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Double-scattering contributions to the intensity of Rayleigh-scattered light near the critical point of a binary

liquid are calculated for 90' scattering. %e consider a family of sample geometries, namely cylinders with

arbitrary length-to-radius ratio and cuboids with square cross sections and arbitrary length-to-side ratio. For
binary liquids with nearly matched refractive indices, these terms can be sufficiently large that they afFect the
interpretation of data with respect to the value of the critical exponent q and the deviation of the correlation
function from Ornstein-Zernike form, yet small enough that higher-order contributions can be neglected.
Numerical results are presented for all temperatures above T, together with analytical results in certain
limiting cases. Near the critical point, the double-scattered intensity is comparable with that lost through
extinction and these two effects cancel in leading order. Some analytical results are also obtained for the
depolarization ratio. For example, if the height of the sample seen by the detector is small, the depolarization
ratio is proportional to the difFerential cross section and to the sample height. The proportionality constant is
m/4. Numerical results are presented for more general cases.

I. rmaOnUnION

Light-scattering experiments have been used
extensively' for measuring the density-density
(or concentration-concentration) correlation func-
tion of a simple (or binary) liquid near its critical
point. According to the Ornstein-Zernike (OZ)
theory, ' the light-scattering intensity per unit
length and per unit solid angl. e is given by

I(8, 4) = Alar(k = 0) sin C /[1+ (k$)s],
where for a simple liquid,

2

ep

ltz, (k=0) is the static isothermal compressibility,

k= (tt,„-tt.„,) =2k, sin(-,'8)

is the magnitude of the scattering wave vector, 4
is the angle between the polarization vector of the
incident beam and the wave vector tt, „, of the scat-
tered beam, $ is the correlation length, A. is the
vacuum wavelength of incident light, and ko is the
magnitude of the wave vector of the light in the
medium. For a binary liquid the same expression
holds except (ps&/sp)r is replaced by (se/sc)z, and

where c is the molar concentration of one compo-
nent, p, the (relative) chemical potential, and n
the molecular number density. By measuring the
scattered intensity as a function of angle and/or
temperature, Eq. (1.1) has been useds ' to deter-

mine the absolute values and the temperature de-
pendences of xr(k=0) cc(T —T,) " and g ~(T —T,) "
and hence to determine the critical exponents y
and v.

Sufficiently close to the critical point (k$ & 1)
Eq. (1.1) is expected to fail, and has to be replaced
by the more general form'

f(8, 4) = Aitr(k=0) sinsef(kg), (1.2)

where f(kt) is the "scaling function" with the prop-
erties f(x) =1-x'+O(x'), x«1 and f(x) ccx @

x» 1, this last form defining the critical exponent
ri, related to y and v by the scaling law y = v(2 —ri).
Light-scattering measurements may in principle
be used to determine the exponent q and the func-
tional form of f(x).

A direct application of Eq. (1.1) or (1.2) to the
measured scattered intensity requires that a given
light ray be scattered at most once by the sample.
As the critical point is approached, however, the
scattering intensity grows so that eventually one
may have to take multiple scattering effects into
account when calculating the scattered intensity.
For simple fluids such effects typically become
significant in the critical region, making a de-
tailed investigation of the seal. ing function close
to the critical point impossible. Recently, how-
ever, the use of binary liquids with approximately
equal refractive indices has become more com-
mon. For such mixtures the scattering intensity
can be made sufficiently small that the single
scattering formula, Eq. (1.1) or (1.2), will hold,
without multiple scattering correction, until quite
close to 1;. A price has to be paid in so far as
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-TI
Imeas. =Ising ~ (1.3)

This approach treats all light scattered out of the
incident beam, other than in the direction of the

the scattering from concentration fluctuations be-
comes too small. in the "hydrodynamic" regime
(k$ «1) for reliable data to be taken.

