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The short- and long-time behavior of the velocity-correlation functions characteristic for the coeffi-
cient of.self-diffusion, .and the kinetic parts of the coef'ficient of viscosity, and thermal conductivity,
respectively, are computed. approximately as a function of the density for a gas of hard disks or hard
spheres on the basis of kinetic theory. The results obtained here are a generalization to higher densi-
ties of those obtained in an earlier paper, and reduce to them in the low-density limit. The density
dependence is obtained by taking into account a larger number of dynamical events than previously
considered. It is found that for short times the correlation functions decay exponentially, but that for
longer times t, the correlation functions decay a" (n)(t/to)"" where n is the density, to the mean
free time between collisions, and d is the number of dimensions. The coefficient a" (n) is determined
by the transport coefficients of the Enskog theory for a dense gas of hard disks or hard spheres and
is in very good agreement with existing computer experiments.

I. INTRODUCTION

In a previous Letter results were given for the
short- and long-time behavior of certain velocity
autocorrelation functions. In a .previous paper'
(henceforth indicated by I) these results were de-
rived to lowest order in the density on the basis
of kinetic theory. In fact, we found that for hard
disks or hard spheres of diameter a, the velocity
correlation functions p

'
(t) were given in d di-

mensions, for long times t by the relation: p (t)- o. l(p)(t, /t)' '. Here the coefficient ut ~(p) was
determined to O(p" '), p=na', and t, is the mean
free time. In the present paper these results will
be generalized to higher densities and the full re-
sults quoted in the letter will be derived. In I the
kinetic theory was presented for systems consist-
ing of particles interacting with an additive, sphe-
rically symmetric (continuous) potential. However,
the resulting expression [I Eq (3.13)].was applied
to hard spheres and to hard disks in spite of the
fact that the binary collision operators appearing
in this expression contained the derivative of the
intermolecular potential, which is not well defined
for such particles. It was argued that this was
not serious, since for the final results the explicit
forms of the binary collision operators occurring
in these expressions were never needed. The re-
sults in the present paper, however, cannot be ob-
tained without use of the special form that the bi-
nary collision operators take for ha, rd-disk or
hard-sphere potentials. Therefore in this paper
we set up the kinetic theory, from the beginning,
exclusively for such potentials, and also our final
results are only meaningful for such. potentials.

Since these final results reduce, in lowest order
of the density, to those obta, ined in I, they also
present an a posteriori justification for them.

We consider a system consisting of N identical
particles in a volume V, at temperature T =(ksP) ',
where k~ is Boltzmann's constant. We a,re inter-
ested in velocity autocorrelation functions that oc-
cur in the time-correlation-function expressions
for the transport coefficients. We shall treat in
detail the velocity autocorrelation function rele-
vant for the self-diffusion coefficient D, which is
the simplest. In d dimensions (d=2, 3) this cor-
relation function is defined by

where

4~ ~(f„t)= ))m m'(v,', ) 'v Jdx 's, (x")p(x")v„,
N, V~~

(1.2)
Here v,„(t) is the x component of the velocity of
particle 1, (mass ~) at time t, v,„(0)= v,„. The
angular brackets denote an average over a canoni-
cal ensemble, characterized by the probability
density p(x"), where x =—x„x2, . . . , x~ stands for
the phases x,. =-r,-p,. of the N pa, rticles 1, . . . , N.
S,(x~) is the X-particle streaming operator
which, when acting on a function f(x") of the phases
of the N particles, transforms this function as

S,(x"}f(x")=f(x"(-t)),
where x"(—t) =-x,(-t), x,(-t), . . . , x„(-t) are the
(initial) phases of the particles I, . . . , N that lead
to the pha, se x" at time I;, when they move accord-
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ing to their Hamilton function:

N 2 N

H(x") = Q —'+ Q (t)(x;,) .
i=1

(1.4)

ponding ones in I [Eqs. (2.5)-(2.7)], one sees that
the T or T operators formally replace the 8 opera-
tors in I.

In (1.8) and (1.9),

Here the interparticle potential jtj(r;, ) depends only
on the distance r„.=

~ r, —r, ~
of the particles i and

j and is given by

N

X (x")=
0 ~ r&~ (1.10)

Q(x;,)=~ if rj&a
=0 if x, , ~a, (l.5)

r(j j)=d' f dir lv r irl e(r, , —air)
~ g )p

x [R,(i, j) —1],
where a is the diameter of the hard disks or hard
spheres. The canonical probability density p(x")
is given by

p(x") =Z ' exp[-)8H(x")]
N 2

=Z ')p(r")exp( jj�—-'
Q$=

where

N

)V(r") = exp (-j!Q p (r, ,))
i&j

(1.6)

is proportional to the configurational probability
density to find the particles in the configuration
r"=—r„r„.. . , r„and Z is given by

dxN e- BH(~N) (1.7)

and
(1.8)

N

S,(x")W(r")=exp -t X,(x") —QT(i, j) . (1.&)
i&j

Upon comparing these expressions with the corres-

For the (hard core) potential (1.5), W(r") = 0 when
any pair of particles overlap, i.e. are separated
by a distance smaller than a. The number density
of the system is given by n =N/V.

In I an explicit representation of S,(x") was
given, but since it contained derivatives of the in-
terparticle potential jt)(r), this expression is not
meaningful for hard-core potentials. In this paper
two explicit representations" of S,(x"), in com-
tjination with W(r"), will be used, which are such
that the following two conditions are fulfilled:
(1) The probability density for any configuration,
in which two or more particles overlap, is zero;
(2) when acting on a function f(x"), it gives
f(x"(-t)).

The representations are given in terms of opera-
tors T(i,j) or T(i, j), depending on whether W(r")
precedes or follows S,(x"), respectively:

N

W(x~)s, (x") = W(r") exp -t X,(x") —g T(i, j)
i &j

while

aee A

v,. =v, —(v, , ~ o)a, v,'. =v,. +(v;,. &)o. (1.13)

For further details concerning these representa-
tions, we refer the reader to the literature. In

Appendix A some properties of the T and T opera-
tors relevant for this paper are summarized. We

note that because of the separate conservation of
kinetic and potential energy in hard-disk and hard-
sphere systems,

W(y")S,(x")= S,(x")W(r") . (1.14)

In following sections ply"l(t) from (1.1) will be
computed approximately for short as well as for
long times. In Sec. II cluster expansions will be
introduced that form the starting point of our cal-
culations. 4

In Sec. III the short-time behavior (t& 3t,) of
p~(4'(t) will be derived. In Sec. IV the classes of dy-
namical events that are considered here in the cal-
culation of the long-time behavior of p~~~l(t) are giv-
en. In Sec. V the hydrodynamical modes that de-
termine the long-time behavior of p~~~~(t) are deter-
mined. In Sec. VI the long-time behavior of
ptD~(t) and in Sec. VII that of p(„'~(t) and p(~ are ob-
tained. This will allow us to make a comparison
of the theoretical results derived here with the
computer results obtained by Alder and %'ain-
wright' and by Wood and Erpenbeck' for the long-
time behavior of p(j) l(t) over the full range of densi-
ties for which these results are available. A few
comments on the results, supplementing those
given in I, are given in Sec, VIII.

T(ij)=a f, dirlv, , irlle(r, , — ir)jja, (rj)
V~j 'a&0

—5(r, , +aG)] . (1.12)

Here'b v,.j =v, -v,. ; cr is a d-dimensional unit vector
that characterizes the point of contact of the binary
collision between the particles i and j in the rela-
tive coordinate system moving with particle j, with

j as origin and v, , as z axis. The operator R, (i, j),
when acting on functions of the velocities v, and

vj, replaces these by the velocities v,' and vj of
the restituting collision, which are given by
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II. CLUSTER EXPANSIONS

Our starting point for the calculation of pI)' (v„.t) will be an expression for BC I)'(v„ t)/Bt that can be der-
ived directly from Eq. (1.2):

' " ' =Pm"+' lim — dx" ' T(l,j)$,(x")W(r")exp -P ~ v,„.
Bt NV- Z 2m

N/Y =n j=2 j=1
(2.1)

(2.2)

Here we have used that (v', „) '=(8m, the property (AVj) of T(i, j), spatial homogeneity of the system, and
that p(x") is assumed to vanish at the walls of the system. '

We consider slav/st rather than 4 (v') (t) as a starting point for the cluster expansion to be carried out be-
low. The purpose of this is to use Eq. (2.1) together with Eq. (1.14), so that both T and T operators will
appear in the cluster expansion. VVe will then see that the form obtained is especially convenient for the
extraction of the Enskog theory results. '

Vfe now introduce two cluster expansions, that lead to a formal density expansion of the right-hand side
of Eq. (2.1).

(1) We invert, using Eq. (1.14), the order of S,(x") and W(r") in the integrand of Eq. (2.1). Then it is
appropriate to use the representation of S,(x") in terms of T operators as given by Eq. (1.8). We then
expand S,(x") for use in Eq. (2.1) as follows'

N

S,(x") =exp tX,(x")-—g T(i, j)
i&jI

=~( x„x„t) S,( x" ')+g ~-(x„x,~x,;t)S,(x" .')+ P -~(x„x,~x, , x,;t)S,.(x" ')+ ~ -~ ~ .
i=3 3«i&j «N

The operators &(x„x,~x„.. . , x„t) can be obtained successively from Eq. (2.2) by writing them out for
N = 2, 3, . . . , ¹ Thus one finds

~(x„x„t) = S,(x„x,) = exp[-t fX,(x„x,) —T(1, 2)]},

~(x„x2~x,; t) = S,(x„x2,x,) —S,(x„x,)S,(x,)

(2.3a)

=exp -t X, x„x„x3 — T i, j —ex -t o ~l~x2, x3 —T 1, 2
1«i &j«3

~(x„x,I x„x„t) = s,(x„x„x„x,) —S,(x„x„x,)S,(x,) —S,(x,x,x,)s, (x,) —S,(x„x,)s,(x„x,)
+2S,(x„x,)$,(x,)S,(x,),

(2.3b)

(2.3c)

etc.
Inserting cluster expansion (2.2) into the right-

hand side of Eq. (2.1), using the identity of the
particles and that the kinetic energy is a conserved
quantity in a system of hard disks or hard spheres,
so that

s
)r(r')S, (x') exp (- — g r,'.)il

Q= dr" W(r") (2.5b)

(2) In order to obtain an expansion in powers
of the density n, one also has to make a cluster ex-
pansion of the g(r„. . . , r,), which leads to the
well-known density or virial expansion of the
g(r ~ r,)

s
= W(r') exp — g v',. S,(x'),

g(r„. . . , r, ) = g, (r„.. . , r, )n
E=O

with

(2.6)

(2.4)
an expansion for 84 v '/Bt is obtained that contains
the reduced equilibrium distribution functions of
the system defined by

xg, (r„,r, Ir.+~, ~ ~ r.+))

(2.7)s
g(r„r„.. . , r, ) = lim — dr" ' W(r") (2.5a)

