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Angular correlations and rotational motion in computer-simulated liquid nitrogen
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Further results of a "molecular dynamics" simulation of liquid nitrogen are described. These results

have been obtained under triple-point conditions. A molecular-pair distribution function which depends

on the radial distance, plus three angular variables, has been computed. Partial averages of this function
0

are depicted. These functions show an angular structure up to about 9 A, but are not sharply peaked.

It seems that the orientation of a molecule is more influenced by the positions of its neighbors than by
their orientations. The dynamics of the orientational motion has also been further studied. The coupling

between the environment and the orientational behavior of a given molecule has been examined through

both cross-correlation functions and selectively sampled correlation functions. These results are the fol-

lowing: (i) An initial high rotational temperature of the molecule facilitates its reorientation. (ii) An

initial fluctuation of the local density affects the reorientational behavior of the molecule only if this

fluctuation persists for a sufficiently long time, (iii) By contrast, there is little coupling between the

behavior of a molecule and the rotational temperature of its interacting partners. (iv) Individual samples

of the motion indicate that a molecule shares its time about equally between periods of orientational

trapping, with erratic librational motion, and periods of continuous nonuniform rotation.

I. INTRODUCTION

In a recent paper' some static and dynamic prop-
e rtie s of a computer-simulated homonuclear liquid
were described. The aim of this paper is to pre-
sent several new results on the same system.

The two-atom potential used is the same as the
one that we proposed a few years ago' and that was
employed in Ref. 1, the centers of action of the
Lennard-Jones forces coinciding with the centers
of mass of the atoms.

The number of molecules and also the integration
procedure remain the same. More elaborate sta-
tistical ave rages have been devise d, in or der to
obtain more detailed information about both the
static angular correlations of the molecules and
their orientational self-motion. We briefly recall
the parameters we use: An atom-atom potential

and r the position of the supposedly independent
atom. These equipotentials are reproduced in

Fig. 1. We can (somewhat arbitrarily) define the
shape of the molecule as the inner envelope of the
family of circles with radius —,'0 centered on the
equipotential zero. This envelope is indicated in

Fig. 1. Its shape is very similar to that of the out-
er electron-density curves of nitrogen. ' We note
also that the lower equipotentials, which are the

U]~ = or„,
n=l

where r„ is the distance between two unbounded
atoms in molecules i and j and where v(r„) is the
Lennard- Jone s potential

v(~.) = 4~[(o/~)" —(o/~)'1 (~)

with e =0.6067X10 ' ergs and o =3.341 A. The in-
teratomic distance in a molecule is 2d with d
=0.16460. These values are adequate to simulate
nitrogen. ' Moreover, we have computed the equi-
potential curves for the interaction between a mol-
ecu1.e and a supposedly independent atom of another
molecule, i.e., v(r —r„)+v(r —r„) where r„and
r„.are the positions of the atoms of the molecule

FIG. 1. Equipotential curves for the interaction be-
tween a molecule and a supposedly independent atom of
another molecule, i.e. , v(r —r~)+ v{r—r~i), where r~
and rz. are the position of the atoms A and A. ' of the
molecule and r is the position of the supposedly indepen-
dent atom. The unit length o. is given on the figure.
Solid line from outside to inside, equipotentials: 0, 20,
400, 14000. Dashed line: shape of the molecule from
outer electron density curves, Ref. 3.
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7'* = 2.86, p* =0.246, P*=0.22.

II. MOLECULAR PAIR-DISTRIBUTION FUNCTION

In Ref. 1, the atomic pair-distribution function
for a homonuclear diatomic liquid is defined and
its behavior is described. This function is con-
venient for interpreting scattering experiments
since the scattering centers are the nuclei for neu-
trons or the essentially spherical high electronic
density region of each atom for x rays.

It is remarkable that this atom-atom pair-dis-
tribution function is in excellent agreement with
the one deduced from x-ray diffraction' (see, for
example, the two atomic structure factors com-
pared in Fig. 7 of Ref. 1).

Since the publication of Ref. 1, two more pieces
of information have become available. The first
one is a neutron-diffraction study by Dore, %al-
ford, and Page. ' These authors report an atom-
atom structure factor which is also in good agree-
ment with that of Ref. 4, hence also with our com-
puted curve. Perhaps more enlightening for the un-
derstanding of the phenomena involved is a theo-
retical study by Lowden and Chandler' who consid-
er "fused hard sphere molecules. " They treat
a liquid composed of such molecules by the so-
called reference-interaction-site model method,
which consists essentially in writing an Ornstein-
Zernike —like equation for the atoms (this equation
involves an intramolecular pair-correlation function)
and in assuming that the direct correlation function
vanishes outside the hard-core atomic diameter.
They finally compare their results for the struc-
ture factor with those of Ref. 1 by introducing an
"effective diameter" which corrects for the non-
hard character of the repulsive part of our site-
site Lennard-Jones potential; this comparison

only ones represented in Fig. 1, do not have a
dumbbell shape (they would be dumbbell shaped only
for high potentials which are not reached during
the interactions at the pressure and temperature
we consider here).

