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Comment on charged-particle scattering in dilute and dense plasmas
in the presence of intense electromagnetic radiation

Chan K. Choi
Department of Physics, Southern Illinois University, Carbondale, Illinois 62901

Shaikh N. Mian
Department of Physics, Ranchi University, Ranchi, Bihar, India

Walter C. Henneberger
Department of Physics, Southern Illinois University, Carbondale, ILlinois 62901

and Physical Sciences Directorate, Redstone Arsenal, Alabama 35809

Romas A. Shatas
Physical Sciences Directorate, Redstone Arsenal, Alabama 35809

(Received 9 June 1975)

It is shown that the quantum theory in the Born approximation gives the classical result when scattering of
electrons in the presence of a radiation field occurs in a time short with respect to the period of the radiation.
It is argued that the result of Bunkin and Fedorov may be used only when the co11ision frequency of the
electrons in a plasma is much smaller than the frequency of the electromagnetic radiation.

In recent years, there has been much interest
in the heating of a plasma by a laser. In parti-
cular, R quantum-mechanical expression for the
rate of energy transfer from a laser to plasma
electrons has been obtained by Bunkin and
Fedorov, ' Pert, ' Kroll and Watson, ' Geltman and
Teague, 4 Brehme, ' and Rahman. ' The case of
circularly polarized radiation has been studied
by Seely and Harris. ' All of the above authors
discuss quantum effects in what is often called
the inverse-bremsstrahlung process. In this
note, we point out that the classical as well as
the quantum results follow from quantum me-
chanics. The important point is that the result
depends upon whether the scattering occurs over
a time short with respect to a cycle of the elec-
tromagnetic radiation or over very many cycles.
This is shown quite simply in the following con-
sideration.

It is convenient to take advantage of the fact
that the effect of the radiation field in the dipole
approximation, together with the Coulomb po-
tential (perhaps modified by screening), may be
combined to form a time-dependent effective po-
tential. Thus, the Schrodinger equation can be
written

V'g(r, t) + V(r + n (t))y( r, t) = ik—y( r, t),

where

The quantity n(t) is the classical displacement of
a free electron in the vector potential A(t). We
consider the initial and final states, (1/~~)e' o'
and (1/W)e' '. We may consider 'U to be
the interaction volume of the electron with the
field. The S -matrix element is given by

z p +OO

h
dt V(r + n(t)))i),

where we have adopted the interaction represen-
tation of quantum mechanics. It is convenient to
introduce the Fourier transform of the scattering
potential,

'v(r) = Jd'q v(ti) e"' .

Then V(r+n(t)) is given by

(4)

v(r+n(i)) = fd'q v(q)exp(i[ti r+ti a(t)])
(5)

At this point, we emphasize that either the clas-.
sica1 result, or the result of Buskin and Fedorov
can be obtained by inserting Eq. (5) into Eq. (3).
The result depends entirely upon the treatment
of the quantity n(t).

In order to obtain the result of Bunkin and
Fedorov, we assume a sinusoidal radiation field
having plane polarization. We assume further,
that the scattering occurs over very many oscil-
lations of the electromagnetic wave. We are thus
assuming that the wave functions are spread over
a large volume and that the collision frequency of
the electrons with each other, as well as with
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u(t) .==5, sin(ot. (6)

The assumptions listed above allow us to expand
the exponential of Eq. (5) in a Fourier series in
Bessel functions,

e'"'"&'J =e'~' 0 sin~t= 4 (n q}e-'" ' (7)

ions, is very small compared to the frequency of
the electromagnetic wave. This condition does
not generally hold in a cold, dense plasma. In
the framework of these assumptions, we now as-
sume the time dependence of u(t) to be