))(/F = n

for s = 1, 2, . . . , where

and in particular
s

Ã, (r„.. . , r ) = exe (-I) P (' (r s))
i&j

(2.8)
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and
S

g, (r„.. . , r, (r„,)=exp ( gg-4(r;t))
i& j

xP
f-2 i1&i2& o o o&$&

1

For our hard-core potential, one finds, using Eq.
(1.5), a unit step function for f(r, , ), viz. ,

f(r, &)
=.-1 if r, &&a

=0 if x, , &a. (2.11)

These two cluster expansions then lead to the fol-
lowing formal density expansion of BC ~~ ~/Bt:

,8+I ' (2 9)

(2.10)
l

Here f(r, , )
=f,, ar—e the Mayer f functions defined by

f(r ) e [- 8o(rig)1 1ij

84, (&) oo

= Pm Qn'6~„(v„ t)v,„y,(v, ),

where

(2.12)

6, (v„ t) = d2 T(1, 2)g,(r„r,)~(x,x„.t)y, (v,), (2.13a)

8, (v t)= f d„2 f dtr((, 2)(g (r r„r) e(x x, lx„t)+g(r„r, lr)et(xx„t)] g(v) 8( v), (2.13b)

8, (v„tl=-', f d2 dt deT( ,2)2(g(r„r„r„r,) e(t,x,x*(, xt)+g, (r„r„r,lr, )et(x,x, (x„t)

+g,(r„r„r,i r, )~(x,x~ i xd; t) + 2g, (r„ra i r„rd) ~(x,xa; t) ]go(v(2) yo(v, )y()(vd),

(2.13c)

D ~ 1
l( 1t ) ([ 2)l

d2 ~ ~ ~ dl T(1, 2) g,(r„.. . , r, )ttt(x, x, ix, ~ x„t)

(f -2)!'
g, (z „.. . , r, , i r, ) ~(x,x, i x, x, „t)1 lt'''t l 1 l

(l —2) l

g (r, . . . , r, i r, , z, ) %1(xzx2 ix8' ' 'x, 8; t) +4)( 8 lt'''t 1 2 l 12 l

+ ([—2)!g, ,(r„r, i r„.. . , r, )~(x,x„t)
' "

y, (v, ) . (2.13d)

Here 1 stands for r» v» etc. , d2 = dr, dv„etc. ,
while y, (v) is the Maxwell velocity distribution
function:

y, (v) = (pm/211)'i'exp(--', pmv') . (2.14)

The Qiv(v„ t), if Laplace transformed, formally
reduce to those in I, when these are specialized
to the case of hard-core systems.

The cluster expansion (2.12) for BC v(~/Bt can only
be used to compute BC I)')/Bt for times of the order
of f, =a/(v), where (v) is an average velocity of the
particles and t, a time much smaller than the
mean free time t0. For a dynamical analysis of the
tz!vl(v„ t) in terms of the collision sequences be-
tween the particles that contribute to the integrals
reveals that they grow with time -(t/f, )' ' as a
result of sequences of (l —1) binary collisions
among the l particles. ' " An improved expression
for BC (z)"/Bt, where these collision sequences have
been eliminated, can be obtained by using the in-
version procedure described in I. For that purpose

ett'1(v el= f dte "et l(v t) (2.15b)

and

8 (v; e)= f dte 8 (v;1).
0

(2.15c)

We now define a new set of operators az, (v„e) by
means of the jdentj. tys, 1

oo oo —1
1 + Qrl 81+1(vlt 8) = 1 —Q ri +1+1(vlt' f)

1=1 L=1

(2.16)

it is convenient to consider the Laplace transform
of Eq. (2.12), which is, using 4 D(d~(v„t = 0)
=!B vz. &8( 1)

4 '(v„e)=ttm(1++ 'tg„(v„e))v,„et (v),
l ~1

(2.15a)
where
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which yields

BI„,(v„e) = g (-1)'"

so that

Z )a)=l

(2.17)

$, («, ; «) = 8, («„.«) = Jd2 T(12)«,,(T„T,)e(««„«lq „(«,), (2.18a)

S (v ' E) = 83 (v~~ E) —[82 (v~,' 6)]

d2 d3 T 1, 2 pp r] r2 r3 Qxpx2 x3p 6 +p] rgb r2 r3 x/x2j E

-g,(r„r,)~(x,x„c)T(l, 3)g,(r„, r,)~(x,x„.e)]y,(v,)y, (v,),
6I4 (v~' f) = 8~ (v~q t) —8~ (v» E) 82 (v~q f) —Q (v~q f) 8~ (v~~ 6) + [8~ (v~~ E)]

d2 J( d3 f d4 T(l, 2){[Z,(r„r„r„«,)'«(«,«, I «,«„«)

+2g, (r» ra, r, ~r4) ~(x,x, ~x» e) +2ga(r„ra~r» r, )Ql(x,x2; e)]

(2.18b)

—2[g,(r~, r„r,)e(xx, ~x„e) +g, (r„r, ~r, ) e(xx» &)]T(1,4)g,(r„r,)~(x,x„e)
—2g (ro„r~)~(x,x„e)T(1,3),g,(r„r„r,) ~(x,x, ~ x4; c) +g,(r„r, ~ r,)~(xx„.e)]

+2g (r„r )~(x,x„.e)T(1, 3)g,(r„r,)%(x,x„e) T(1, 4)go (r~ r4) &(xP~' ~)])

)(po(vm) po(vs) po(v4), (2.18c)

where %(x„x„e),~(x„x,~x». . . , e) are the La-
place transforms of It(x„x„t), ~(x„x2 ~ x„.. . ; t)
defined by Eqs. (2.3a) —(2.3c).

One can show, by using Eq. (1.14) for N
=2, 3, . . . , that these expressions for $„,(v„e)
are identical with those given in I, if one replaces
the 6;& operator in I, by T(i, j).

Using (2.16) in (2.15a), we obtain
oo 1

e~"(»,; «)=l3«(e —Q«'«a«„(v, ; «) «„q„(v,).
l =jj.

(2.19)

Although the collision sequences which lead to the
secular growth of 8, (v„ t) do not contribute to the
S„and for hard spheres (i.e. , d=3) indeed cIB2

and e~, exist in the limit e-0, the higher c, do
not, since e(g~ -loge and in general e, —e " ~

for l&4."'" Similarly for hard disks (i.e. , d=2),
GQ2 exists as c-0, but e, - loge, while in gener-
al ~~, —e ~' '~ for /&3 as e-0 "'"

Therefore also the expression (2.19) for @~~~I can-
not be used to obtain the behavior of Cv (e) for e-0
or of C~~'I(t) for large t. In I we showed that a rear-
rangement of the , series can be made, by sum-
ming the most divergent contributions to the ,
as e-0 over all /. We obtained an expression for
4 ~' (v„e) that leads to an exponential-like behavior

for short times and a behavior (t/t, )
~' for long

times, but the coefficients occurring in both could
only be determined to lowest order in the density.

In Secs. III and IV we will sketch a more ex-
tended rearrangement, in which not only the most
divergent but also what we consider to be the most
important less divergent contributions to the E'g

as c-0, are summed. We will obtain an expres-
sion for 4 ID I(t) that can be used to obtain the short-
and the long-time behavior of 4~zfI(t) and pIv"I(t) valid
for higher densities than the corresponding expres-
sions in I.

III. SHORT-TIME BEHAVIOR OF pP&(t}: THE ENSKOG

THEORY

The extended resummation of the , series men-
tioned in Sec. II requires a detailed study of the
sequences of binary collisions that contribute to
the S, . However, there is a simple and easily
identifiable class of collision events, that deter-
mines the initial slope of p ~"(t) exactly and its
short-time behavior to a good approximation.
Before going into a more detailed analysis of the
, in Sec. IV, we discuss in this section this
above-mentioned class of events and the short-
time behavior of pIvI(t).

The initial value of pvI~'(t) follows directly from
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the definition (1.1): pvt"l(0)=l. The initial slope
can also be found directly from (1.1), using (2.1},
(2.5), and that g(r„r,) is only a function of r»
=(r, —r, ~

. One obtains

dp((() t
=nPmX(a) d v, v, „Av(v, )v,„(p,(v, )t=0

X(—a)/pm D... (3.1)

(3.2)

Here X(a)-=g(r»--a) occurs, because the & func-
tions in T(1, 2) require that r„=a. &0(v, ) is the
Lorentz-Boltzmann operator defined by

Xe(v, ) = I dv, f dr T(1, 2)rp (v )'

=a" ' dv, do' v„a
v12' 0 &0

x[&.(1, 2) —lit, (v, ) .

where Do 0, the first Enskog approximation to the
Lorentz-Boltzmann-equation value for the self-
diffus ion coeff ic ient, is given by"' "

D, , =[2na(Pwm)'~'] ' if d =2

=3[8na'(Pwm)'t'] ' jif d=3 .

sion correction of the Lorentz-Boltzmann equa-
tion according to the Enskog theory for a dense
gas of hard spheres. One can therefore also say
that the initial slope of pv (t) is given correctly
by the Enskog dense-gas theory. "

For short times (i.e., time t&3t, ) one could hope
that the same excluded volume effects would give
the leading contribution to pP (t). The T and
'tt(x, , x,~x„.. . , x, ; e) operators and the functions
g, (r„r,~ r„.. . , r, +,) occurring in the integrand
of the Sv( operators, Eq. (2.18), appear in such
a way that those parts of the 8, which lead to the
Enskog theory can be immediately identified.
These terms are those that take into account only
the excluded-volume corrections to the binary
collision between particles 1 and 2, and thus have
the structure T(12)g, (r„r,~ r„.. . , r, +,)'lt(x„x, ; e)
in the integrand, since the factor g, (r„r,~ r„
. . . , r„,) incorporates t -particle excluded-volume
corrections to the (1, 2)-binary collision event
described by T(l, 2).

Thus, approximating Sv) by this one term [cf.
Eqs. (2.17) and (2.18)]:

'r, E= d2 ~ d/T 1, 2 gr 2 r» r2 r„.. . , r

Using Eqs. (2.6)-(2.9), one has for X (a)

(3.3) r

x &(x,x„e)'
[ (p, (vf )

X(a) = I +P n' X i (a),
l=i

(3.4) =X, (a) Jd2T(1, 2)eI(xx;e)IP (v, )

where

X,(a) =1,

X, (a) = j d r,f„f.,i,„
(3.6a)

—,'(-', —W3/n)na' if d =2

iH if d=~ ~ (3.6b)

The X, (a) (t~l) take into account excluded volume
corrections to the low-density result X0(a) =1.
Thus X, (a) corrects for the fact that the two par-
ticles 1 and 2 can only touch at &» =a, if no third
particle is in the way. In fact, the Mayer f func-
tions occurring in (3.6b) require, for a non-
vanishing contribution to the integral, that par-
ticle 3 overlaps simultaneously with the particles
1 and 2, so that +13&a and ~23~a

Note that X(a)Xov(v, ) is just the multiple colli-

X, (a)= f dr, ~ ~ fdr, „d (r„r l r„.. . , r, , )l,

(3.5)

and in particular"' "

= (I/&)X2, (a)&', (v, )

leads to an expression for Cv '(v„&) of the form

(3.7)

OO

(v,'a)=(a —g a X (a)1 (v ) v rp {v )
l=i

=[& —nx(a)&(& (v, )] 'v„(I(2,(v, ).

