attributed
to each atom should not be distributed over an in-
finite region. The significance of this fact can be
seen by considering the size of the contribution to
the integral in Eq. (2) from regions inside and out-
side of a distance r„where x, is a size parameter
given by

= (y47f ~) (6)

and is of the order of half the interatomic spacing
in a solid. The value of N can be determined from
the bulk density. The fraction

( ro
f& p(r)L(p, v)r'dr

1 "p(~)L(p,v)r' dr

is shown in Fig. 2 for helium at 400, 1000, and
4000 keV. For a 400-keV helium beam the frac-
tion of the integration lying inside of xo may be as
low as 50%%uo and is less than 70% for most targets.
Therefore, generally more than 30% of the inte-

gral is calculated in a region where the density is
not given correctly by the free-atom wave func-
tions. The small amount of charge outside of r,
contributes significantly to the stopping cross-
section calculations and is of increasing impor-
tance as the projectile velocity decreases. Hence
some modification of the charge density used to
obtain the stopping cross sections in solids is nec-
essary.

Assuming that the basic structure in the HFS
solutions for p(x) will be modified in the region
r -r„we have renormalized the density by

'p'(r)4n r ' dr = Z,

with

p'(r) = p(r) +« (7)

where p(r) is the Clementi fit to the HFS density,
the power P can be set arbitrarily, and C is a nor-
malization constant. The form Cx~ for the addi-
tional term in the density gives a simple method
of obtaining different distributions, over the re-
gion bounded by x„ for the charge originally out-
side of r, . For P =0 the additional charge is spread
uniformly over the spherical volume; for P = 2 it
is more concentrated at the surface of the sphere
of radius r, Whe.n p'(x) from Eq. (7) replaces p(r)
in Eq. (2) the upper limit on the integration be-
comes r, .

The integrand of Eq. (2) for a Au target is shown
in Fig. 3 for different electron density distributions
and two beam energies. The discontinuity in the
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FIG. 2. Fraction of the
4He electronic stopping
cross-section calculation
occurring inside of an
atomic size parameter
ro =0 62K versus tar-
get atomic number &2. The
upper, middle, and lower
curves correspond to cal-
culations for He energies
of 4.0, 1.0, and 0.4 Mev,
respectively.
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slope at about 1.1 and 1.6 Bohr radii for the 1000
and 400keV curves occurs at the matching point
of the asymptotic solutions to I. This feature is
less pronounced at higher energies. As the ener-
gy increases, the peak position continues to shift
toward the origin. For the two energies shown,
17,5% and 35% respectively, of the integral fall
outside of r, when a free-atom electron density
is employed. Also plotted are curves based on the
renormalized density with P =0 and 2 in Eq. (7).
The final integral is not very sensitive to the
choice of P in the renormalization procedure.
However, any Z, fine structure in the free-atom
stopping cross sections that results from the den-
sity variations at x ~ r, has been eliminated in the
calculation for a solid. In addition the density near
r, is modified, altering the effect of structure in
the original free-atom density. These modifica-
tions will be most important at low energies.

Figure 4 shows the stopping cross section as a
function of target atomic number. The upper and

l000 ke V

lower curves are calculated for a free-atom elec-
tron density (the lower one giving the contribution
only out to r,). The middle curve joins points ob-
tained when a Cr ' term is used to renormalize the
density. There is some modification of the fine
structure, but the main oscillations are still pres-
ent. The differences between the curves is not as
apparent in regions of steep ascent such as at ]3Al
where the curves have values of 63, 81.5, and
98.6 eV cm'/10" atoms.

B. Pro~ecole charge state

In the calculations thus far we have assumed (as
Ziegler and Chu') that the helium projectile is
doubly charged. If the helium ion is not fully
stripped the stopping cross-section calculation
in Eq. (2) must be modified.

The LSW calculation for the stopping cross sec-
tion S, is based on the assumptions (a) that a point
charge &, is moving in a dielectric medium and
(b) that S, can be expressed in terms of a product
of the charge squared and a function L that depends
only on the electron density of the stopping mate-
rial and the velocity of the projectile relative to
the electrons. If the moving ion picks up elec-
trons, then for distances greater than the dimen-
sions of the moving charge distribution it will ap-
pear, at least to a first approximation, as a point
charge with an effective charge yZ, e. The effec-
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FIG. 3. Integrands for the 4He stopping cross section
in gold, at two He projectile energies, for different as-
sumed target electron densities. The solid curves are
for free-atom distributions p. The dashed curves are
for densities renormalized by JI I 4zr (p+C) dr=Z&, and
the broken curves are for densities renormalized by
f~"04zr(p+Cr2) dr=Z2, where ra-Sa~ for gold.
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FIG. 4. Theoretical stopping cross sections for 400-
keV He as a function of target atomic number &2. (a)
for free-atom electron densities p(x), (b) for electron
densities renormalized by Jo 04rr2(p+Cr ) dr=Z2, (o)
for free-atom electron densities with the calculation
truncated at r= ro.
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tive charge is obtained from (see the review paper
by L. C. Northcliffe")

Z 2
(rZ, )' = g I'P;, (8)

4= 1 4=0

where i is the charge state and Q; is the population
of that state.