A system of this type which has been used by
one of the authors is 3-methylpentane-nitroethane'

0
with refractive indices 1.373 and 1.389 at 6328 A,
respectively. The scattered intensity is measured
for k$ typically in the range 0.1& kg& 10. For the
range of temperatures covered by the measure-
ments the multiple scattering corrections were
estimated, from turbidity measurements, to be
negligible for kg= 0.1, increasing to about 5% for
k)= 10. In this latter regime, which is where the
scaling function differs most from the OZ form,
the single-scattering formula is inaccurate by
=5%, which is of the same order as the difference
between the exact scaling function and the OZ
form, namely of the order of the critical exponent

As pointed out in the investigation of double
scattering by Oxtoby and Gelbart, ' an apparent de-
viation of the scaling function from OZ can be in-
duced by double scattering. Therefore, for a sat-
isfactory interpretation of the data in terms of the
critical exponent q which quantifies the deviation
of the scaling function f(x) from OZ form, it is
necessary to take adequate account of the multiple
scattering corrections.

In their investigation, Oxtoby and Gelbart as-
sumed a spherical scattering sample with only its
central region under illumination. Their geo-
metrical configuration is physically unrealizable
and their calculations are not applicable to an
actual experimental situation. An investigation
of double-scattering effects for a more realisti:c
geometrical configuration is necessary in order
to apply proper corrections to scattering-intensity
measurements and this is the aim of this paper.

Customarily, data from scattering-intensity
measurements are corrected for the extinction
due to increased turbidity near a critical point.
The turbidity v is the total scattering intensity
per unit length, and is given by the integral of
I(8, 4) over solid angle. The OZ form for I(8, 4)
is usually used, with the unknown parameters de-
termined by measuring, as a function of tempera-
ture, the ratio of the intensity I of the unscattered
beam to that Ip of the incident beam and fitting to
I/I, =e ', where L is the path length in the sam-
ple of the unscattered beam. If the path length of
the scattered beam is L', the turbidity correction
consists of determining the intensity for single
scattering I„„, from the measured intensity I „,
according to

detector, as "lost." However, some of this light
will be subsequently rescattered and eventually
reach the detector. The goal of the present paper
is to take such contributions accurately into ac-
count for the most common experimental geome-
try, namely a scattering volume which consists
of either a cylinder or a cuboid with square cross
section. We include double scattering only, which
is adequate provided the turbidity correction is
small.

Then Eq. (1.3) is modified to read
I

Imeas. sing
—7L Ising. +Idoubie

where Id,„bi, reflects the "gain" through double
scattering whereas 7L'I„ng reflects the "loss"
due to turbidity, the exponential function being
approximated by its linearized form for small
TL'. The loss term and the gain term are of the
same order of magnitude, so that application of a
turbidity correction to the experimental data, with-
out also taking double scattering into account, is
a poor approximation.

While the motivation for the present work arose
from the need to interpret the data of one of the
authors, the results presented here have general
applicability in situations where the multiple scat-
tering corrections are small (but not negligible).
In particular, the use of binary liquids with nearly
matched refractive indices is an increasingly com-
mon experimental technique.

Our method for computing the double-scattering
correction is simply to integrate over all possible
double-scattering processes. In doing so, we will
exploit the fact that, for typical experimental ge-
ometries, the width of the sample seen by the de-
tector, 4w, is small compared to the dimension
of the scattering volume. This assumption enables
us to treat the integrand (the intensity for a given
double-scattering process) as constant across the
width 4w and greatly simplifies the computation
of the double-scattering integral. Consequently,
we are able to reduce the integral to that over a
single variable and obtain certain analytical re-
sults in a few limiting cases.

