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The six-dimensional integral involved in the eikonal (e,8) rearrangement amplitudes is reduced to a two-
dimensional form. When the Glauber condition q.i = 0 is imposed, there is no post-prior discrepancy in the
elastic rearrangement amplitudes. The Ochkur reduction of the rearrangement amplitudes is obtained in a
closed form. Application is made to the inclusion of the exchange effect in the Glauber calculation of elastic
(e,H) scattering at 50 eV.

fn an earlier paper'(hereafter referred to as
paper I) this author had given the "post" and
"prior" forms of the rearrangement amplitudes
for the process e, +H(i)- e, +H(f). For an infi-
nitely heavy proton, the eikonal approximation tp
the prior on-shell exchange amplitude is given by
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where qz =1/k& and z»=i ~ (r, —r„). (I),(r,) is the
wave function of the initial ground state of the
hydrogen atom and Q~(r, ) of the final bound hydro-
genic state. The multidimensional integral in
Eq. (1) occurs in the eikonal approximation to sev-
'eral other atomic rearrangement processes, like

e'+H- H'+(e'e ), H'+H- H+H', and, in general,
(heav y charged particle) + (atom) - (atom) + (heavy
charged particle), with differences in kinematics
and dimensions.

We are able to reduce the above integral to a
compact two-dimensional form for numerical in-
tegration. To evaluate the integral for exchange
excitation to any arbitrary state of the hydrogen
atom, we replace Q$(r, ) by Nf exp(-Pr, +i%. r, ) and
the initial state (I(),(r,) by N, exp(-gr, ). The wave
function of any arbitrary hydrogenic state can be
generated by operating with a differential operator
SQ, X} with X set equal to zero, ultimately. Em-
ploying a parametrization technique [ demonstrated
below for the integral in Eq. (3)] the imaginary
exponent of the factor xy2+&» is separated. Then
one is able to replace the factors containing r» by
their Fourier transform. The integrations over
r» r» and the intermediate momentum are easily
carried out, and one obtains
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where

p' =P'u+ (%, +7)'u - [(%, +X)u+ it(1 u)z]', -
Q = —q+%, (l -u) it(1 -u)z -X-s.

The post form of the eikonal rearrangement am-
plitude leads to a similar reduction and can be
obtained from Eq. (2) by changing n~- q„p —P and

%, +X- %& in all terms except the o aerator $(P, X}.
For the elastic rearrangement caee p, =P = &,

N&=Nz =1/vn, and $(P, X) =1. For this case ~%, ~

= ~%y~ =k, gq
——

q&
——g, and it can be easily verified

that, with the condition q ~ z =0 imposed, which
implies z =-(%&+%&)/~%&+%~~, the post and the prior
forms of Eq. (2) are identical, thus there is no
discrepancy between the Aeo forms of the Glauber
exchange amplitudes.

We have employed Eq. (2) to include the exchange
effect in the Glauber "straight-line" calculation
of elastic (e, H) scattering at K=50 ev. The sym-
metrized differential cross section is at most 12%
above the Qlauber straight-line value for forward
scattering angles. Typically at 8 = 30', the sym-
metrized value is 9%%u() above the Glauber, and at
8 =45; it is 12%above the Glauber. Still, the
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result obtained remains much below the experi-
mental data of Lloyd et al. '

In view of the above, one might conclude that the
Glauber exchange approximation is essentially
valid at k; » 1 a.u. , and as the exchange contribu-
tion to the collision cross section decreases rap-
idly with the increase in collision energy, the
extrapolation of the Qlauber exchange amplitude,
Eq. (2} with q ~ z =0, to lower energies (typically
E = 50 eV, k, = 1.917 a.u. ) is not physically valid.
One possible way around this difficulty is to follow
the Ochkur' idea. The Ochkur term of the prior
form of the eikonal exchange amplitude, Eq. (1),
has been obtained in paper I [Eq. !(2.10)] and is
given by
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To demonstrate the parametrization technique
involved in the reduction of the integral in Eq. (1)
to the two-dimensional form of Eq. (2), we per-
form the integration in Eq. (3) explicitly. With no
initial restriction on the spatial direction of the
momentum transfer q, we are able to reduce Eq.
(3) to a simple algebraic expression. The imag-
inary exponent of the factor x+r ~ z is separated
out by employing a representation of the beta func-
tion, ' and Eq. (3) becomes
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Reversing the order of integrations, the integration over r is performed by introducing a parameter t and
the integration over s is carried out by employing the same representation of the beta function as in Eq.
(4}, and is a reversal of the operation introduced at that stage. One gets
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The integral over t is recognized to be the Euler integral of the gamma function I'(1 —iq&). Instead of em-
ploying the integral representation of the beta function to separate the imaginary exponent in Eq. (3), one
could have employed the Euler integral of the gamma function with the same effect. But a noteworthy fea-
ture about employing the beta function is that the step is reversed during the course of the evaluation. The
Ochkur term of the post form of the eikonal exchange amplitude can be obtained from Eq. (5) by changing
g&- q, and I- -2. As an application of Eq. (5), we evaluate the differential exchange cross section for
elastic (e, H} collisions and get
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where the upper and lower signs refer to the post
and prior forms, respectively. With the Glauber
condition q z = 0 imposed, there is no post-prior
discrepancy in the Ochkur reduced eikonal cross
section in Eq. (6); otherwise, it does exist. The
numerical results obtained from Eq. (6) are iden-
tical with our earlier work in paper I. We hope
that this derivation of the Ochkur reduced eikonal
exchange amplitudes will clear the understanding
about the choice of direction of q. '

There are several justifications for the Qlauber
choice q ~ s =0 for direct collisions. ' We find that
there are some physical justifications for the
choice q ~ 2 =0 in rearrangement collisions also.
There is no post-prior discrepancy in the Glauber
exchange amplitudes, and of course the same re-
sult carries through in the Ochkur reduction. Fur-

r

thermore, the Ochkur-reduced Glauber exchange
amplitudes are invariant under the reversal of
directions of k, and g.