If the major part of the calculation for L comes
from regions outside of the radius of the projectile
charge distribution, then S, can be determined as
for a point charge of value yZ, e. However, ac-
cording to Bohr and Lindhard" the finite extent
of the moving charge distribution is important for
high-Z, projectiles at low velocities, such as fis-
sion fragments, since colliding electrons that pen-
etrate the moving electron distribution are affected
by a higher net charge than yZ, e. Basically this
effect results in a greater value of S, than would
be obtained for the corresponding effective point
charge. The calculation of L(p, v) for low veloci-
ties must be replaced by L( p, v, yZ, ) which in-
cludes the dependence on the projectile charge
distribution.

At sufficiently low velocities of the He projectile
a major portion of the calculation of L comes from
impact parameters that correspond to paths inside
of a He atom electron distribution. As an example
we consider 400-keV helium. At nonrelativistic
speeds there is negligible energy loss to electrons
whose impact parameter with respect to the pro-
jectile is greater than 5 -v/~, where &u

= (4ne'p/m)' ' is the plasma frequency for a gas
of electron density p.' " Each target atom has
a range of electron densities p(r) On av. eraging
over the electron charge distribution to obtain the
mean stopping cross section in Eq. (2), a maximum
in the integrand occurs at some specific electron
density. As may be seen in Fig. 3 this maximum
occurs at about two Bohr radii or a density p(2a, )
for the Au target electron distribution. Using this
density for a renormalized STO, we obtain a bmm

of approximately 1 A. The b,„ in carbon at a den-
sity of p(2a, ) for the renormalized STO is only
slightly larger at 1.6 A. Since this is of the same
order as the size of an atom, the calculation will
be modified if the helium projectile carries any
electrons at this energy.

Using the charge state values from Table VI-15
of S. K. Allison" in Eq. (8), we have calculated the
effective charge for helium. This is plotted in
Fig. 5. Clearly, below 2 MeV it is important to
take the effective charge into account. At 400 keV,
15% of the beam is neutral while 65% is singly
charged.

One further investigation can be made without an
explicit calculation of the more appropriate
L(p, v, yZ, ). If point charges of Z,e and yZ, e are

IV. SUMMARY

The experimental Z, oscillations in the He stop-
ping cross sections have been reproduced using
both the simpler STO's for free atoms and renor-
malized STO's for atoms in solids. The fine struc-
ture on these oscillations is modified when a re-
normalized density for a solid is employed. Zieg-
ler and Chu' have adopted a semiempirical ap-
proach where the stopping cross section is scaled
to the existing experimental data. Differences in
the fine structure that are associated with the
choice of the wave function will lead to errors in
the interpolated values. In addition, at low ener-
gies this semiempirical procedure may lead to
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used with L(p, v) in Eq. (2), we should obtain upper
and lower bounds, respectively, on the stopping
cross section. Figure 6 shows the values obtained
for S, based on the renormalized electron density
from Eq. (7) with P = 2. At a helium beam energy
of 400 keV the curves do indeed bound the experi-
mental measurements with only a few exceptions.
Since, as discussed earlier, the main energy loss
at this velocity is to electrons that penetrate the
ion's electron distribution, most electrons see an
effective point charge greater than would be ex-
perimentally measured. It would appear from Fig.
6 that in many targets one would be more in error
using an experimental yZ, e with the unmodified L
calculation than one would be by using Z,e for the
point charge. At 1000 keV almost all of the experi-
mental measurements lie above the calculated up-
per bound. The simple inclusion of an effective
point charge only increases the discrepancy.
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FIG. 6. Comparison of the estimated upper and lower
bounds (solid curves) of the stopping cross sections of
4He according to the Lindhard-Scharff-Winther theory.
The triangles represent experimental results taken
from Ref. 9.

erroneous results since a modified treatment of
L, due to the nonpoint nature of the projectile

charge distribution, could change the oscillatory
structure. The inclusion of screening of the He
ion through the use of an effective point charge as
by Northcliffe" without a corresponding change in
L(p, v) leads to values of S, that are generally too
low.

Although the oscillations at a helium beam ener-
gy of 1000 keV were reproduced in the present cal-
culations, the magnitude of the expected upper
bound was somewhat low. This may be the result
of one of several approximations: (a) The electron
charge distributions used for the solids are only
approximate, both because of the ad hoc form of
the renormalization and because no solid-state
structure effects are included. It should be noted
that the recent tables of Clementi and Roetti, "
which supersede the ones used in this work, are
still fits to the free-atom HFS wave functions.
Since the LSW theory uses the total electron den-
sity the structure of the individual orbits is not
critical. The earlier tabulation, which gives re-
sults for stopping powers close to those based on
HFS wave functions (Fig. l), is adequate for the
calculations presented in this paper. (b) The so-
lutions for L appropriate for a free gas are only
for a first-order linear treatment of the equations.
The form of L given by Eq. (5) is itself an approxi-
mation to this solution. (c) Since the polarization
of an electron gas at any point depends on the elec-
tron density occurring nearer to the projectile, the
extension of the solution for a uniform gas by an
average over the target-atom density distribution
in Eq. (2) may introduce some error.

As a result of the above considerations it is clear
that for accurate theoretical estimates of the stop-
ping cross section, more reliable estimates of the
electron densities in solids are required together
with a knowledge of the dependence of L on the
charge state of the projectile.
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