Thus, Eq. (3) involves a series of integrals of
the form

~ Ef Ej ~ Eg Ejdt exp i ~ ' -n(u t '=2m' ~ -'- -n(u

(8)
Equation (8) explicitly demonstrates the necessity
of the condition that the scattering time be long
with respect to I/&u. Hence, we assume reason
ably long wave trains and infrequent collisions
of the electrons with any other objects. The nth
term then corresponds to the absorption of n pho-
tons. We then obtain

Si, --——
J

d'rd'qe ' ' V(q)e'"' g Z „(a q)e' "n~g ' ~)n=-~

= -[i(2w) /u] V(k —k, )Z „(o., (k —k, )) 5(sq -@,. —pgk~). (9)

This leads immediately to the result of Refs.
1 —6, which is

w~,. = [(2v)'/kg']~ V(k —K,)J„(o., '(k -%,))~'

we obtain the transition rate

co&, = [(2s)'2m/I'g']i V (K -k,) i'

x5(k' —k,'—(2e/kc)$ -k,) X(0)). (15)
x5(E& E& —n-k&a) . (10)

A more frequent condition in plasmas is the case
in which the electron-electron collision frequency
is larger than &u/2w. In this case, the previous
treatment makes little sense. Accordingly, as-
suming the collision to take place at t =0, we set

Z(t) =n(0)+Z'(0)t+ (negligible terms),

and insert this into Eq. (5). This leads to the ma-
trix element

This gives a scattering rate

Ro(k, X) dk = [(2s)42m/k'g]i V(k —ko)i'k2 dk dQ»

x5(k' —k20 —(2e/kc)(k —%0) X(0)). (16)

For a sinusoidal wave, we have

A(0) =Ao cos5, ,

where 5, is the scattering phase. This must be
averaged over all values of cos5, .

The scattering rate is therefore given by
p+ ao

S,. = ——~ d'rd qdte ' 'V q
1

Ro(k) = — R„(k, 5, ) d5, .
7T p

(18)

fq. r j q Ln(0)+a'(0) t+ ~ o ~ j Averaging the delta function over the scattering
phase yields

yexp i 5 4
g

sk r

The integrations lead to the result

S, = —[i (2w) /hg] V(K %,)e'& ~ ~-o& ' "&'»

x 5[(Z, -Z, )/k+(% -%,) ~ n'(0)] .

(12}

(13)

5(k' —k', —(2e/k'c)(k -k,) A, cos5, )d5, ,

(19)

where 5, is now the particular value of the scat-
tering phase defined by the delta function. Making
use of the relation k'dk= —,'kd(k') and the incident
electron flux, which is liko/mg, we arrive at the
differential cross section

n '(0) = —(e/m c)X(0), (14)

As we shall see, this is the amplitude that gives
the classical result. We note that the term in-
volving Z(0) is merely a phase factor. It would be
surprising if the scattering depended directly up-
on the amplitude of the electron oscillations.
Large va, lues of e, can be obtained by simply go-
ing to low frequencies. Making use of the relation

df~ )2w0e/(kc)(k-K, ) Xsin6, ~' (20)

This is the classical result in the form quoted by
Kroll and Watson. ' lt is not surprising that the
classical limit corresponds to the case of trans-
fer of a large number of photons, as shown in
Ref. 3. One can always find a sufficiently large
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n such that n~/2v is much greater than any colli-
sion frequency of the electrons. It is precisely
the higher Fourier components of the perturba-
tion that determine its behavior over a very short
period of time. Thus the classical limit must
correspond to the simultaneous absorption of a
large, but undetermined number of photons. How-
ever, as seen in the derivation of Eq. (20), the
photon concept does not shed much light on our
understanding of energy transfer to electrons by

a light beam in a dense plasma. On the other
hand, observation of effects predicted by Eq. (10)
would require a tenuous plasma, in order that the
electron mean free path be of the order of the di-
mensions of the experimental apparatus. Thus,
quantum effects are unlikely to play a role in most
plasma applications.

Three of us (S. N. M. , C. K. C., and W. C. H. )
are indebted to Dr. Frank C. Sanders for stimu-
lating discussions.
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