This approach is to be contrasted with the recent
calculation of Reith and Swinney' on the depolar-
ization of light due to double scattering. Their
computational problem is identical to that en-
countered here. In their calculation they chose
to evaluate fourfold integrals using the Monte
Carlo method. Their principle theoretical result
is that the depolarization ratio (defined as the
ratio of scattering intensity with cross polarization
to that with parall. el polarization with respect to
the incident beam) is, for k(«1, proportional to
the differential cross section for single scattering,
the height h of the sample seen by the detector,
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and a factor g, which is equal to 4~ for small h

and approximately equal. to 0.77 for the range of
h used in their experiment. ByIexploiting the
smallness of the width &m, we have been able to
compute the factor g for the whole range of h and
find that, in the limit of small h, g is equal to —,n

plus corrections quadratic in h.
Section II contains a discussion of the geome-

tries we will consider (which include the geome-
tries used in the experiments of one of the authors
and those of Heith and Swinney) and a derivation of
the double-scattering correction as a triple inte-
gral over (essentially) the scattering volume. The
calculation is carried out for the special case of
90 scattering, with the pol.arization of the incident
beam perpendicular to the plane of scattering.
Section III is devoted to an evaluation of this in-
tegral and a discussion of the results. It turns
out that two of the three integral. s may be
evaluated analytically while the final integration
must be carried out numerically except in certain
limits. Depolarization effects are discussed in
Sec. IV, where the function g(h) introduced by
Reith and Swinney is computed. The case where
the polarization of the incident beam is parallel
to the direction of scattering is also discussed.
Double-scatter ing contributions dominate here
since single scattering in the direction of polar-
ization is forbidden. The ratio of the intensities
for polarization perpendicular and parallel to the
plane of scattering is a pure number, depending
only on the sample geometry. Finally, Sec. V
consists of a brief summary.

II. DOUBLE-SCATTERING CORRECTION

dQI 8, 4

-= —,
'

wB (1+P) ln (
where

P =(1+-,'n')' .

(2.2)

(2.3)

To calculate the double-scattering correction
we specialize to the experimental arrangement
shown in Fig. 1, which has been used by one of
the authors. ' The scattering volume is a cylinder
of radius ro and height h, although identical re-
sul. ts are obtained if the cross section is a square
of side 2r, . The incident beam is directed along
the positive y axis, polarized in the z direction,
and assumed to have negligible width. The detec-
tor is placed on the positive x axis and "sees" just
a narrow strip, of width 4~, of the scattering
volume. Only light which is finally scattered in-
side this strip, and parallel to the x axis can
reach the detector. The total intensity received
by the detector is proportional to, for unit inten-
sity in the incident beam,

(2.4)

the constant of proportionality being (4w) dQ,
where dQ is the solid angle subtended by the de-
tector at a point in the strip, and is assumed the
same for every such point. The general assump-
tion here is that the width 4' of the scattering
volume seen by the detector is small compared to

take q =0 in the present calculation for the reasons
cited above. The turbidity is then

I(8, 4) =Bsin'C/[o. '+(2sin~8)'], (2.1)

where B=Aar(@=0)(k,)) ' and o. =(k,$) '. The
temperature dependence of B is (A has no critical
variation) B-(7 —7,)""- constant, since we may

We will assume that the multipl. e scattering pro-
vides a small correction (&10%%up) to the single-
seattering intensity, but must nevertheless be
taken into account in order to determine the scal-
ing function f(x) and exponent q reliably from the
data, since f(x) differs from its OZ form (1+x') '
by an amount of the same order (-7l -0.1). To
leading order, therefore, we need include only
the doubl. e-scattering contribution to the multiple
scattering correction. By the same token we are
justified in using, for the double-scattering calcu-
lation, the OZ form Eq. (1.1) for the single-scat-
tering intensity, since the r .suiting error will. be
second-order small in the final result.

Equation (1.1) may be written more conveniently
as

INCIDENT
I

LIGHT BEAM I I
h

I

FIG. 1. Experimental geometry assumed in the cal-
culations. Incident beam is in the positive y direction
and is pol.arized in the s direction. Detector is posi-
tioned on the positive x axis. Only light which is finally
scattered from the narrow strip of width Geo reaches
the detector.
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the dimension of the sample (b,m«2r, ) and the de-
tector is sufficiently far away from the sample.
In Eq. (2.4). I„„, is given by Eq. (1.2), while e,„,
is the correction for the light lost or scattered
"out":

e,„,=I(2'v, —2'v)(1 —e 2"o')