The computation was done using the following
conditions: Number of molecules in the cubic box
—500, with periodic boundary conditions. We de-
note by u& a unit vector along the axis of molecule
j. The temperature T* will be given in units of
e/k~, where k~ is the Boltzmann constant, the
pressure P* in the units of acr ', the distances in
units of 0, and the number densities p* in units of
v '. For nitrogen, with the above potential, we
have, at triple point,

g *=1.437, p*=0.696, P*=V.V x10 4;

and at the critical point,

(see their Fig. 11) is rewarding. This stresses
the fact that at high density the repulsive part of
the potential is the main factor governing the
structure, in atom-atom Lennard-Jones fluids as
well as in real molecular fluids. This remark is
parallel to a fact now well known in monatomic
fluids; it renders suspect the use of electric forc-
es only (e.g. , quadrupoles) for depicting the aniso-
tropic interactions in molecular liquids or crys-
tals.

Although diffraction experiments yield only the
atom-atom structure factor or distribution func-
tion for homonuclear molecules, a complete de-
scription of the intermolecular arrangement re-
quires the knowledge of a function depending on
several variables, including the relative orienta-
tions of the molecules. This leads us to define and
study molecular pair-distribution functions.

In order to do this, the familiar pair-correlation
function of monatomic liquids needs to be general-
ized to the case of molecular liquids in which the
angular degrees of freedom must be taken into ac-
count. In the most general case (molecules of
symmetry 1) one should define the pair-correla-
tion function g„ through

p'„(r, 9, y, gi, yi) dr sing d g dp singi d gi dpi

as the probability of finding a molecule in dr at r
with its principal axis of inertia oriented into
sin 0& d 0& dye& about 0&y&.

This is obviously the case for linear molecules,
for which g is meaningless. Comparing with Eq.
(3) we have'

pM(r, 8, 8» pi) =—g M(r, 8, gf p pi) .I p (4)

pp(r, g, y, gi yi ~i) =8~ gM(r, g, q, gj, ql, ~i).

Here r, 8, and y are the spherical polar coordi-
nates of the vector r joining the center of mass of
the central molecule to that of molecule j, in a
reference frame bound to the central molecule.
gi, qadi, and Pi are the angles defining the orienta-
tion of the molecule j in a reference frame equi-
polent to the first. p(r, 8, y, giyigi)dr singd gdy
x sin8idgi dpi dpi is the probability of finding a
molecule in dr at r with orientation in sin8& d 9&

x dpi tf if)i about 9ipi/i
It is obviously convenient to choose the first ref-

erence frame along the axis of inertia of the cen-
tral molecule. p is the mean number density, so
that at large x, where angular correlations are
lost, g„ tends towards unity.

If we are not interested in, say, the dependence
on the precession angle P we define



B. QUENTREC AND C. BROT

In p'„we have dropped the argument y since, be-
cause of the symmetry of the potential, the depen-
dence of the above quantities on y disappears.
Also we can no longer choose the origin of y by
reference to the orientation of the central mole-
cule. Instead we have chosen an axis in the plane
defined by OZ and r (see Fig. 2).

We have

g~(y, 8, H~, yx) =gv(r, 8, w —H~, y~+w)

from the inversion center of molecule j,
g„(r, 8, 8» yf) gs(w p w Hp w HJp cpf) (6)

from the inversion center of the central molecule;
and

gs(r, 8, 8~, y~) =gs(r, 8, 8), —
V )),

where we have made use of the symmetry, with
respect to the plane Oz r, of the potential exerted
by the central molecule on molecule j. From Eqs.
(5)-(7), it is seen that it is sufficient to know

(r, 8, Hj, q s)

for 0&8~ —,'w, 0~8&~ —,'w, 0~y&cw. (8)

g„(r, 8, 8&,cp~) has been extracted from the computer
simulation for conditions corresponding closely to
the triple point. This has been done for ten equally
spaced values of r between 0.1 and 1.5v and for ten
equally spaced values from 1.5 to 2.5o.

The increment of the angles, computed in the
ranges defined by the inequalities (8), was, w.