The subscript E indicates that @~~"~s(v„e), when
used to compute the coefficient of self-diffusion
D, leads to a value given by the Enskog theory of
hard-core particles. In arriving at Eq. (3.8), we
used that the operator tt(x,x„e), when acting on
a function of v„alone, can be replaced by I/e, on
the basis of the Eqs. (2.3a) and (A7c).

Inversion of the Laplace transform leads to

ID{"is (v„ t ) = exp[tnX(a)&ov(v, )]v,„(p (v, ), (3.9}

so that, with Eq. (1.1), the corresponding expres-
sion for p~ is given by

p (I)=dvrf d'v, v„exp{var(a)X (v )lv„p (v, ) .

(3.10)

The initial slope of pa{")z(t) equals that of pD{ )(t).
A good approximation to po )s(t) is given by"
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pv(d)s(t) =- exp(- t/p2nDs 0), (3.11) en', +,
where D~, is the first Enskog approximation to
the coefficient of self-diffusion according to the
Enskog dense-gas theory, given by"

Ds =D /X (a), (3.12)

where D, , is given in Eq. (3.2) for d =2, 3. Since
PmDz 0 is proportional to the mean free time
t„pv( s(t) decays in a few mean free times. Equa-
tions (3.10)-(3.12) are a good approximation to
the short-time behavior (i.e., for times t& 3t,)
of pod (t), and they agree well with the computer
results over this period of time. ''

In the next section a more complete resummation
of the , series will be made.

IV. CLASSIFICATION OF DYNAMICAL EVENTS:
RESUMM ATION

In this section we consider the dynamical events
that appear to determine the behavior of the veloc-
ity autocorrelation function for long times, in addi-
tion to those we considered in the previous sec-
tion that dominate the short-time behavior.

In I it was shown that the resummation of the
most divergent terms in the series

leads to the result that

p(d )(t ) o((d) (t /t )d /2

where the coefficient &v(d) is determined to O(nd ').
In this section we will also take into account in
the resummation several classes of less divergent
dynamical events, which we believe on physical
grounds, to give the dominant contribution to the
long-time behavior for higher densities. The con-
sequences of this resummation will be discussed
in Sec. VI.

To carry out this resummation„one has to
make a dynamical analysis of each operator cS,
as to the collision sequences that contribute to it;
then one has to determine the long-time (or small
e) behavior of the S, for these collision sequences
and finally one has to sum the divergent contribu-
tions of all l in the series. We have only been
able to carry this out for a restricted class of
collisional events. We shall sketch the procedure
followed on &S, and &$4 and refer the reader to
Appendix B for more details.

(a) cSvd is given by Eq. (2.18b). Using the Eqs.
(3.6) and (3.7), we can rewrite eS„using Eqs.
(A7c) and (A7e), as follows:

«12, (v„x)= 2, (a)1, (v ) ~ x fd2 fd3T(1, 2)[d(r„r r) 31{xx„l«„x)

where

—g, (r„r,)G,(x„x,)T(1, 3) G, (x„x,)] {p,(v, )y, (v,), (4.la)

G,(x„x„.. . , x, ) =[.+X,(x„x„.. . , x, )]-' . (4.1b)

The dynamical analysis of &S„and in fact of all &8, , is facilitated if one uses the binary-collision
expansion of the operators 'tt(x„x (x„.. . , x» e) (l =3, . . . ) in terms of the T operators as well as the cluster
expansions of the equilibrium correlation functions g (r„r,), g(r„r, ~ r, ) in terms of the Mayer f functions.
Thus expanding the operator 'lt(x„x,

~ x„e) in terms of the operators T(i,j ) one finds, using the Eqs. (2.3b),
(2.8), (2.10) and (A7a), (A7c), (A7f), and (A7i),

( ~«x31)=v2, (a)1 (v )vf d2f d3T(1, 2) f(2, 3)G(x„x„x)2(1,3)vr (v)d (v)

+ d2 d3T 1, 2 Gox„x X 12 3 Go x„x2 T 1, 2 gov2 + ~ ~ (4.2)

with

){v(12
( 3) = [ T (1, 3) + T(2, 3)(1 +P2, )] {po(v,),

(4.3)
where P» is a permutation operator that exchanges
the indices of the particles 2 and 3. In (4.2) we
have not written down the terms involving four
or more collision operators or terms involving

three or more collision operators combined with
one or more Mayer f functions. A complete dis-
cussion of eD, has been given by Sengers et al. ,

2'

and we shall mention only those points relevant
for our discussion. The first term on the right-
hand side of Eq. (4.2) represents the first density
correction to &Ov(v, ), which was already dis-
cussed in the previous section. The short-time
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behavior of the second term on the right-hand side
of Eq. (4.2) can be neglected compared to the first
term. " In Appendix C, we take the long-time be-
havior of this term into account and show that it
does not contribute to the t ~ ~' behavior of p~ (t).
The third term is the three-body ring term, al-
ready discussed in I. This term diverges -ln&
in d =2 and is finite in d =3 as & -0. It should be
noted, that although this term differs from that in

I, in that there only T operators occurred, the
dominant behavior of both forms of the three-body
ring term as & - 0 is the same, since the difference
between the expression in I in terms of T oper-.
ators and the expression here is terms of 1' and T
operators is determined by collision sequences with
overlapping configurations of the particles. Such
configurations do not contribute to the dominant
behavior of eS~(v„e) as e -0." We remark that
although the three-body ring events also contribute
to the short-time behavior of p~~~~(t), their con-

tribution can be expected to be small in this case
compared to the excluded-volume corrections con-
tained in the first term in Eq. (4.2)."

(b} e$4D is given by Eq. (2.18c}. We expand
%(x» x, ~ x,;c), %L(x»x,

~ x,;e}, etc. in terms of T
operators and the equilibrium correlation func-
tions in terms of Mayer f functions. Many of the
resulting terms can then be shown to cancel or to
vanish with the help of the Eqs. (A7a}-(A7g) and
(A7i}. Of the remaining terms, we shall restrict
our attention to (i) the excluded-volume correction
y, (a)Ag to ROD, already discussed in Sec. III; (ii)
the four-body ring events that give the leading
divergent contribution as & -0 and were already
discussed in I; (iii) a certain class of excluded-
volume corrections to the three-body ring term,
that would appear to incorporate the leading den-
sity corrections to the long-time behavior of
p~'(t) obtained in I. We then obtain the following
expression for e4.

&$4 ( v~; e) = X2(a) Xo (v, )

+ d2 d & d4 T 1 2 Go'X 12 3 Qok 12 4' GpT 1, 2 po ~2~+ 14 24GO X 12 3,GOT 1 2 po V2 (po V4

+&$4 +LDT,

+f„GO A~(13
~
4)iGOT(1, 3)q&0(v}(po(v)+f„f„GO X~(13

~
4) G,T(I, 3}yo(v,) po(v, ))

(4 4)

where G, in (4.4) is G,(x„x„x„x,) defined in Eq.
(4.1b). The first term on the right-hand side of
Eq. (4.4) represents the second density correction
to Ao~(v, ), which was already discussed in the pre-
vious section. The second term is the four-body
ring term, the most divergent term in &$4 as
e -0 ( &

' in d=2 and In& in d=3), which was
already discussed in I (the difference between T
and T operators for the dominant behavior as & -0
can be ignored again"). The third term represents
an excluded-volume correction to the three-body
ring term. That is, the particles 1, 2, and 3 per-
form the same sequence of binary collisions as in
the three-body ring term, but in addition particle
4 overlaps with both particles 1 and 2 at the mo-
ment of the (1, 2) collision described by the oper-
ator T(1, 2). These dynamical events are sketched
schematically in Fig. 1(a). We shall refer to a
configuration of three particles, where two are
colliding while the third overlaps both, as a double
overlapping configuration. Dynamical events that
contribute to the fourth and fifth terms on the right-
hand side of Eq. (4.4) are sketched schematically
in Figs. 1(b) and 1(c). We remark that the third,
fourth, and fifth term have the same & dependence,
for & -0, as the three-body ring term. The term

E4 contains the contributions of products of five
~ operators, which also contain excluded-volume
corrections to the three-body ring term and will
be discussed below. The last term, indicated by
LDT (less divergent terms) contains the contribu-
tions of all neglected terms. Since these contribu-
tions are less divergent in two and three dimen-
sions as e- 0 than those taken into account in the
previous terms, they will not be considered here
for the long-time behavior of C~(t).

We remark that although e4 is finite in three
dimensions as e -0, it is convenient to include it
in the resummation of the divergent terms.

Of all the contributions contained in e4, we
have examined in detail those that consist of a
sequence of three binary collisions with an ex-
cluded-volume correction due to a double over-
lapping configuration at one of the collisions in
the sequence (cf. Fig. 2). All these terms incor-
porate excluded-volume corrections to the three-
body ring term. They subdivide into two classes:
(i} simple excluded-volume corrections, where
the "double overlapping" particle is not involved in

any other collision in the sequence; (ii) connected
excluded-volume corrections, where the "double
overlapping" particle also participates in one or
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~ ~ ~ ~

~ ~ ~ ~ ~

f =Q. ~ ~ ~ ~

(0)

Q ~ ~ ~ ~ ~

(b)

t=0

(a)

Q ~ ~ 2 ~ ~

4 I

(b)

~ ~ ~ ~ ~

f y , F 22 f=y22

t=o t= 0 t =0".