= [B/(n'+ 2)] 2r, r, (2.5)

where we have linearized in 7 (for double scatter-
ing) and used Eq. (2.1) for I(v/2, v/2). Use of Eqs.
(2.2} and (2.3) yields

1+P VP +1 1
z« t '~ (B

4~p
n

~p
(2.6)

Finally &,„ in Eq. (2.4) is the correction for light
scattered "in" the direction of the detector, from
the narrow strip of width 4', after two scattering
events. To compute &;„we imagine that this strip
is composed of a large number of narrower strips
of infinitesimal width ~so. We consider scattering
from such a single strip and use the coordinate
system of Fig. 1, but with the origin of the y co-
ordinate shifted to the center of the given strip.
The first scattering event occurs on the y axis be-
tween points (O, y, 0) and (O, y+dy, 0); the second
scattering event occurs in an area dx dz around
the point (x, O, z). The solid angle for the first
scattering event is then dx dz cos8/(x'+y'+z'),
and the path length is dy, while for the second
scattering event the solid angle is dQ and the
path length 620/cos8. With the normalization of
Eq. (2.4}, the scattered intensity from these two
events becomes

6e,.„= . . . I (8, C )I(8', 4'),
hm x'+y'+z

where I9, 8' are the scattering angles for the first
and second scattering events and 4, 4' are the
corresponding angles between incident polariza-
tion and scattering direction. The full &,.„ is now

obtained by integrating over x, y, z for each in-
finitesimal strip and then summing over strips.
Using the condition 4'«2ro we may approximate
the limits for the x and y integrations by +so for
every strip to give

"o "o "'2 I(8, C )I(8', 4')
dy dx dz

-ro -ro his x +y +z

(2.7)

The cosines of the angles 6), ~', and@' are easily
written down in terms of x, y, z:

cos 8 = —y/(x2 +y2 +z2)~ I2

cos 8' =x/(x'+y'+z')'I2, (2.8)

p, =[p, —(p, k, )k, ]/sine'.

Hence

(2.9)

cosc" =p, 'k, = —cosC'cos8'/sinC',

since p, k, =0. Substituting for 6' and @' from
Eq. (2.8) yields

cos@' — xz/(x2+y2+z2)&~2(x2+y2)&/2 (2 10)

Substituting for 8, 8', C', C" from Eqs. (2.8) and
(2.10) yields

cose = z/(x'+y2+z2)'I2

To determine 4' let k„p„k„p„k„p,be unit
vectors specifying the propagation direction and
polarization direction of the incident, intermediate
and final beams, respectively. Then

coso =k, ' k,

cos0' =k, k, ,

cosc =po' k~

The direction of p, is given by the component of p,
which is perpendicular to k, . Normalizing gives

2gg2 7 0
dy

yo

dx
a/~ (x2 +y2)2 ~y2z2

[x'+z'+ (1 —1/p)y ][y'+z'+ (1 —1/p) x'] (x'+y'+z') (2.11}

The evaluation of this triple integral and the
results obtained occupy Sec. III of this paper.
Our final result will be written in the form