The full table of the data, comprising 8640 num-
bers, cannot be given here. ' We describe only,
in the form of several figures, the most charac-
teristic results.

Figure 3 shows, for three different sets of the

0
0.6

I

2.

FIG. 3. Molecular pair-distribution function
g@(r,0, 0~, y-) for liquid nitrogen near the triple point
for three different values of the angles {0,0&, p;). Solid
line gz{r, 90', 90', 90 ), dashed line gz(r, 0', 90, 0'),
dotted line gz(r, 37'5', 67'5', 37'5').

angles 8, Hj, y&, the function g„(r, 8, 8&, yz) vs r
For all three cases the function has an important
first peak which corresponds to the first shell of
neighbors. The abscissa of the first peak varies
with the direction g and the relative orientation
g&p&, as expected from steric effects: for exam-
ple, the position of the first peak of g„(r, 0, —,'w, p&)
differs by half the interatomic distance d from that
of g„(r, ~w, —,'w, —,'w). One can understand in the same
way that the abscissa of the first peak in
g„(r, —,'w, 2w, yz) varies approximately as coscp&.
However, it is not possible to explain in such a
simple way the differences between the peak
heights of the different curves. For larger r the
molecular pair-distribution function shows smooth-
er oscillations, which still persist at r =2.5.

We have computed further angular averages:

1 r
g, (r, 8) =— dy, g~(r, 8, H„y, ) sinH, dH, ,

7T p p

(9)

1 2''
t 7I

g, (r, 8~) =— dy~ g~(r, 8, 8~, cp~) sinHd8.
p Jp

(10)

FIG. 2. Frame of reference used to define gz{r,0, 0&,y&).
The axes x~, y&, z~, are respectively parallel to the axes
x, y, z. r is in the plane defined by the axes y andz. For
convenience of calculation y& is defined in an unusual way.

These functions are represented in perspective in
Figs. 4 and 5. Since the number of computed points
was not sufficient to draw an apparently continuous
curve, an interpolation process has been used
which splits the discontinuities into many small
steps; however, when the variation of the function
is rapid, these steps are still visible; they have,
of course, no physical reality.

The angular structure of g, (r, 8) is clearly ob-
servable in Fig. 4. The crest at the back of the
figure corresponds to the first shell of neighbors;
it has two flat maxima at 8=37.5 and 90, separat-
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FIG. 4. g&(r, 8) for liquid nitrogen near the triple
p
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d b flat saddle points at 8=0 an' and 45'. It is re-e y
bl that the maxima have angular pa ' r ositionsmarka e a

&~35 10' andclose to those of the 5 distributions ~

90') which correspond to the equili riuuilibrium configura-
tion of crystalline nitrogen in phase n,' also the

' ht f these peaks are in the same
order as or ef r the 6 distributions. As expected, xs
correspondence isd

'
even more pronounced or so i

follow-s-nitrogen z se aen itself at finite temperature see fo ow-
ing paper'. isTh' angular structure is, of course, a
collective e ec aff t (as in the crystalline phase,

1since the two- o y po-b d otential varies monotonical y
r r thebetween an0' d 90' (see Fig. 1). For larger r, e

nd 2.20second shell of neighbors, between 2. 1 and . 0.,
appears, u i sb t 't angular structure is rather less

atrd. This structure still persists a rpronounce . is
qr 8', . It is less=2.5o. Figure 5 represents g, lr, 9». xs

structured than g,.th . The first shell of neighbors
exhibits little dependence on 8& (nea

&
=0 't 'near 0 =0 it is

ave no ex lana-split into two close maxima; we ave
tion to offer for this phenomenon).

In summary, e angu, th lar correlations in simulat-
ed li uid nitrogen near the triple point exist, re-e aqua n

call the structure of the n solid, buid but are not sharp-
ly peaked, pro a yb bl because of the small elonga-
tion of the molecules. The fact that g, is more

indicates that the neighboring
molecules impose preferred orientations on e
re erence
tion of their centers of mass than throug

I ther words, the referenceown orientations. n o
molecule ' sees es sentially a monatomic cc

but all other remnants of the particu-
1 space group of the e phase Pa3 w lc iar sp

almost dis-cente re ord for the centers of mass) have a
'n aralleld This can perhaps be put in para eappeare . is

with the fact that the angular freedom zs ig
the cy phase, anh e and also with the fact that this phase
does not rema' e mo
atures since a "plastic" P phase exists.

recallAveraging now eth angular structure, we re
uted air-correlationthat the previously computed p