(c)

FIG. 1. Schematic illustration of some of the dynamical
events which contribute to (a) the third term, (b) the
fourth term, and (c) the fifth term on the right-hand side
of Eq. (4.4). In these diagrams we consider the inverse
Laplace transform of the right-hand side of (4.4). The
vertical direction indicates the direction of increasing
time. We have arranged the events such that the (1,2)
collision described by the T(1, 2) operator takes place at
time t, the middle collision, which illustrates one of the
collisions included in the A. operators, takes place at
time ~(T (t) and the collision described by the T operator
on the extreme right, takes place at timet =0, with
(t» & 0). The shaded particle indicates the overlapping
configuration in each figure.

both of the other two collisions that occur in the
sequence [cf. Fig. 1(c), 2(c), and 2(d)]. We have
assumed here that over the time scale relevant for
comparison with the computer calculations, the
excluded-volume corrections to the most divergent
terms give the dominant density corrections to
these terms. For this reason we consider in

(c)

FIG. 2. Schematic illustration of some of the excluded
volume corrections in e4 which are retained in our
analysis. The times of the dynamical events are ar-
ranged as in Fig. 1. Shown here are (a) a simple ex-
cluded-volume correction to the middle collision in a
three-body ring event; (b) a simple excluded-volume
correction to the collision at t =0; (c) a connected ex-
cluded-volume correction to the middle collision; and
(d) a connected excluded-volume correction to the colli-
sion at t =0. The shaded particle indicates the overlap-
ping configuration.

e$4 only the Enskog term, the ring term, and the
excluded-volume corrections to c, contained in

D
&$4 ~

One might have thought that the only terms of the
above type would be those written out explicitly on
the r'ght-hand side of Eq. (4.4). However, the
c$4 also contains terms of this type which are
hidden in certain products of three T operators.
For, one has the following relation:

[G,(x;, x, , x~, . . . ) T(i, j)G,(x;, x~, x)„.. . ) T(j, k) G,(x;, x&, x„, . . . )

+GG(x;, x&, x„, . . . )T(j, k)G,(x;, xz, x„, . . . )T(i,j)G,(x;, x,, x„, . . . )] T(i, k)
= G,(x;, xJ, x„, . . . )f; q f,» T(i, k) +f;,fq), GG(x;1 xql x„, . . . )T(i, k)

—f;,G,(x;, xq, x„, . . . )fi„T(i, k) —fJ,G,(x;, xq, x„.. . )f; JT(i, k) + ~ ~ ~

(4.5)

where the dots at the end indicate contributions from non-double overlapping configurations. For an
outline of a proof and further details, we refer to Appendix B. Vsing (4.5), one can extract the double
overlapping contributions. A brief indication of how this is done is also given in Appendix B. Then one
finds for the contribution, eS, ;, of the simple excluded-volume corrections of class (i) to el),
[G, = G,(x„x„x„x,)]:

(4.6)

23(,. =
J

d2 j d3 f dd T(l 3)G {{ff T(1 3) +f f T(2 3)(1 +P„.)] G T(1 2) (2 ) +1 T(12(3)G f f T(1 2))

xy, (~,)y()(v, )
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while the contribution, et9, „-, of connected excluded-volume corrections of class (ii) to @tsar is

E'4 ll 2 d3 d4 T 1&2 Gp 23 p4T 3&4 GpT 1&4 pp v3 +Gpss 12 3 Gp 12 24T y pp v2 'pp v4

In (4.7) the first term on the right side gives the
contribution of those sequences of three successive
binary collisions, where the double overlapping
configuration occurs in the middle of the three
collisions [cf. Fig. 2(c)], while in the second
term this configuration occurs at the bottom colli-
sion, i.e. the one taking place at t=0 [cf. Fig.
2(d)J. The restriction to double overlapping ex-
cluded-volume corrections to the three-body ring
term in a{84 is supported by Sengers'" calcula-
tions of e3, where the double overlap terms gave
the overwhelmingly dominant contribution to e'$3 .
In addition, Alder, Gass, and%ainwright's com-

e(adD=y, (a) ZGD+e[9GD„+et8,'s„+cia, ~+I.DT,

where

(4.8)

puter calculation' of D for a gas of hard spheres
over a very wide range of densities showed at
most 30-40%%uo deviations from Ds, given by the
Enskog theory. Since the Enskog theory only takes
double overlap corrections to the Boltzmann equa-
tion into account, these corrections appear to give
the dominant corrections to the Boltzmann result,
even for dense hard-sphere gases.

Combining Eqs. (4.4), (4.6), and (4.7), we can
write A&4 in the form

&@4g= 3 4T, 2Gpx„x, X 12 3Gpx„x~X 12 4'G g ~ T1 2y v (4.9a)

is the four-body ring term;

xal, , = i( d2 f d3 f d4 7(1 2)[f f G (x„x ) 1 (12[3)G (x„x )T(1 2)

+ GG(x„x,) [T(1,3)f„f„+(1+P„+P„)f24f„T(2, 3)] G,(x„x,)T(l, 2)(t),(v, )

+ G,(x„x.,) y'(»13) Go(x„x,) f„f2GT(1, 2)] cPG(v, )yG(v4) (4.9b)
1

represents the contributions from the excluded-volume corrections of class (i) to the three-body ring
term, as given by the third term on the right-hand side of Eq. (4.4) and by Eq. (4.6), as well as the con-
tribution from the connected excluded-volume correction of class (ii) to the middle of the three collisions
occurring in the three-body ring term from Eq. (4.7). Here we have rewritten this term as given in Eq.
(4.7), with the help of the permutation operator P„and I iouville's theorem. Finally,

64 g= d2 d3 d4T 1, 2 „1+13 Gp xi)+3)+4 ~ 13 4 Gp +ly+3 T 1&3 pp v3

+ G,(x„x„x,) X (12
~
3) G,(x„x„x,)f„f„T(l,4)(t),(v, )] rp, (v, ) (4.10)

represents the contribution from connected ex-
cluded-volume corrections of class (ii) to the first
and the last of the three collisions occurring in the
three-body ring term, as well as from the fourth
term on the right-hand side of Eq. (4.4). All other
contributions to e$4 are denoted by LDT and are
neglected.

(c) An analysis of eS, , eS, , . . . can be made,
similar to that of eS, sketched in (b). The enor-
mous number of terms that appear, especially
after the binary collision expansion and the Mayer
f expansion have been made, has prevented us from
a systematic analysis. '4' One can convince one-
self, however, that the same types of terms that
have been considered in e, are also present in

e, , eS, , etc. In particular, they contain contri-
butions y, (a) A, , yd(a) XGD, ete. respectively. These

contributions, together with AG and X,(a) AG from
e, and eS, , respectively, yield upon summation
the operator y(a) A., considered already in the pre-
vious section. In addition, the operators e(g, ,
e, , . . . contain the five-, six-, . . . particle ring
terms of the form:

r-2,
d2 T(1, 2)G.(x„x.) (J d»'((2 [3[(G,(x*.),

x T(l, 2)y, (v,)

for l = 5, 6, . . . . Finally er will also contain the
excluded-volume corrections of class (i) and (ii) to
the ring operators in e„with k &l —1.

(d) Before proceeding with the resummation of
the above-mentioned operators from which we will
obtain the t "t' behavior of pSD)(t) for long times,
we remark that e4 ~ will not contribute to this be-
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havior. For, by a partial resummation of terms of
this type in the S, series, we show in Appendix C
that the resummed expression will not contribute to
the coefficient of t ' '. Therefore the following
types of dynamical events will be included in the
resummation to be carried out below: (1) All ring
operator terms. This will lead to a resummation
of the most divergent contributions in each order
of the density and has already been carried out in
1; (2) all simple excluded-volume corrections to
the ring operator; (3) all connected excluded-vol-
ume corrections to the intermediate collisions in
the sequence of collisions that occur in the ring
operators, i.e., to all but the first and the last
collisions in the sequence. These events are, for
&, , contained in e4 ~, and e, ~„.

We carry out the resummation in a sequence of
steps:

(i) We combine the three-body ring operator
with all the simple and connected excluded-volume
corrections to it, that are contained in e$4,
&„. . . in order to obtain a "modified" three-
body ring operator.

(ii) By including in a similar fashion simple and
connected excluded-volume corrections to the c-
body ring operators, we then construct modified
l -body ring operators.

(iii) Finally all the modified f -body ring oper-
ators for 1 = 3, 4, . . . are summed to give the re-
summed ring operator.

To show how this is done, we first rewrite eD4 ~„
in a different form. The simple excluded-volume
corrections to the three-body ring operator con-
tained in it can be rewritten in the suggestive form:

d2 d3T1, 2 g, a Gox„x, ~ 12 3 Goxj x2

+Go(x„x,) y, (a)X (12
~
3)GO(x„x,)

+ G,(x„x,)XD(12
~
3)G,(x„x,)y, (a)]

&T(1,2)y, (v, ) . (4.11)

Here we have used Eqs. (3.6) and (4.9b). Further-
more, the remaining term in &S, ~„, i.e., the
connected excluded-volume correction to the three-
body ring operator, can be rewritten in the form

d3 d4T1, 2G x„x, , g, r, r r

x T(2, 3)G,(x„x,)T(1,2)p, (v, )p, (v, )p, (v4) .

&, = d2 d 3g a T 1, 2 Goxy x2

x[g (a)T(1, 3)+y (a)T(2, 3)(1 yP„)
+ 1"(2 I 3)T(2, 3)]rp, (v,)G,(x„x,)X (&)

x T(1, 2)&,(v, ),
where

(4.13)

Z (2
~
3) = g n' d 4 ~ ~

1=y
X d(l+3) [P~d+P2, + ' +Pm, +2]

xg, (r„r,~ r„.. . , r, „). (4.14)

Note that the contributions of this type must be
symmetric in the particles 4, 5. . . , l+3 and that
any one of these particles can participate in the
"bottom" collision, i.e., the collision described
by the T operator on the extreme right of Eq.
(4.13).

We have now obtained the modified three-body
ring operator. In a similar fashion one can con-
struct a modified l -body ring operator given by

(4.12)

Hence, resummation of all the simple excluded-
volume corrections to the three-body ring oper-
ator, and all the connected excluded-volume cor-
rections to the middle collision in &Q, contained
in the S, series will 1ead to a modified three-
body ring operator cS, of the form

vS, (v„a)= J(d22 (a)T(1, 2)G (x„x )If d3[2 (a)T(1, 3)T (v )vd (a)T(23)(1 P„)T (v)++1'(2[3)T(2, 3)rp(v )]I

&&6 (x„x,)y (a)T(1, 2)y, (v, ), l=3, 4, . . .. (4.15)

Summing these operators over all l, one obtains an approximate expression for the ~ series which
takes into account the above mentioned three classes of dynamical events. This expression reads

n eS, „v„c=ny a ~ v, +nES v„.c

with

(4.16)

lZGR@(V2,' 6) = Q 8 & $2 d.2(V23'&)
l =2

=n d2T 1 2 g a E ++Oxi x2 —ng d3~ 12 3 pov3 —n d3F 2 3 T 2 3 yov3

»(n)T(1, 2)y, (v.), (4.17)
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where we have included a term n f d2T(1, 2)y(a)G, (x„x,)y(a)T(1, 2), which is identically zero.
Thus C}v (v„e) from Eq. (2.19) is now given by the equation

4v' (v„e) = pm[e —nx(a)A. , (v, ) —ne[Rz(v„e)] 'vk„(po(vk) . (4.18)

It is convenient for a discussion of the long-time behavior of p[Dd](t) to use a Fourier representation of
a[Re(v„e). Using that ~[Rz(v, ; e) does not depend on r, and by inserting 5 functions on the right-hand side of
Eq. (4.17) and using their Fourier representation, one can write a[Re(v„e) in the form:

eS (i„e)= f dv, f, 7 „(1 2-)k(a) [erik i„-nk(a)1 (v }-nk(a)1 „-(i ) -nA „-(v )] k(a)2''„(1 2)-rp (v, ) .