with

~~~2 (2v~ 2 "} e«~(1 (2.12)

+ =&;,/&«~ ~ (2.13)

The quantity (1 —R} is the factor by which the
turbidity correction must be muliplied to take ac-
count of scattering "in." It should also be noted

that the same integral is obtained for Eq. (2.11)
if the scattering volume has a square cross sec-
tion of side 2&0.

To close this section we would like to mention
that in our formulation, &I„and &,„, are both second
order in &, and I„„, is first order in &. Any ef-
fects that yield terms of higher than second order
in I3 are neglected. Hence e,„, in Eq. (2.5) is
linearized in & and the turbidity is neglected in
calculating &,„. This approximation is valid in
the temperature region in which 1-e ' can be
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approximated by «'. In binary liquids with close-
ly matched refractive indices this temperature
range extends to within a millidegree of 1",.

In the spirit of the power series in B, it becomes
clear that the turbidity correction alone applied to
the experimental data without multiple scattering
corrections is not sufficient. If the exponential
function in the turbidity correction can not be

adequately approximated by its linearized form,
then still higher-order multiple scatterings must
be taken into consideration.

IIIo EVALUATION OF 6'
jtie RESULTS AND DISCUSSION

The integral over z in Eq. (2.11) is readily per-
formed by elementary techniques to give

"'d„(«' +&')' —&'(«'+ (1 —1/t )&')e,„=2B2 dy d«
y2(y2 «2}

1, ]'2/2

I*'+() —)/())}"I"' I.*'+()-)/s)v'I"')

(«'+&2)2-&2[&2+(1 —1/P) '] 1 t/2
*'()"-*') [)"+() —)/()&I"' [)*+()—)/())+]"*)

( '+y')'",„, t /2
(3.1)

Introducing polar coordinates p =&cosa, x =&sine one finds that the integration over & is also elementary
and gives

1 1
+

2 [1 (1/ti) 28]~i2 1n[1+y (sec 8 —1/p)]

(1/p) + csc'8 1 cos8
[) —(1/}))sin'8]"' v I) —()/))}sirP&]'I* )

1 1
+

2y [1-(1/p) i„8]ii2 ln[1+y'(sec'8 —p 'tan'8)]

=2r B2P

1 1
+ /, ),/, ln[1+y'(1 —1/P+t')]

+sec'8 csc'8[sec8tan '(y 'cos8)+(1/2y)ln(1+y'sec'8)] ~, (3.2)
)

'

where y=2&, /tt describes the shape of the scattering volume. The remaining integral over 8 has to be per-
formed numerically. A slightly more convenient form is obtained via the substitution tan6=t:

1 I 1+1/P+t2, 1 1"'""" () -~ )]()—)/}} ~ )" ""
() —)/)) ~')"' )

1 +1/P+ 1/t', 1 1
[)+()—)/())&']"' 7 [)+()—)/}))&]"')'

1 1

(1 1/ ) t,], , in{ 1 +y'[1 + (1 —1/]8) t ']j
/

/

+ —, (1+t')'i'tan ' —
1 t»/2 +

2
ln[1+y'(1+t')] (3.3)

The ~atio ft =e],/e», may be computed from equations (3.3) and (2.6). Results are plotted against
a=(k2$) ' over four decades, for five values of y, in Fig. 2. The dashed curves refer to certain asymp-
totic forms which we will discuss later. For y 40.4 the result is essentially independent of y. For o.4
~y & 1 variation with y is slow while for y ~ 1, A depends strongly on y. This is to be expected on general
grounds. The only light which contributes to &;„ is that which is scattered into the strip of thickness 4',
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width 2r» and height h. For h & 2r„ this is limited by h while for h & 2r„ the width 2r, of the strip essen-
tially limits the amount of light that can be intercepted. Increasing h further has little effect.

Notice that the ratio A is a function of the t4o parameters n and y. It is interesting to discuss the var-
ious limiting cases separately.

In the hydrodynamic regime where a»l, (p» 1), the ratio R rapidly approaches its asymptotic limit.
In this limit, Eq. (2.6) becomes

&-t =2«0&'[2/30+O(P *)], (3.4)

and Eq. (3.2) becomes

2~ gP &/4
0

in
p

cos 1 y'
d8 —,'sec~tan ' + —ln(l +y'sec'8)- ——» +O(P ' ),y y Sy y'+cos'8 (3.5)

where O(P ') denotes the terms of the order P
'

and higher. A numerical computation of R = (&,„/