'—
function':

g„(r) = —,
'

g, (r, 8) sing do

unction forbecomes the usual pair-correlation
spherical molecu es.1 It shows a behavior similar

th t f a monatomic liquid' and reaches prac-
1 at r = 3.2. The firsttically its asymptotic value 1, at r =

shell of neighbors [up to the first minimum in

(r)] includes 11.5 molecules. 'g~r
The detailed angular arrangement dep'de icted in

this section cannot' annot be checked against a single dif-
t However, the predominantlyfraction experimen . o

Pa3-like angular arrangement wwe find is not in con-
ith diffraction results since, as thetradiction wa i ra

"N xtherauthors o e .f R f 5 put in their conclusions, ei
the uncorrelated nor eth perpendicular correlation
models are xn sa ss at' f ctory agreement with the

modeldata, and alt ough u h the parallel orientation mode
gives satisfactory results it is not expecte o e
a very plausx e mo'bl del of the liquid structure. "
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FIG. 5. g2(&, ~ or, 6 ) f liquid nitrogen near the triple
left to right and 8 towards thepoint. w increases from e

back of the figure.

IENTATIONAL SELF—MOTION AND ITSIII. OR
IONSDEPENDENCE ON THE FLUCTUAT

OF THE MOLECULAR ENVIRONMENT

In Ref. 1 severa ime-1 time-correlation functions (CF)
ere given —in particula,' ular the vector CF,

—'3u 0 ~ u t)u, (0) u&(t)), andthetensorCF, —,(3[u, ( ) ~

Here we will ca'
1 ll these functions, F„(t) and, E„(t),

1 in order to have a notation easilyrespectively, m or
generalize ord f correlation functions of sp eric
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harmonics of higher orders (these are useful for
the interpretation of neutron inelastic scattering
experiments, for example). "

For a really homonuclear diatomic molecule
there exists no experimental means of obtaining

,F„(t), so that our results cannot be checked
against experiment; however the knowledge of the
behavior of the simplest CF describing the orien-
tational behavior is obviously enlightening; more-
over, this function would be the one pertinent for
interpreting ir absorption in unsymmetrical mole-
cules of similar shape such as CO.

,F„(t}and, F„(f}have been shown' to depart only
slightly from free rotation behavior up to 0.2x 10 ~

sec, then decrease more slowly; this decay takes
an exponential form from )=0.5x10 " sec on-
wards. ,F„(t) is reproduced in Fig. 8 (solid line);
the absolute error in it is 0.01, except in the tail
where it reaches 0.02. The behavior of,F„(t) has
been quantitatively compared to that predicted by
different models. '" We will now correlate this
behavior with the fluctuations in the local environ-
ment of the test molecule. We have made this
study using near triple-point conditions (T"=1.47,
p* =0.696).

A. Description of the environmental fluctuations

We will call "interacting partners" any two rnole-
cules whose shortest atom-atom distance is small-
er than some value l,. This definition takes into
account, in a way, the shape of the molecule; it
seems preferable, for the present purpose, to a
definition using the distance between the centers
of mass. At a given instant of time t, molecule i
has N, (t) "partners" defined in this way. We have
chosen la=1.20, this value corresponds' to the
middle of the first peak in the atomic pair-distri-
bution g„(r); also this value is close to the abscis-
sa of the minimum in the potential of Eq. (2), so
that it can be said that N, (t) is the number of mole-
cule s interacting strongly-with molecule i.

Dropping now the subscript i, we give in Table I
the statistical distribution of N(t}: its mean value
is 8.84 and its variance 0„ is 1.7. It is worthwhile

noting the importance of the wings of the distribu-
tion: 11% of the molecules have 7 "partners" or
less; almost 10% have 11 "partners" or more.

We have computed the autocorrelation function
of the fluctuations of N(t)

( [N(0) —(N) ][N(t) —(N)] )
N g2

N
(12)

B. Further results on one-molecule rotational dynamics

We have computed the normalized ACF for the
instantaneous rotational temperature, i.e.,

F (f) = (J'(0)J'(t))/(J'(0)) . (13)

It is easily shown, using the Boltzmann distribu-

This CF is represented in Fig. 6; the error on it
is 0.01 (0.02 in the tail). This tail is remarkably
long; at t=3x10 ~ sec, F„(t) still has the value
0.05. We have sampled several molecules and ob-
served individually their behavior: for some of
them N(t) remained larger than 10 during times
as long as 3x10 ~ sec. Since it is unlikely that a
given molecule remains in a high-density environ-
ment while exchanging its partners, one is led to
conclude that some persistent clustering of the
molecules can exist. Such a clustering cannot be
an artifact resulting from an incomplete "melting"
of the initial solid. In order to ensure this, we
first increased both the size and the temperature
of the box during some 150 steps before returning
to the desired conditions. The total working run
lasted 1800 steps of 10 "sec.