(4.19)
Here

T g(1, 2) fdr e' '
„T(1,2)', (4.20a)

T„-(1,2)= f dr„e '"' T(1, 2), (4.20b)

1 -„(v,) —f dv, [T,(2, 2) ~ T „-(2, 2)P„]rp, (v, ). (4.21)

and

A (gv}=g n'fdv, fdv„, fdr„ fdr, „,
E=z

E+3 E+3
xe' '2 g P„p,(r„r, ~r4, . . . , r„,)T(2, 3) (po(v;)e '

s-3
(4.22)

A. g(v, )(p,(v, )g(v, )
= —ik[C(k) —k(a)f(k)]. f dv, e ( )g(v)vv„

(4.23)
where C(k) is the Fourier transform of the direct
correlation function and f(k) is the Fourier trans-
form of the Mayer f function [cf. Eq. (2.10)]

C(k) = f dr e '"'C(r), (4.24a)

f (k) = dr e '" 'f (r),
where C(r) is the direct correlation function. A
derivation of Eq. (4.23) is given in Appendix D.

In the next section we will consider the eigen-
values and the eigenfunctions of the operators
ik v, —n]t(a)X, (vk) and -ik v, —ny(a)& -„(v,)
—nA ],(v, ) which appear in the e[R~ operator, so
as to make a spectral decomposition of this oper-
ator.

(4.24b)

V, HYDRODYNAMIC MODES

We are interested in the long-time behavior of
p(v)(t) or in the small-e behavior of p~~)(e). There-
fore we study e6te(v„'e) only for small e. For

The operator A ],(v, ) when acting on a function of
the form (p, (v,)g(v, ) can be further simplified and
expressed as"

such values of & the dominant contributions come
from small k= ~k~ values or that region of the R

integration in Eq. (4.19) where k ~ l ' say, where
/ is the mean free path. In this region the leading
contributions to the integrand come from the hydro-
dynamic modes of the operators ik v, —ny(a)AO (v, )
and -ik v, —ny(a)X ],(v, ) —nA T(v, ). These hydro-
dynamic modes are obtained from the zero-eigen-
value eigenfunctions of the operators -ny(a)X (v, )
and -ny(a)Ao(v, ) respectively, by using ik v, and
-i% v, —ny(a)[X -„(v,) —X,(v, )]—nA -„(v,), respec-
tively, as a perturbation for small k. They lead
to perturbed zero eigenvalues of the form c,k',
where c, is a constant independent of k. For
small c and k these contributions then give the
dominant contributions to the integrand of (Re(v» e),
since they lead to integrals of the form f,k

dk
Et &Etp

x(a+ o.k') '.
The hydrodynamic mode of the operator ik vy

—nXOD(vk) has been derived and discussed in I. The
result obtained there can be used here if one re-
places n by ny(a). Thus the hydrodynamic mode
solution of the eigenvalue equation

[ik v, -ny(a)Xov(v, )]y( '(k, v, )(p, (v, )

= (d(k)y( '(k, v, )(p(&(vk)

(5.1)
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can easily be shown to be ' n(k) =n'(k) . (5.9b)

(d(k) =
(do+ (dmk + (d k +' ' '

with

co, =o,

(d, =D, =&,/X(~),

for the perturbed zero eigenvalue and

y' '(% 0 ) =y' '(v ) +kg' '(k v ) + ~ .

with

X', '(v, ) =—1

(5.2)

(5.3a)

(5.2b)

(5.4)

(5.5)

Therefore for every nondegenerate eigenvalue 0,
there is a right eigenfunction 8s"'(k, v) and a left
eigenfunction 8~("'(k, v); and for every degenerate
eigenvalue Q, there is a set of right eigenfunctions
8(~"),(&, v), i =I, . . . , g, and a set of left eigenvalues
8(~")((R,v), i = I, . . . , g, where g is the order of the
degeneracy of the eigenvalue. These eigenfunc-
tions can be taken to satisfy the orthonormality
relation

~t
dv O'I" ('(k, v)8I("'((k, v)y(&((') = &nv o5(, g ) (5.10)

for the eigenfunction.
The hydrodynamic modes of the operator ik vy

—ny(a)XT(v, ) —nA&(v, ) we—replaced -k by +%-
cannot be determined in the same way as was done
in I for the operatorik v, —nP.,(v, ) since, unlike
this operator, the present operator is not sym-
metric. " Consequently, we will also consider the
hydrodynamic modes of the adjoint operator: ik v,
—ny(a)Xr(v, ) —nA~r(v, ) where the adjoint I'r(v, ) of
an operator I"(v,) is defined by

dvz vx ~ zg v&povz lv

n(k) =no+kn, +k'n, + (5.11a)

(5.11b)

8~""(k,v, ) = 8~"',(k, v, ) + k8~"', (k, v, ) + ~ ~ ~,
CI

X),(v, ) = X,(v, ) + kA. ,(v, ) + k'X, (v, ) + ~ ~,
(5.1 lc)

(5.11d)

where 5 is the Kronecker delta.
In order to find the hydrodynamic eigenfunctions

and eigenvalues, we expand all k-dependent quan-
tities in the Eqs. (5.7) and (5.8) in a power series
in k. Using that Xo (v, ) =X,(v, ), we obtain

vx 9'o vx

(5 6)
for functions f (v, ) and g(v, ) of v, .

Therefore we have to distinguish between right
and left eigenfunctions of the operator ik ~ v,
—ny(a)X), (v, ) —nAT(v, ). The right eigenfunctions
8~"'(k, v, ) are defined by

[ik v, —ny(a)XT(v, ) nA-„(v—,)]OR"'(k, v, )y, (v, )

= n(k)8R(")('R, v, )y, (v,),
(5.7)

while the left eigenfunctions are defined by

[ik v, —ny(a)Xr(v, ) —nAr(V, )]8~"'(lt, v, )y, (v, )

= n(k)8'"'(k, v, )y, ((),) .

(5.8)
Using (5.7) and (5.8), one can easily show that
right and left eigenfunctions corresponding to dif-
ferent eigenvalues are orthogonal, i.e.,

X r(v, ) = X,(v, ) + kA. ~r(v, ) + k'X,r(v, ) + ~ - ~,

A q (v,) = A, (v,) + kA, (v, ) + k'A, (v, ) +

(5.11e)

(5.11f)

(5.11g)

A,(v, ) =A, (v, ) =A, (v, ) = 0 (5.12)

while for functions f(v, ) we show in Appendix D
that

kV), (v )f(v, ))v, (v, ) = —ivvv'( "
)

x (- ) (v))v,
dV3 k V3 V3 (i' 0 V3

(5.12)

A-"(v, ) =A,(v,) + kAr((v, ) + k'A2r(v, ) + ~ ~ ~ .

Here we have not indicated explicitly the possible
k dependence of the expansion coefficients
i).;, X;, A„and A, (i ~ 1). Furthermore, from
Eq. (4.22) by expanding the exponents in powers
of k, one has that

if n(k) en'(k)

and conversely, if

8(() )(x v )8(o)(g ) ( ) g 0

then

(5.9a)
Similarly, expressions for A. )(v, ) and A.,(v,) can be
found from the Eq. (4.21) (replacing k by -k) and
by expanding the exponent in powers of k and using
Eqs. (4.20b) and (1.11). From A, (v,), A. ,(v,), and
A.,(v, ) their adjoints A",(v, ), A.((v,}, and X, (v, ) can
be found using their definitions with Eq. (5.6}.

The hydrodynamic eigenfunctions and eigenval-
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ues can now be obtained by substituting the ex-
pansions (5.11) into the eigenvalue equations (5.7)
and (5.8), equating the coefficients of equal powers
of k on both sides of these equations for Qp 0,
and using the orthonormality relations (5.9) and
(5.10).

Then the following results for the (hydrodynam-
ic) eigenvalues are obtained":

6 '(Iz v, ) =6'"' (Iz, v, )=(pm)"~v, k"
t Lz0

4=1, . . . , d —1; (5.15a)

operator A. & incorporates the collisional transfer
effects, while the X(a) take into account the density
dependence of the collision frequency.

For the (hydrodynamic) eigenfunctions one finds
the following. For the shear modes,

00=0,

n,«~i=n~'~=O, a=i, . . . , d- t

n, (v&) =vs=z)s/nm; i =1, . . . , d-1

0, =Dz, s =A.s/)zcz, ,
(8)

(5.14a)

(5.14b)

(5.14c)

(5.14d)

(5.14e)

for the heat modes,

(e)i- b " Z
& ~Oi &) (B+ bz)&iz

()~ b iB 2 'i' Pm, d
(B+b')'" b d

for the sound modes,

(5.15b)

(5.15c)

+ /@+2

(5.14f)

(,) - b 2 'i' Pm z d B
c(2Pm )

'i'

($ v,), (5.15d)

Here the V, indicate the (d- 1) shear modes, H
the heat mode and + the two sound modes;

(y) ~ b 2 Pm z d 1
c(2Pm)'iz d

C= (b v, ) (5.15e)

is the adiabatic sound velocity in the gas, where

y = c&/c„ is the ratio of the specific heat at con-
stant pressure P and at constant volume, respec-
tively, and P is given by the equation of state
pp =n[l+)zbz X(a)j, with b(z = z(a'/2 for d =2 and

b, =2z(a'/3 for d=3. vz =z)z/zzm, Xz and gs are
the values for the kinematic viscosity, heat con-
ductivity, and bulk viscosity, respectively, ac-
cording to the Enskog theory of dense gases."
D» and F» denote the thermal diffusivity and

the sound absorption coefficient in the Enskog
theory It .should be noted that the factor X(a) as
well a.s the k dependence in the operator X(a)A.), (v, )
are together responsible for the appearance of the
complete Enskog-theory transport coefficient in

the expression for the eigenvalues given by

(5.14). In particular, the k dependence of the
I

Here B and b are defined in d =2, 3 by

(5.18)

and

2 P (5.17)

in the form

and k, k~', . . . , k~" ' form a set of mutua. lly or-
thogonal unit vectors. In the low-density limit
these eigenfunctions and eigenvalues reduce to
those given in I.

We can now give a spectral decomposition of the
operator

[&+zk v» —zzX(a)XO(v, ) —zzX(a)A, ) (v, ) —zzA ) (v, )j

[e+ik v„—nX(a)XDD(v, ) —zzX(a)A. k(v, ) —nA ), (v, )j ' f(v„v,)y,(v,)y, (v, ) =Slzf(v„v, )A(v, )P,(v, )

+ SQ(v„v, )g,(v, )y, (v, )
with

(5.18)

S.„f(v„v,)~,(v,)~,(v, ) = g [" (b).f1(b)]-' X"(k,v,)6'."'(-k, ,)~.(v,)(.(v.)

x vs v2X, k vz eL —k vg vie v2 +0 (5.19)
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where the prime on the summation symbol indi-
cates that only hydrodynamic modes are to be in-
cluded in the sum and where f(v„v,) is a function
of v, and v, . The second term on the right-hand
side of Eq. (5.18), with Sd, contains the contribu-
tions involving all other eigenfunctions, i.e. where
at least one eigenfunction is not a hydrodynamic
eigenfunction. These nonhydrodynamic modes
are obtained, for small k, by perturbing the non-
zero eigenvalues of A., and A.o and appear to lead
to contributions to pv(t) which decay exponen-
tially over a few mean free times.