c,„,) s „, as a function of y, is shown in Fig. 3.
For the limiting case of y =0, Eq. (3.5) simplifies
greatly and the corresponding ratio R (0) is given
by the closed forxn:

2 m

l5 0 (~2 P)1/2

=2wr, &'[ln(I/o. )+O(I)] . (3.S)

«1 comes from the region &- a. Expanding p-I
+ 0.' and keeping only the leading terms yields

R (0}=$ln(1+M2) =0.5VS . (3.6) Hence

On the other hand, for the limiting case y»1,
one obtains the asymptotic form

R (y)=(3/4y)(lny+ 8 +ln2 —2G/n)+O(y ')
or

R=1+O([in(I/~)] ')

1 —R=O([in(I/o)] ') . (3.10)
= (3/4y}(lny+0. 485)+0 (y '), (3.V)

e,„,=2sr, B'[in(I/o. ) +O(1)] .
The dominant contribution to &;„[Eq. (3.3)] for o.

(3.6)

I I I I 11$I I I I I I llllI I I I I 1 I III I I I I I I I I

where G is Catalan's constant. From Eqs. (3.4}
and (3.5) one notes that the relative corrections to
R„are of the order P ' which is equal to the order
of o '. This explains why the asymptotic limits
are approached so rapidly.

In the critical regime where a«1, the ratio &
approaches unity. This may be seen analytically
as follows. In this limit, Eq. (2.6) becomes

This result may also be seen on general physical
grounds, starting from Eq. (2.V}. For o, «1, the
scattered beam is strongly concentrated in the
forward direction, with characteristic angle 0..
The whole of the scattered beam therefore inter-
cepts the strip and, being nearly in the forward
direction, may be scattered through an angle close
to 90' to arrive at the detector. In computing the
scattered intensity from such a process, the factor
l(8', 4" ) may be evaluated at &' = w/2 =4" and taken
outside the integral in Eq. (2.V). For small angles
we can set dr dz/(zz+y~+z~) equal to the solid angle
for the first scattering process. The integral over
x and z of I(e, 4') then gives just the turbidity while

- I.O I I I I I I III I I I I I I I I

04-

IP I I I I I IIII I I I I I Illll I I l I I IIII
IO IO 10 I

' ''''' 0
IO

O. P. —

FIG. 2. Ratio R=,.„/,„,o cattering "in" to scat-
tering "out" terms in the double-scattering intensity,
plotted against G. = (k &

$)" for five values of y= 2t'0/0,
according to Eqs. (2.6) and (3.3). Short-dash curves
represent the asymptotic form for small 0,, given by
Eq. (3.15). Long-dash curves represent the asymptotic
form for large y, given by Eqs. (2.6) and (3.25).

0—
IO'

I I I I I I I I I I I I I I I I

IO IO

FIG. 3. Asymptotic value R„ofR as e= (lop) 4,
plotted. as a function of y = 2ro/h, , according to Eqs.
(8.4) and (3.5). Behavior for y &102 is accurately de-
scribed by Eq. (3.7).
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the integral over p from —&, to 0 gives a factor &~.

Hence the contribution to &,„ from processes in

which scattering through a small angle is followed

by scattering through an angle close to 90' is
7&DI(,'w, -2w) =2&,„t. A little thought convinces one
that an equal contribution comes from processes
in which scattering through an angle close to 90'
is followed by scattering through a small angle,
to give a net result &,„=&,„, for u«1, or 8 =1.
The above line of argument also indicates that
the result breaks down if h is so small that the
whole of the scattered beam is no longer inter-
cepted by the strip. This happens when &h- @&0

or n-y ' so that the condition n«1 for the re-
sult R =1 should strictly be replaced by n«min
(1,y ). From Fig. 2 it is clear that the asymptotic
limit is approached more slowly for large y.

One further notes, from EIl. (2.12}, that the
total contribution to the measured scattering in-
tensity from double-scattering processes is equal

'to

(3.11)

which, according to EIls. (3.8} and (3.10) saturates
to a constant value as e-0, in contrast to the
logarithmic divergence associated with a simple
turbidity correction.