At each instant of time we also computed the
mean square of the angular momentum J of the N
partners of molecule i. This was then divided by
2I, where I is the moment of inertia of the mole-
cule; the result A(t) can be termed the instanta-
neous rotational temperature of the partners. Its
time-averaged value was as expected equal to T*
= 1.47. Its variance is crR =0.50; its distribution
is given in Table I. The time-correlation function
of R(t) is shown in Fig. 6. The relaxation of this
function is faster than that of N(t).

TABLE I. Statistical distribution of N{t): P& is the probability to find at a given time t a
number N of "interacting partners" for a given molecule. Statistical distribution of R{t): Pz
is the probability for the "interacting partners" to have an instantaneous rotational tempera-
ture R at a given time t.

Statistical Distribution of N {t)
N 4

0.001
5 6 7 8 9 10 11 12 13

0 007 0 030 0 107 0 236 0 309 0 218 0 079 0 012 0 001

Statistical Distribution of R{t)

0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5
0.051 0.106 0.151 0.169 0.153 0.125 0.090 0.060 0.036 0.021
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FIG. 6. Self-correlation function of the environment
fluctuations. Solid line E&(t); dashed line Ez(t).

tion for the angular momentum, that the asymp-
totic value of this function is —,. This function is
represented in Fig. 7; for comparison, Fz(t), al-
ready published in Ref. 1, is also reproduced. It
is seen that the decay of F~a(t) is slightly slower
than that of Fz(t). Figure 8 shows the cross-cor-
relation function (CCF)

(J'(0)u(0) ~ u(t))
8'a~a(t) =

(~a )

together with the ACF,F„. It is seen that the CCF
decays faster, indicating that a molecule which
has a high initial rotational temperature has more
chance of rapidly randomizing its orientation. The
error on the functions F~, F~2, ,F„~2 is also 0.01
(0.02 in the tails).

FIG. 8. Influence of the initial rotational temperature
on the disorientation of the molecule. Solid line:
fF„(t); dashed line: fEg J2 (t ) ~

of the individual rotational temperatures J'/2I.
Its variance is easily shown to be O'T'. This gives
2.16 q' at the temperature we have studied. Our
"experimental" figure 2.2 c' agrees well with the
theoretical one. If the individual rotational tem-
peratures of the molecules were random indepen-
dent variables, then A(t) Ithe mean of (N(t))=9
such variables] would have a variance 2.16/9
=0.24. Its exact value, 0.25, does not differ much
from this figure. Hence, the rotational tempera-
tures of interacting molecules are not strongly
coupled. We have verified this fact by computing
the cross-correlation function:

(15)

C. Cross correlations with the environment

Here the word environment is used to mean the
set of partners of a given molecule, as defined in
Sec. IIIA. Let us first consider the distribution

This CCF remains small at all times (see Fig. 9)
and is almost at the limit of our statistical errors,
whose absolute value is again 0.01.

In contrast, there exists a correlation between
the time evolution of the rotational temperature
of a molecule and that of the local density around

„0.05

0.5

0.

~ ~
~ ~

~ ~
~ ~

~ ~

~ ~
~ Q,

~ ~ ~~ ~
~ ~ ~ ~ ~

I )o-"s

"D:5"' t &O-"s
-0

FIG. 7. Self-correlation function and density selective-
ly sampled correlation function of the angular momeatum
J and of its square J . Lower curve —solid line: Ez(t);
dashed line: Ez(t) for NI =7; dotted line: Ez(t) for Ns
=10. Upper curves —similar to lower curves for J2.

FIG. 9. Cross-correlation function of the environment
fluctuations. Solid line: E~ z(t); dashed line: E'& z2(t);
dotted line: Ez z2(t). The statistical error is ~0.01.



278 QUENTREC AND C. BROT 12

it: we have computed the CCF

(16)

which is represented in Fig. 9. This curve exhibits
a sharp minimum at t =0.15&&10 " sec. This indi-
cates that if the initial density is high, the mole-
cule tends to first cool during this span of time,
and thermalize again afterwards; the converse is
also true. Surprisingly enough, no significant
cross correlation was found between the initial
density and the change in orientation at time t:
F„„=&N(0)u(0) u(t)&/&N& has been found to be
practically identical to,F„(t). We will come back
to this question in Sec. IIID.