In the next section we shall use the representa-
tion (5.18), (5.19) of the operator [e+ik v»
—ny(a)A0(v, ) —ny(a)A. k(v, ) —nA ],(v, )] ' to obtain
the long-time behavior of p~vd](t).

behavior of

p (e)= d(a "p (l)=f dv, a„d (v;, e)
0

=—l)m f dv, v„[e —ne(a)l (v, ) —neve (v„e)]

V)x+0(V, ) (6.1)

The oPerator neIIs(v, ; k) can, on the basis of the
discussion in the previous section, be divided into
two parts: a hydrodynamic part ne(R~ 0 and a non-
hydrodynamic part +&S~ defined by

D dk
dv, ]t(a)T ]((1, 2)Sld

k &k 2lT
0

VI. LONG- TIME BEHAVIOR OF P6 (t)

The long-time behavior of p[vd](t) can be ob-
tained, in our approximation, from the small-e and

(6.2)

~@'E, +~~E +~@'E,H
D

dv, ]t(a)T [, (1, 2) [~+ik v» —n]t(a)A. , (v, ) —n]t(a)A, k(v, ) —nA ], (v, )]
0

+n I „dv,g(a)T k(1, 2)S y(a)T-„(1, 2)(p0(v, ) .
~ k&k()

(6.3)

The first term on the right-hand side of Eq. (6.3)
includ. es contributions of collisions that take place
on a space scale small compared to the mean free
path l and which should not be relevant for the
long-time behavior of pv[d](t) The seco.nd term
inc iud es contributions of nonhyd rodynamic modes,
which will decay exponentially in a few mean free
times. We shall therefore neglect n~S~ ~ in ob-
taining the long-time behavior of p[()" ](t).

Using then ne[R~ H from Eq. (6.2) for ne[[dtk in

Eq. (6.1), we obtain

We proceed by iterating the operator [ ]
' on

the right-hand side of Eq. (6.4) about [e —n]t(a)
xÃ0 (v, )] '. We will restrict our discussion to the
first two iterates, which are given by the Eqs.
(6.6a) and (6.6b). This restriction is necessary,
because we have neglected dynamical events which
give contributions to pD"~ that are of the same or-
der in the density as those of the third and higher
iterates in Eq. (6.5). This, in turn, may limit the
time range over which our results are valid. We
will discuss this point further in Sec. VIII.

Thus
Pv"'(e) = Pm I dv, v,„[e—ny(a)Z, (v, ) —nk6P~ „] p'o" (&) =pD,'.(~) +p,",,'(~) + (6.5)

x v„y0(v, ) . (6 4) where

p l,(e)=dm f dv, v, „[e—ne(a)e, (v, )] 'v, „p,(v, ) (6.6a)

and

p ",'(e)=dm fdvv„[e —ne(a)e, (v, ,)] 'nede „[e—ne(a)e, (v, )] 'v p, (v,)

=Porn dv, dv, „v,„&—nX, a~0 v, ' paT k 1, 2 S„ga T& 1, 2 & —ngaAov,
k& k()

x v,„(p0(v,)@0(v,) . (6.6b)



12 VE LOCITY-CORRE LATION FUNC TIONS IN TWO. . . II. . . 307

Laplace inversion of pp Q(e) given by Eq. (6.6a) yields exactly the exponential decay of P(p~)(t) discussed in
Sec. III, Eq. (3.10).

Vsing Eq. (5.19) and taking into account that the summation in this equation involves only combinations of
one diffusive mode )(( )(k, v, ) and the d +2 hydrodynamic modes 8(o)(-k, v, ), one obtains for p(pd), (e)

pa, (a)=-dam J dvf,dvf , —— g v„[a —av(a)a, (v, )] '2(a)T 2(1, 2) 2 ()vv, )O„"'(- )vv, ) (v(v, ))v (v, )
2'&ko o

x dvi dvg kvi ei -kv, y a T& 12 e-ng a ~p v,

xv, „(p (v, )(p (v, )[e+(2)(k)+II(k)] (6.7)

To obtain the dominant behavior of pg~(t) for long times or the dominant behavior of PD('I, (e) for small e, one
can expand in k the operators T k(l, 2), Tz(1, 2) as well as the functions BJ."E](-k, v, ) and keep only the lowest
order terms in k, since the neglected terms lead to a faster dec3y with time than those kept. " In addition,
since we will be interested in times t» tp, one can neglect the terms of order E in the operator
[e —n)((a)APQ] '. Then we obtain

Pp, ,(&) —=—g dv, dv, —
~ [@+&2)(k)+Q(k)] 'v, „(&Q(v,)) 'TQQ(l, 2)OE",Q(- k, v, )(pQ(v, )(pQ(v, )n

0 4&k 2F
Q

dv, dv, O™l.,o k, v2 Tpp 1& 2 &p vy 1~@p 'Ul +p (6.8)

dv, v,„8/I)(- 2 v, )('p()(v, ) (6 9)

In two dimensions one finds that for t» tp

PP' (t).=PE'„'(t) -=o(~'E(P)(tQ/t),

where

QD E( p) = [8En(DE + vE)t, ]

with the mean free time t, given by

(6.10)

(6.11)

(0 / )'"
(6.12)

2na)((a)

The expression (6.11) for o.p('E) is plotted as a func-
tion of p =na' in Fig. 3. The theory seems to be in
very good agreement with the computer results of
Alder and Wainwright' and of Wood and Erpen-
beck' over the entire range of densities, for
which these are available.

Here we have used Eq. (5.5) for )(, )(k, v, ), re-
placed the operators T ], and T& by their common
value at k=0, which we have denoted by Tpp in I
and replaced e«by O~i. p.

{n)

The expression (6.8) for PI),](e) can be analyzetl
further in exactly the same fashion as was the
corresponding expression (5.8) in I, by using the
fact that the 0„"~p are linear combinations of sum-
mational invariants in a binary collision. We only
quote the resul. ts:

Pm ~ -t[(d (n)+ 0{a)]
n ~ (2~)''

0 k(kp

dv, z,„O,{",' —k, v, y, v,

np('E]( p) = (1/12n) [E(DE + vE)t, ]

with

(Pm/E)'"
4na'X(a)

(6.14)

(6.15)

The expression (6.14) for nv('E] is also plotted as
a function of p =na' in Fig. 3 and is consistent with
the computer data of Wood and Erpenbeck. '

VII. BEHAVIOR OF p ~"](t) AND pP~(t) IN TIME

The short- and long-time behavior of the veloc-
ity correlation functions p~+(t) and p~'(t) that de-
termine the kinetic parts of the time-correlation
function expressions for the viscosity and heat-
conductivity coefficients, respectively, can be
found in a similar fashion as for p~~~](t). We only
give a brief outline of the procedure before we
quote the results.

The correlation functions p„'(t) and pq (t) are
given by

(,) t
&E =1~(v;(0))g~~~ (vd(t)))

&[g", ,~(..(o)) ]'&

where for the shear viscosity ])

J'(v, ) = v,.„v,,
while for the heat conductivity ~

(7.1)

(7.2)

In three dimensions one finds that for t» tp

Pp" (I) = PD', 2 (I) = &g—',E( P)(—t()lt)'", (6.13)

where
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I.4—

1.2

I.O

C4
I

0.8
0

o" 0.6

0.4

x J(v, )yo(v, )
00 -1

= (J'(v, )) '(a —g n'a1a „,(v„a)
l =1

xJ (v, )yo(v, ) . (7.6)

Here the S,(v„e) can be obtained from the ex-
pressions for 8, (v„E) given by Eq. (2.13), by
replac ing

0, 2

0 O. l 0.2
I I I

0.5 0.4 0.5 0.6
I

0.7
there by

Vo/ V

FIG. 3. c(n)@l(VO/V)" plotted as a function of the re-
duced volume Vp/ V, where Vo is the volume at close
packing, for d = 2 and 4 = 3. The eros ses indicate the
computer results of Alder and Wainwright for d =2,
Ref. 5.

(7.3)

p, (v, )Q P. „[y,(v, )].

while the S, are related to the 8, in the same way
as the $, are related to the 8, [cf. Eq. (2.17)].

To compute the short- and the long-time be-
havior of @(z")(t), only certain classes of dynamical
events are taken into account in the sum

One can write (o~ (t) in the form

a'"(1) = idv, d(v, )a',"(v,; 1), (7.4)

where

(7.5)

N
d&" ' S (~")e "'""'g j(v, )

~)+& V1, &

1 =1

on the right-hand side of Eq. (7.6). After making
a binary collision expansion as well as a Mayer
f expansion of the integrand of the operator
e$...(v„e), one keeps (a) the Enskog correc-
tion y, , (a)Ao(v, ), to the linearized Boltzmann
collision operator &$,(v„&)=&,(v, ); (b) the most
divergent terms, in the limit & -0, in each order
in the density, i.e. , the ring terms; (c) the simple
excluded-volume correction to the ring term; and

(d) the connected excluded-volume corrections to
all but the first and last binary collision operator
in the ring terms.

Thus we use the approximation

since fdv, J(v, )qr (v, ) =0.
Proceeding as in Sec. II, one obtains for the

Laplace transform 4'zd (v„e) of 4'z (v„t) the
equation where

~'&S, , v„e =ny„a A,, v, +no/

(7.7)

a1a ( )=Jdvv , fa, a(a)T -„(1,2)[a+(n v„—na(a)n-„(v ) —nd„(v ) —na(a) „(v ) —nd v(v )]

x y(a)T (, (1,2)(1 +P„)p,(v, ) . (7.8)

Comparing with Eq. (4.19) for sots(v„s), we see
that this expression for s$s(v„s) is of the same
form, except that A. on(v, ) in Eq. (4.19) has been
replaced by &), (v, ) and that additional operators

—nA ), (v, ) and (1 +P») appear in Eq. (7.8).
Separating the k integral in Eq. (7.8) into re-

gions where k & k, and where" k& k, (k, = l ') and
analyzing the operator [ ] ' on the right-hand
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side of Eq. (7.8) for (Rs(v„e) into hydrodynamic
and nonhydrodynamic modes, and taking into ac-
count only hydrodynamic modes, one obtains,
in a similar fashion as in Sec. VY; by iteration
the following expression for p~~")(t):

In first Enskog approximation,

p((() (t ) & &-&((()) /aeee)«O,
(&

and

(7.11)

P'"'(t) =P"'.(t) +P '"', (t) + (7.9) p((() (t ) &- t)((a) /8~v r
t (7.12)

where the short-time behavior is given by

e"' (e ) =( &'(v, )) ' f eve( «,) e'" «" ' ~ ' " '

x Z(v, )((&,(v, ) . (7.10)

Using the method outlined in Sec. III, one can
easily show that the initial slope of pz( )(t) is given
exactly by the initial slope of p~, o(t).

where vO 0 and D~ are the kinematic viscosity
Oy 0 Os 0

v and the thermal diffusivity Dr [cf. Eq. (6.14e)]
computed on the basis of the Boltzmann equation
in first Enskog approximation. ' We expect that,
like Eqs. (3.11) and (3.12) for p~~~)(t), Eqs.
(7.11) and (7.12) are good approximations to the
short-time behavior of p„" (t } and P~4 (t).