The indeterminate phase in Eq. (6) does not play
any role, in case one is interested, in optically-
forbidden exchange-allowed collisions, but it
makes the expression unsuitable for the inclusion
of exchange effect in calculations of symmetrized
differential cross sections. But we notice that in
the limit qz =0, the indeterminate phase in Eq. (5)
vanishes and the expression reduces to the Ochkur
approximation of the Born-Oppenheimer amplitude.
This amplitude is real and is known to give meaningful
results at E= 50 eV. Thus to include the exchange
effect in the Glauber "straight-line" approxima-
tion in the simplest possible way, the limiting
value of Eq (5) at qz -0.appears to be the only
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FIG. 1. Differential cross sections for elastic e -H
collisions. Dots are experimental points of Bef. 4;
solid line denotes Glauber straight-line with Ochkur ex-
change; long-dashed line, Glauber straight line of
Franco (Ref. 2); short-dashed line, first Bornapproxi-
mation with Ochkur exchange.

choice. %e have done this calculation and the re-
sult is displayed in Fig. 1.

In Fig. 1, we have also plotted for comparison
the differential cross section in the Glauber
straight-line approximation, the experimental
points, and a calculation in the first Born approx-
imation with the exchange effect included by the
Ochkur term. The inclusion of the exchange effect
at E =50 eV leads to a considerable improvement
in the Glauber approximation. For instance, at
scattering angle 8 =30' the Glauber with exchange
is 66% above the Glauber, and at e = 50' it is '11%

above. The Glauber with exchange is in agreement
with the experimental points, within the normaliza-
tion and statistical errors quoted in Ref. 3, for
angles &50'. In the comparison of the experimentaI
data with various theories, Teubner et al.' find
that the close-coupling calculation agrees very
well with the measured values for angles greater
than 50'. %'e are able to make the same observa-
tion with reference to our calculation of the sym-
metrized differential cross section in the first
Born approximation with Ochkur exchange. %e

notice that the result in this calculation is almost
identical with the close coupling result for angles
&15 and &130 . To see this, one must compare
the plot of the close-coupling calculation in Fig. 2
of Teubner et g/. ' with our plot in Fig. 1. It is
a noteworthy result in the sense that the first Born
approximation with Ochkur exchange is a trivial
calculation and can be done by hand, whereas the
close-coupling (1s -2s -2& projection) calculation
of Burke et al. ' is extremely arduous.

From the experimental data of Teubner et al. ,
Gerjuoy and Thomas' estimate the integrated elas-
tic e -H(1s) cross section(o) at 50 eVtobe 1'.2(hra2o.

For comparison, we have calculated the integrat-
ed cross sections at 50 eV, and the values are as
follows: Glauber straight-line approximation,
0.598@@',, Glauber straight-line symmetrized with
Glauber exchange, 0.609@a'„Glauber straight-line
symmetrized with Ochkur exchange, 0.669@+0;
first Born approximation symmetrized withOchkur
exchange, 0.908mg', . The integrated cross section
in the close-coupling method is known to be
0.8$rg~. Thus the first Born symmetrized value is
in better agreement with the estimated experimen-
tal value than the close-coupling integrated cross
section at 50 eV.

One must mention the eikonal-Born series meth-
od of Byron and Zoachain. " A critical discussion
on the comparison of this method with the Glauber
approximation is available in the review article
of Gerjuoy and Thomas. ' This method includes
the exchange effect by the Ochkur approximation
and the prediction of this method in the case of
elastic (e, H) scattering is in good agreement with
the experimental data only at 8 = 50 eV. Our cal-
culation shows that the inclusion of exchange by the
Ochkur term makes a significant correction to the
Glauber calculation and also to the first Born ap-
proximation at lower intermediate energies. To
make corrections to the Glauber at higher inter-
mediate energies, it would be worthwhile to look
at the next term in the eikonal expansion of the
amplitude.

In conclusion, we make the following comments:
The six-dimensional integral involved in the ei-
konal (e, H) rearrangement amplitude can be re-
duced to a two-dimensional form which can be accur-
ately evaluated numerically. For the case that the
Glauber condition on the momentum transfer, e.g. ,
q ~ z = o, is imposed, there is no post-prior dis-
crepancy in the elastic rearrangement amplitudes.
For the inelastic rearrangement amplitudes the
discrepancy does exist, but diminishes with the
increase in projectile energy. Ochkur reduction
of the eikonal rearrangement amplitudes is ob-
tained in a closed form and would be useful for
calculations of optically-forbidden exchange allow-
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ed transitions due to electron impact at the lower
values (-50 eV) of intermediate energies. To in-
clude the exchange effect in Glauber straight-line
approximation, it is found that one must consider
the Ochkur approximation to the Born-Oppenheimer
amplitude. This leads to a substantial correction
in the Glauber calculation. One may note that at

E =50 eV, the symmetrized differential cross
section in the first Born approximation, with ex-
change included by the Ochkur term, is almost
identical with the close-coupling result of Burke
et al. ' for angles &15' and &130', and the integrated
cross section is closer to the experimental value
than the close-coupling result.
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