We have also computed the following cross cor-
relation for the environment:

This function, which is also plotted in Fig. 9, ex-
hibits the same kind of behavior as I g J2 Its
time variation is smoother, probably because the
local density, here defined as seen from molecule
i, is not the same at the same instant of time for
its partners, so that the correlation is somewhat
blurred.

D. Selectively sampled correlation functions

Let A;(f) be some operator associated with mole-
cule i. Let us define

f, Q, ,nA, (s)A, (s+f) ds
f"P, en A', ( .s)ds

where s is the time. D is a set of molecules which
both at s and at s+t satisfy some conditions. The
set D depends on s and t, but at equilibrium, the
number of molecules in D is stationary with re-
spect to s. We will choose for the definition of D)
the set of molecules which have at least some num-
bers N, of "partners. " We define F~~(t) analogously
by choosing for D the set of molecules having at
most N~ "partners. " Of course, it can happen that
a molecule is in D at time so, but not in it at sy,
and is in it aga, in at s, (s& s, & s, & s, & s+t), but
this situation will seldom appear for t smaller
than the relaxation time of N(t) (=0.5x 10 sec),
so that it can be said that F~~(t) [F'„(t)] is essential-
ly a CF of A, (t) sampled on molecules which have
remained in an environment of high [low] density.
Choosing V, =10, the fraction of molecules belong-
ing to D is 0.31 at t =0, and is 0.14 at t =0.3&10 '2

sec; it is 0.104 at t =3 x10 " sec and its asymp-
totic value is obviously (0.31)' =0.0961.

Since, for computing the following "selectively
sampled correlation functions, " the statistics bear
on only a fraction of the total number of molecules

0.5

I

2. t &o-"s

FIG. 10. Density selectively sampled correlation func-
tion for the orientation vector u. Solid line: g„'{&);
dotted line: &E„(t) for N~ =10; dashed line: &E„(t) for
Nl -—8; dot-dashed line: &F'„(t) for NI = 7; open circles:
free rotation at the triple-point temperature.

(typically 100 instead of 500), our absolute error
reaches 0.03.

F~(t) and F~~(t) have been computed and are com-
pared with FJ (t) in Fig. 7; the negative part ex-
hibited by Fz(t) indicates that there exists, for
molecules at high density, a phenomenon of re-
bound against their neighbors. This fact indicates
the existence of some librational character in the
motion of molecules in dense environments; we
have explored qualitatively the nature of this phe-
nomenon and will discuss it in Sec. IIIE.

The density- selected orientational cor relation
fu nett ons, F„'(t) and, F~(t) have also been computed
and are reproduced in Fig. 10. It is clearly seen
that the reorientations are fast if the local density
remains low and slow if this density remains high.
A rapid initial fluctuation in the density is not suf-
ficient to change the reorientational behavior, as
already mentioned in Sec. IIIC. We have also com-
puted functions, +„' and ~g„, where the set D is
now defined by reference to the local rotational
temperature A(t) instead of the density. We found
no significant difference between, F„' (t), ,F„(f),
and, F„(f). The same negative result was found
for Fz (t) and F~(t). This shows that the local ro-
tational temperature has no influence on the rota-
tional behavior of the reference molecule. This
is in agreement with the small value always found
for the CCF IR J2.

Finally, we mention that another run of molecu-
lar dynamics performed at smaller density and
higher temperature (p*=0.65, T*=2.05) has shown
a much freer rotational behavior in which the se-
lectively sampled CF's were found to be identical
to the ordinary ones. Also one should remember
that the nitrogen molecule does not have a very
large anisotropy in its interaction potential. For
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more elongated or complicated molecules the re-
sults we have observed mould probably not be valid.

E. Discussion

Considering first the various autocorrelation
functions (,F„, F~, F~2, F„)whose behavior was
reported above, an obvious statement is that their
correlation times are of the same order of magni-
tude: these times fall between 0.2x10 "and 0.6
x10 ~ sec.

We will now make a brief comparison between

our results and several typical models proposed
in the literature, but at this point a preliminary
remark on this comparison seems in order: most
models envisage some limiting cases, e.g. , cases
where some of the coupled dynamical variables
randomize much faster than others. This is not
the situation we observe in computer-simulated
nitrogen, where all the variables concerning one

molecule vary smoothly on comparable times
scales. To illustrate this we present in Fig. 11 a,

sample of the time variation of two dynamical vari-
ables pertaining to the same molecule, during a
time span of 7.5x10 sec. These variables are
the cosine of the orientation angle with respect to
a fixed axis and the squared angular momentum.