The long-time behavior is given by

( («, » g "'e
e "e~ ~'e~ '~'(f ev, e(v, ) e'", ( ev, )e'" '(-li, «, )e.(v, ))

g, g& 0&k

(7.13)

where the prime on the summation symbol indicates that only hydrodynamic modes are to be included.
Thus one finds for the long-time behavior of pz~~)(t)

nd(d+2) (8vvst )"' (4sI'»t, )' ' (7.14)

and

2ndc, [4&((v pf) )t ]'" (4((1', st,)"' t

where I'z s has been defined in Eq. (5.14f).

(7.16)

VIII. DISCUSSION

The comments made in I concerning the long-
time behavior of the p (t} at low densities are
equally valid for the results for p(~)(t) obtained
here and we will not repeat them. A few remarks
can be added, however.

(i) In view of the neglect of many dynamical
events as well as of the limited number of itera-
tions used, it is not possible to make any state-
ment about the "true" asymptotic behavior of the
p(")(t) for the systems considered. However, in
so far as the computer results are not for "true"
asymptotic behavior either, it is not a Priori
clear which of the theoretical formulas —those
derived here or those derived on the basis of
quas ihydrodynam ical considerations" —will best
describe the computer results for p~~~)(t) for the
time interval of 10to & t& 50to over which they
have been obtained. In two dimensions, of course,

no theoretical quasihydrodynamical results are
available since they lead to an inconsistency, "
and only the results derived here are available.
In three dimensions the quasihydrodynamical
results'0 for the long-time behavior of p(" )(t)
are given by Eqs. (6.13), (6.14), (7.14), and (7.15),
except that the full transport coefficients D, q, ~,
and g occur where in our case their Enskog values
D~, g~, ~~, and f~ appear. Over the range of
densities studied so far on the computer, the dif-
ference between the two formulas is too small to
be noticeable with the present computer accuracy.

We remark that very recently expressions for
p(')(t), containing the full transport coefficients
have been obtained on the basis of kinetic theory
by Pomeau and Rsibois" and van Beijeren and

Ernst. "
(ii) An essential feature of the analysis pre-

sented here is the appearance of the two factors
X(a) in the numerators of the resummed operators
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nc@~(v„e) and n~(R~(v„&) each, as given by Eqs.
(4. 17) and (7.8), respectively. These factors
have their origin in the fact that we have taken
into account excluded-volume corrections to each
of the collisions in the ring events considered in

I. A derivation of the t ' ' term in p~a~(t) for a
gas of hard spheres, in which one of the y(a)
factors seems not accounted for, has recently
been given by Mazenko. '4 Using a method based
on the BBGKY hierarchy equations he arrives
at an expression for o'~~')(p) that differs from ours
given by Eq. (8.14), by a factor l)(a) '(D/D~)',
where D is the full self-diffusion coefficient. The
precise origin for this discrepancy is not clear
at this moment. "'"

(iii) Although the computer results of Alder and
Wainwright, ' and of Wood and Erpenbeck, e as well
as the results obtained here apply only to hard-
disk and hard-sphere systems, it was suggested
in I that the t " ' decay should hold for a larger
class of intermolecular potentials. This has
been confirmed recently by a computer calcula-
tion of Levesque and Ashurst, "who found a t ' '
behavior of p~t'~(t) for a system of particles that
interact with the repulsive part of a 12-6 Lennard-
Jones potential.

(iv) We have considered here only the ring events,
their excluded-volume corrections and the first
two iterates in Eq. (6.5). It would be inconsistent
to consider the contribution of higher iterates to
Eq. (6.5), without taking into account also con-
tributions from other dynamical events in the lower
iterates. " This restriction makes it difficult to
determine the precise interval of time over which
the results obtained here are valid. In three di-
mensions the work of Pomeau and Resibois" and
of van Beijeren and Ernst" indicates that the t
behavior persists for asymptotically long times.
For two dimensions, it is not yet clear what the
true asymptotic behavior of p~'~(t) is.

(v) Very recently a beginning has been made of
the computation of the behavior of p~~")(t) for inter-
mediate times, i.e., for times of the order of 3tp
to 10t„so that the full time behavior of pro")(t) is
obtained. Such an analysis has been undertaken
by Hesibois and Lebowitz, "using hierarchy equa-
tion methods and Lieberworth and Cohen, ' using
the Eq. (6.1) for p~~")(t) as a starting point. This
may well lead to a microscopic explanation of the
negative part of p~~ )(t) for times t~5to, which have
been observed in computer calculations. '

Dr. J. J. Erpenbeck, Dr. J. W. Dufty, Dr. B. J.
Alder and Dr. Y. H. Kan.

+ W(r„r, ) d7'So~(x„x, )T(1,2)

&S'(,~) (x, )ix,),

where S',(x„x,) is the free-particle streaming
operator

S', (x„x,) = expr -tR, (x„x,)] . (A2)

Since the left-hand side of Eq. (Al) is well defined
for all phases of the two particles, it is possible
to calculate the result of W(r„r,)S,(x„x,)f(x„x,)
for any function f(x~,x2) and for every phase point
(x„x,). By using the fact that two particles moving
in infinte space may collide at most once, one ob-
tains an expression for the operator W(r„r, )
&&S,(x„x,) which has the structure of the right-
hand side of Eq. (Al) with T(1, 2) as given by Eq.
(1.11).

A formally simpler and more convenient expres-
sion for W(r„r,)S,(x„x,) can be obtained from Eq.
(Al), if we use the fact that T(1,2) can be shown to
satisfy the relation '

APPENDIX A: BINARY COLLISION OPERATORS

FOR HARD-CORE SYSTEMS

(a) For systems of hard disks or hard spheres
the streaming operator S,(x") is not defined, when-
ever any two particles, say z and j, are within
each others' interaction sphere. To avoid having to
deal with such configurations, one considers the
operator S,(x~) combined with the function

))'(H) = exp(-))g 4(r„))
i&&

1

where Q(r, &) is the pair potential for a hard-disk
or a hard-sphere system.

For simplicity we consider first a system con-
sisting of two particles moving in infinite space,
i.e., the case that N =2. Then the operator
W(r„K)S,(x„x,) is defined for all phases of the
particles 1 and 2, and for all time t. The binary
collision operator T(l, 2) is defined by the relation

W(r„r,)S,(x„x,) =W(r„r,)S',(x„x,)

T(1, 2)SO, (x~,x,)T(1,2) = 0 (AS)
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for any time t, which expresses the fact that the
two particles cannot collide more than once.
Equation (Al), when combined with Eq. (A3), is
equivalent to
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W(r„r~) S g(xi, x,)

= W(rz, r )exp(-t [Xo(xi,x2) —T(1,2)]}

f(~„)T(1,2) = 0,
T(1 2)f(&,.) =o,

(A7d)

(A7e)

(A4)
which is a special case (N= 2) of Eq. (1.8).

In order to prove Eq. (1.8) for arbitrary N, one
makes a formal expansion of the right-hand side
of Eq. (1.8) in powers of the T operators. Then,
using the explicit representation of the T(i,j) oper-
ators, given by Eq. (1.11), and Eq. (A3), one
shows that when the right-hand side of Eq. (1.8)
acts on a function f(x"), it correctly determines
f(x"(—t)) for all x".'

In a similar fashion, using Eqs. (1.9) and (1.14)
for N = 2, one can define a T operator:

f(x„)G,(x„x,)T(l, 2) = 0,
T(1, 2)G,(x„x,)f(r„)= 0,
f(~„)G,(x„x,) + G,(x„x,)T(1,2)G,(x„x,)

(A7i')

(A7g)

1

7'(1, 2)I v, vv,

Vi+ V~

=0
7

(A7h)

(A7i)

= G, (x„x,)f(r„)+ G, (x„x,)T(1,2)G,(x„x,),

S,@„x,)W(r„r,) = S',(x„x,)W(r„r,)

t
+ d&S'f, „)(x„x,)T(1,2)

0

xS',(x„x,)W(r„r, ) . (A5)

Using that Eq. (A3) holds for T as well as T opera-
tors, one can write Eq. (A5) in the form

1

dvy dv2 vy+v, T 1,2 s x»x2 0

5 +V1 2

(A7j)

S,(x„x,)W(r„r,) = exp[-t[K,(x„x,) —T(1,2)]]

xW(r„r,), (A6)

T(1,2)GD(x„x,)T(1,2) = 0,
T(1,2)Go(x„x,)T(1,2) = 0,
T(l, 2)G,(x„x,)T(l, 2) = 0,

(A7a)

(A7b)

(A7c)

which is a special case of Eq. (1.9) for N=2. The
generalization to arbitrary N can be performed in
a similar fashion as for the T operators by making
a formal expansion of the right-hand side of Eq.
(1.9) in powers of the T operators. We remark
that this expansion is equivalent to the inverse La-
place transform of the binary collision expansion
given in I [Eq. (3.1)], if the 8 operators there are
replaced by T operators. One can show that the
right-hand side of Eq. (1.9) is equal to the right-
hand side of Eq. (1.8).4' From this it follows that
the right-hand side of Eq. (1.9) correctly generates
f(x"(-t)), when acting on f(x"), and that Eq. (1.14)
is satisfied by this representation. The derivation
of the explicit expressions (1.11) and (1.12) of the
T and T operators given in the text is straightfor-
ward but rather lengthy. For this we refer the
reader to the literature. '

(b) We now give a number of relations, which are
satisfied by the binary collision operators T(1,2)
and T(1,2) and the Mayer f function and that are
used in the text. They can be proved, using the
explicit representations of the binary collision op-
erators Eqs. (1.11) and 1.12).'40 They are

where s(x„x,) and k(v„v, ) are functions of the
phases &y x2 and of the velocities v»v„respec-
tively.

APPENDIX B: EXTRACTION OF DOUBLE OVERLAPPING

TERMS IN eD

In this appendix we briefly outline the method we
use to extract those contributions to &4D coming
from sequences of three binary collisions, with an
excluded-volume correction from a double over-
lapping configuration at one of the collisions in the
sequence. The & dependence of the contributions
to qg4 from these events is the same as the & de-
pendence of the contribution to &6)D from the three-
body ring events. Therefore the contributions
from the events considered here represent ex-
cluded-volume corrections to the three-body ring
contribution.

The above-mentioned contributions are contained
in products of five binary collision operators in
&4D. Our analysis of these terms is based on the
fact that many of them contain products of the form
T(i,j)G,T(t, k)G, T(j, k) or T(i, k)G, T(i,j)G,T(j,k)
where i, j,k are any three particles in the set
(1,2, 3, 4) and G, = G,(x„x„x„x,). These products
contain nonvanishing contributions from configura-
tions of the three particles (i,j,k) where particle
i is simultaneously overlapping both particles j
and k at the time of the (j,k) collision. Conse-
quently, &$4 contains many contributions from
double overlapping configurations, that are hidden
in the products of collision operators of the type
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(1,3)-collision operators with T(2, 3) leads to a,

configuration, where particle 1 is overlapping with
both 2 and 3 at time f, -when the (2, 3) collision
takes place.