Whereas it is apparent that the rate of change of
the latter is faster than that of the former, it re-
mains true that no strong inequality between their
correlation times exists.

Although this situation evokes some sort of
smooth molecular chaos, the influence of density
fluctuations on orientational behavior, mhich has
been inferred from both our cross-correlation

functions and our selectively-sampled correlation
functions, produces some structure in the orienta-
tional motion. This structure is visible on the
cosine 8 curve of Fig. 11: On the right-hand side
of the figure, during a stage that lasts at least
3xl0 ~ sec, the molecule remains more or less
trapped along the direction 0=0, performing an

erratic librational motion with an average ampli-
tude of some 15'; in between such stages the mole-
cule has a regime of large-angle nonuniform rota-
tion. We have checked that this situation is real
by examining the behavior of some twenty mole-
cules during 10 "sec.~ As far as they can be ex-
actly defined, the stages of trapping and those of
large-angle rotation range from 0.2 to 0.8 x 10 ~

sec. On average they have about equal weight, but

the molecules with a long-lasting high number of
partners have longer periods of trapping.

We now proceed to the examination of the degree
of validity of the most well-known models in the

literature when applied to computer-simulated ni-
trogen. We observe the following.

(l) Free, i.e., "dynamically coherent"" rotation
is evidently ruled out, as already stressed in

Ref. 1.
(2) The Gordon's 8 diffusion model"' deserves

closer examination because it predicts, if the col-
lisions that it assumes are not too frequent, rea-
sonably long initial inertial behavior for,E„, as is
observed. Also E~ in this model can decay not

much faster than, F„(t), as again is observed. How-

ever, the hard collisions of Gordon's model imply
that the initial slope of F~(t) is not zero, and that
a time sample of t' would exhibit a random suc-
cession of horizontal plateaus. Both these features

+1
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PEG. 11. Sample of the
orientational motion of a
molecule. Upper cur ve:
cosine of its angle with a
fixed axis; lower curves:
J2/2I, where J is its angu-
lar momentum and I its
moment of inertia. The
unit for J /2I is that for
the temperature, i.e., E/k~.
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contradict our observations (see our Figs. 7 and
11, respectively). This question is obviously re-
lated to the hardness of the repulsive part of the
potential. In a recent article" Chandler was able
to reach a reasonably good agreement with our
previous dynamical results on computer-simulated
nitrogen, by fitting the nitrogen molecule to a suit-
ably chosen rough hard sphere model. To do this
he deduces an equivalent molecular diameter from
the observed equilibrium properties, and assumes
an arbitrary coefficient for the transfer of angular
momentum during collisions. This yields a value
for the correlation time of the angular momentum;
then, via Gordon's J diffusion model, the time-
correlation functions for the two first spherical
harmonics can be computed. As for monatomic
liquids, the equivalent molecular diameter which
enters into the calculation has to be chosen to be
temperature dependent.

In our opinion such a procedure is just an em-
pirical remedy for the fact that the "interval be-
tween collision" and the "collision duration" in a
dense liquid either cannot be clearly separated or,
if, with some arbitrariness, they are separately
defined, are of comparable order of magnitude.
This point is illustrated by the following approxi-
mate calculation: we do not adopt the spherical
model, but rather we consider the "collision" of
two nitrogen atoms belonging to two different mole-
cules. To take into account the fact that such colli-
sions are brought about by a combination of the
translation and the rotational motion of the mole-
cules, we will take the mean kinetic energy per
atom to be 45kT (since the—re are five degrees of
freedom per molecule). We consider the path of
two atoms colliding "head on. " We assume that the
two atoms are in a "state of collision" if their sep-
aration is shorter than cr. The duration of the col-
lision, 9 c„, is then the time necessary for the
path v, r„,o, where r„ is the turning point. On

the other hand, from the first peak in the atomic
pair-distribution function (Fig. 4 of Ref. 1), the
mean atom-atom separation is about ro = 2' 'o.
Hence, the mean interval between collisions,
is twice the time necessary for the path r„v be-
cause of the statistical symmetry of the environ-
ment. Now r„ is determined by the fact that the
time average of the kinetic energy over the total
path rp rg must be —,'kT. At the triple point one
finds W~D =0.175x10 ~ sec and V'~c =0.22x10 ~
sec. These two times are indeed comparable. If
one is fond of hard-core models, one may compare
their sum (0.395 x 10 " sec) with the Enskog time
computed for the atomic collisions: again taking o
for the atomic diameter and p=2p*/g' for the
atomic density, using g(o) of Ref. 1, and adopting
40T instead of —,'kT for the mean kinetic energy,

one finds v'~ =0.29x10 " sec.
Because short-duration collisions do not exist,

the translational velocity and the angular momen-
tum vary smoothly in time. Remembering that the
sum g,.D+g ~,. =0.395x10 sec is computed for
head-on collisions, which reverse the angular mo-
mentum, an estimate on this basis of the random-
ization time for the angular momentum would be
some 0.20x10 " sec. The observed value, ' 0.17
x10 " sec is even shorter. This is because inter-
molecular torques evidently act even during the
"collision inte rvals. "

The above very simple remarks could have been
made before the development of the MD method.
It is satisfying both that they are verified by MD
and that Gordon was able to verify the validity of
his model only for gases (he ha, d to modify it em-
pirically to reproduce the behavior of liquids). "

We have mentioned in Sec. II that hard-core mod-
els (e.g. , Chandler's fused hard spheres) seem to
be a good approximation for computing the equilib-
rium distribution functions in dense liquid nitrogen.
This is not in contradiction with our pre. sent affir-
mation of the nonvalidity of these models for de-
scribing the dynamics. This is because of the rel-
ative orders of magnitude of the three following
lengths: a molecular dimension, say v; a mean
intermolecular gap, say A, —o, where X is the mean
intermolecular distance; and the range of the re-
pulsive potential for a kT variation, which is of
the order of r, —r~ in the above notations. Because
the molecular dimension is some ten times larger
than the intermolecular gap, the exact shape of the
potential in the gap has not much influence on the
local arrangement of the molecules. On the other
hand, the short-time dynamics are governed by
the space-time trajectory in the gap, whose length
is comparable to the range of the potential so that
the exact shape of the latter is of paramount im-
portance.

(3) Conventional rotational diffusion by small
steps, and also Hill's itinerant oscillator model"
have to be rejected for computer-simulated nitro-
gen because of the existence of stages of large-
angle continuous rotation. Also our ratio of the
correlation times for the first and second spheri-
cal harmonics is smaller than 3, the value which
arises from the rotational diffusion model.

(4) We turn now to the Ivanov model. " Here the
rotator is assumed to be trapped most of the time
and to perform, at random instants in time, in-
stantaneous angular jumps. If we assimilate the
stages of continuous rotation we observe to such
jumps, we encounter the fact that, far from being
very short, these stages last about as long as the trap-
ping stages. Nevertheless, this model shows some
resemblance to the situation we observe: for ex-
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ample, for large jumps of random size the ratio
of the long time decay rate of,F„ to that of,E„ is
1' to 1.2," a figure which is close to the one we

observe.
(5) The model proposed by Lassier and Brot"

is an improvement over the Ivanov model in that
it also includes inertial effects both during trap-
ping (perturbed libration) and during jumps (finite
duration of the jumps). Here again the behavior of
computer-simulated nitrogen has many features
in common with the model. However, the libra-
tions during the trapping stages are more erratic,
and the observed "jumps" last longer, than in the
model.

(6) Anderson and Ullman' have put forward a
model comprising the following interesting hypoth-
esis: whereas in the jump models the molecular
environment is implicitly assumed to vary abruptly
to allow jumps to occur, these authors suppose
that there exists a continuous distribution of en-
vironments (free volume) which evolves smoothly,
and that the probability of reorientation of the ref-
erence molecule depends on the actual environ-
ment. This recalls the situation we have observed,
in which there exists a cross correlation between
the number of "partners" and the decay rate of the
local orientational correlation function. However,
for our purpose, this model has the drawback of
being essentially "relaxational" in the sense that
all inertial effects are completely ignored.

(7) The model proposed recently by Kivelson and

Keyes" could probably accommodate the main fea-
tures of the behavior we observe because it allows
extreme as well as intermediate situations for a
set of dynamical variables. However, even in its
most general version this theory assumes that a
quantity analogous to the time derivative of the
torque has a white spectrum. We have not com-
puted the ACF for this quantity, but a close exam-
ination of the curve for J' in Fig. 11 suggests that
this hypothesis is probably an oversimplification.
This assumption, however, can be empirically
useful: for it is equivalent to truncating at the sec-
ond order a hierarchy of memory functions for the
orientational correlation function, and it has been
shown that this allows a reasonably good fit of the
observed CF."

To conclude this section dealing with the com-
parison with models, we stress the fact that we
have preferred to test directly the basic assump-
tions of each model rather than to tentatively fit
our ACF's with those predicted by the models.
Indeed, even if successful such fits do not prove
the validity of a model, because many models com-
prise more than one parameter, if not a free func-
tion.
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