A similar dynamical analysis shows that also
the product T(1,3)G,T(1,2)G,T(2, 3}contains non-
vanishing contributions from configurations where
particle 1 is overlapping with the particles 2 and 3
at the time of the (2, 3) collision. One can convince
oneself that, apart from permutations of the in-
dices, these are the only products of three binary
collision operators occurring in &4 that lead to
double overlapping configurations.

%e will now consider the products of five binary
collision operators occurring in &4. Since a com-
plete analysis is too lengthy to give here because
it involves the consideration of several hundred
terms, we will only give a brief discussion here.
The operator e4D contains all products of five bi-
nary collision operators of the form

T(1, 2)G,T(o.)GOT(p)G, T(y)G, T(5)GO (B2)

T(1,2)GOT(o.)GOT(i, k)G, T(i, l)GOT(l, k)G, (B3b)

contain such contributions, where particle i is

where a, p, y, 5 represent pairs of particles chosen
from the particles (1,2, 3,4), such that (a) @4 (1,2)
by virtue of Eq. (A7c); (b) the T operator on the
extreme right, T(5), must contain pa, rticle 1 as a.

member of the pair 5, by virtue of Eq. (A7i); (c)
all four particles must be contained in the pairs
(1,2), a, P, y, since the product is canceled other-
wise; and (d) all four particles must be contained
in the pairs o. , P, y, 5, for the same reason as in
(c).

(a) We first look for all products of five bi-
nary collision operators which lead to a sequence
of three binary collisions with a double overlapping
contribution at the collision described by the T(6)
operator. Using the geometrical arguments made
earlier in this section, we see that the products

7'(1, 2)GO T(n)G, T(i, l)G,T(i, k)G, T(1,k)G, (B3a)

overlapping with both 1 and k at the instant of the
(l, k) collision. It should also be noted that while
a product like T(1,2)G,T(i, I)G,T(c.)G,T(i, k)
&&G,T(1,k)G, also contains a double overlapping
configuration at the (l, k) collision, its contribution
to &~, is less singular, for small E, than the con-
tribution from (B3a') and (B3b), and will therefore
be disregarded. For, by inverting the Laplace
transform, we see that for all such double over-
lapping configurations, the ordering of the T op-
erators requires that the T(o.) collision takes place
at the same time that particle i overlaps with par-
ticle 1. Furthermore, the particles 1, i, k, and
the pair ~ must contain all four particles, 1, 2,
3, 4, due to condition (c) above. Thus it follows
that for the product of T operators we are consid-
ering, the double overlapping configuration is part
of a configuration where all four particles are
within a molecular diameter of each other. This
condition imposes a dynamical restriction on this
collision sequence. On the other hand, inspection
of the inverse Laplace transform of (B3a}and

(B3b) shows that there is no such restriction on
the double overlapping configuration at the (l, k)
collision. Consequently, we retain in our analysis
the contributions from the double overlapping
events in these products only.

To extract, finally in an explicit form, the
double overlapping contribution to the two products
(B3a) and (B3b), we consider their sum

T(1,2)G,T(n)([GoT(i, 1)GoT(i, k)GO

+ GOT(i, k)G, T(i, I)Go]T(l, k)Go)

(B4a)
and examine the terms in the curly bracket, S:

S = [G,T(i, 1)G,T(i, k)G,

+ GOT(i, k)GOT(i, l)G, ]T(1,k)G, .
To extract the double overlapping contributions to
S, we use (A7h) and G,fTG, = G,fG,'G,TG, to write
S in the form

S=S,+S,
with

S, = Gg(i, I)f(i, k) T(1,k)G, +f(i, 1)f(i,k)G, T(l, k)G, -f(i, I)Gof(i, k) T(l, k)G, f(i, k)Gof(i, l)T—(1,k)GO, (B5a)

S, = [G,T(i, 1)G,T(i, k)G, + G,7'(i, k)GOT(i, l)G, + GOT(i, 1)f(i, k)G, + G,T(i, k)f(i, l)GO —f(i, 1)GOT(i, k)GO

—f(i, k)G,T(i, 1)G,]T(l,k)G, . (B5b)

A dynamical analysis of S, and S, shows that only

S, can contain contributions from double overlap-
ping configurations at the instant of the (l, k) colli-
sion. For, the 7 operators occurring on the right-
hand side of Eq. (B5b) always lead to configurations
where particles i and 1 or i and k are not overlap-

ping at the time of the (l, k) collision described by
the T(l, k) on the extreme right.

Moreover, only the first term on the right-hand
side of Eq. (B5a) for S, leads to a double overlap-
ping configuration contribution to (B4a) that we re-
tain, since the events that contribute to the other
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T(1, 2)G,T(o')G,f(1,i)f(k, i)T(1,k)G, . (B6)

When this analysis is applied to all terms of the
form of (B3a) and (B3b) in &$4v, the last terms on
the, right-hand sides of Eqs. (4.6) and (4.7) for
&~4,. and e4 ... respectively, are obtained.

(b) A similar discussion can be given for all
terms in &$4 of the form

T(1, 2)GO[T(i, j)GOT(i, k)GO

+ T(i, k)G„T(i,j )Go]T(j, k)GOT(6)GO. (B7)

three terms are dynamically more restricted. To
see this, one considers the inverse Laplace trans-
form of Eq. (B4a) with S, replacing S. Then one
notes that if there is a double overlapping configu-
ration at the (1,k) collision, the structure of all
terms but the first requires that the n collision
takes place while particle i is overlapping parti-
cles 1 and k. Since Q. contains at least one of the
particles 1, i, k, it follows that the last three terms
on the right-hand side of Eq. (B5a) have additional
restrictions placed on them for a nonvanishing con-
tribution to (B4a), when compared to the first
term. Therefore the last three terms can be ne-
glected for the long-time behavior of pv(d)(t) and the
only contribution to &$, retained from (B4a) is

These terms lead to double overlapping contribu-
tions of the type

T(1, 2)G,f(i,j)f(i, k)T(j, k)GOT(6)G, (B8)

APPENDIX C: THE REMOVAL OF

eeq ~—EQ, (4,10)

In this appendix we sketch how, after a resum-
mation, the term cSdvz, as given by Eq. (4.10),
does not contribute to the t dt' behavior of pD(~)(t).

To do this we consider $4 ~ to be the first term in
an (infinite) series of terms from eS, , &$, , . . . in
which all powers of the ring operators G, (x„x,)
x J d4X (13~4) and G,(x„x,) f d3A. D(12 ~3) succes-
sively appear. Then n'e~ ~ can be incorporated
in a resummation which leads to n'qg~ given by

and give the remaining terms on tQe right-hand
side of Eqs. (4.6) and (4.7) for &SdD,. and &Sdv;;, re-
spectively.

Terms of the form given by (B6) and (B8) are the
only terms in &$4 which we retain.

-1
&S~ .Pp d2 d3 T 1 ) 2 2

&
3 1 + 1

~
3 & ++o &1 & &2 Q d4 X 13 4 T 1 ) 3 po p3

+ T(1, 2) &+3Co(x„x,) —n d4A (12 ~4)] f(1,2)f(2, 3)T(1,3)p, (v2) p, (v, ) . (C1)

Here we have added a finite term n' Jd2 Jd3 XT(1, 2)f(2, 3)G,(x„x,)T(1,3)(t),(v2)p, (v, ) from eS, as well as a
term

2 d3T(1, 2)[f(1,3)f(2, 3)G,(x„x,) + G, (x„x,)f(1,2)f(2, 3)]T(l, 3)p, (v2)(p, (v, ) (C2)

that, with the Eqs. (A7f) and (A7g), can be shown to vanish. For simplicity, we have not included in this
resummation the various excluded-volume' corrections, but as will be argued below, to do so would not
change our conclusions. In order to extract the long-time behavior of n'e(R~, we can proceed in a similar
way as with ne(R~(v„e). Thus (a) expressing n'6Rg in Fourier representation; (b) applying a spectral de-
composition to n'e(Rz~, (c) setting k = 0 everywhere except in the denominators of the form [e+ &(k)+ Q(k)] ';
(d) using that

2, dr f(2, 3)(l+f(1,3)IT(1,2) = +( d)Ff (+f2( 3, )]],, (,f3r, (1, d)= 2( (a2) —232'']2'(l, l) . (C3,),„
and that

dr, dr, 1,2 2, 3 T1,3 = dr, 1,2 2, 3 r, T(1,3) = yl(a)Too(1, 3); (C4)

(e) neglecting the nonhydrodynamic parts of
~'&S~, one is lead to an expression for yg'&(R~D that
contains the operator

dvl d v3xo k, vl Too 1& Qo ~l +0 3

acting on a function of v, (and e) and

d v, Too 1& 2 & ~&vl Po ~l go

which, using Eq. (5.5), can both be shown to van-
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ish due to conservation of particle numbers in a
binary collision. Consequently, unlike from n&(R~~,

there is no long-time contribution -t " from
n'cot) to p~~)(f). The inclusion of excluded-volume
corrections does not alter this conclusion because
it does not affect the conservation of particle num-
bers in a binary collision.

APPENDIX D: DERIVATION OF (4.23)

We consider here the operator nA„-(v, ) acting on
a function p, (t),)g(v, ), which according to Eq. (4.22)
with k- -k, and a relabeling of the particles is
given by

eo (T, +2

nAt (v, )Po(t), )g(v, ) = gn'"I d2 d(l+ 2)e '" ''»g, (r„r,
~
r„r~, . . . ,r„,)T(2, 3) p (t),.)g(v, ).

l=a t, ~l
(Dl)

If we now use the explicit form of the T(2, 3) operator as given by Eq. (1.11), and carry out the integration
over v„.. . , v„„ in (Dl), we obtain

OO A

nAp(v, )p, (t),)g(v, ) = —g n'"la ' d v, d r, ~ d r„,e'""~i dv5(r» —ac)
l=1

x g, (r„r,
~
r„r„.. . , r„,)(& .v, )p, (t', )a (v.)

(D2) '

Then using the following identity, derived by van Beijeren and Ernst'4:

[c(r„)—)((a)f(r„)]=I e'* )a Jd'irf 'dr, fdr„, irll(r„—air)((, (r„r,
~
r„r, . . . , r„,)

8r2 l=z
(D3)

where C(r») is the direct correlation function, we
obtain from Eq. (D2) the result that

limnC(k) = 1 —P-ep

%~0
(D5)

~f (v, ) V.(~,)a(v, )

= &ktt[C (&) —)((a)f(&)] ~ d v,v, q, (v, )g(v, ) .

For Eq. (5.13) we need the k expansion of A~gv, )."
Using that

and

PP = n[1+nf &")((a)]

with

I) (~) = ——,
' lim f(k),

Eq. (5.13) is recovered.

(D5)

(D7)
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