In order to determine the saturation value of
&I „, it is necessary to evaluate the O(1) terms
in EIls. (3.8) and (3.9). The first of these is simple

c,„t = 2wyDB2 [ 1n(1/o) + in2 —2 +0 (o)] . (3.12)

To obtain the O(1) term in e;„one may add and sub-
tract in the integrand of E(l. (3.3) the term respon-
sible for the leading 1n(1/a) behavior. ln the re-
mainder, o. =0 may be used to O(1) accuracy. This
procedure gives

&,„=2w&, B2[in(1/o) +ln2 + A. (y) +0 (o)], (3.13)

w'here

A(y) = — d&(1+&2)i ——+, tan ' —+ ln(1+y2t2)1 ' f w 1 ]i 2+I', 1 1
t 1 —t2 t yt 2yt

—(2+I/t )(tnn '('1/y)+ (1/ty) tn() +y')]I

(1+P)1I2tan — — + —in[1 +y2(1 yt )]
1 ' 1
t2 y (1 +i2)1/2 2y j (3.14)

Thus,

1 —It = C (y)/1n(1/n) +0 [ n/ln(1/o. )],
with

(3.15)

(3.18)

Numerical evaluation of A (y) gives the form for
C(y) plotted in Fig. 4. The value for y =0 is

C(0) =3in2+-,'W2 - -,' in(1 +W2) —r

Plots of & vs e for five values of y are shown in
Fig. 5. The dash-dot curve labeled y =~ corre-
sponds to the limit 6=0, for which case &;„=0.
This curve, therefore, represents a simple
turbidity correction. The amount by which the
other curves deviate from the y = limit is a
measure of the importance of the scattering "in"
terms.

= 0.022,

while for large y the asymptotic form is

C(y) =lny- —,+O.[(1/y) lny] .

(3.17)

(3.18)
) 2-

I I I I I I I I I I I I I I

The short-dash lines in Fig. 2 are plots of Eq.
(3.15) which is asymptotically exact for small n
In this limit, the double scattering contribution to
I „, saturates at a value

5I „,(o, =0)= 2wr2B2C(y) .
The dependence of &I „, on e is given by

&I „, = —2w tOB2E(y, o(), '

(3.19)

(3.20)

0
IO 10 l0

with

E(y, o() =[ (1 —R)/2wr2B2] e,„t . (3.21)

FIG. 4. Function C(p), defined by Eqs. (3n14) and
(3.16). Behavior for y & 102 is accurately described by
Eq. (3.18).
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Finally we wish to discuss the limiting case of
large y, in which the height of the cylindrical scat-
tering volume is small compared to its radius.
This is a good geometry for experiments since the
double-scattering correction is a much smoother
function of temperature than for small values of

y. A large y can be obtained easily by reducing
the height h but note that our initial assumptions
require that h still be large compared to the in-
cident beam width. !n the limit y»1 we can ex-
pand the right hand side of Eq. (3.3) to terms of
order (1/y)lny and 1/y. The O[(1/y)lny] term is

1 ' (,)
1 1 1+1/P+t' 1+1/P+1/tm

y tm 1 tm 1 1/p+tm 1 (1. 1/p)t2

which may be integrated using elementary methods to give

(3.22)

(3.23)

The O(1/y) contribution is

2roB~p — dt (1+t'),
1 1,[1+~in(1 -1/p+t')]-,(1+2ln[1+ (1 —1/p)tI']]

0

+ (1/t') [1+-,' ln(1+t')] (3.24)

D(a) =in(2a)+1, a«1 . (3.26)

The result of using Eq. (3.25) to calculate R is

IO I I I I I I I It

y=(Q

I I I I I I I li I I I I I I II

which has to be evaluated numerically. It is con-
venient to express the result in the form

2nr, B' 1—[1 y+D(a)]+o(y '),

y»1, a ' . (3.25)

The function D(a) is plotted in Fig. 6. The a=~
limit D(~) =0.485 has already been calculated in

Eq. (3.'7). For a«1 one may use the asymptotic
form

shown for y = 5, 15, 50 by dashed lines in Fig. 2.
The approximation is extremely accurate until,
as indicated in Eq. (3.25), it begins to go bad
when n- y '.

If h, becomes so small that it is comparable to
the width of the incident beam, the above results
have to be modified. The resulting corrections
are small, as is shown in the Appendix.

IV. DEPOLARIZATION RATIO

The purpose of Sec. IV, which is not restricted
to binary liquids, is to extract from our general
result, Eq. (2.11), that part of the double-scat-
tered intensity which has polar ization perpendicular
to that of the incident beam. This is the "depo-
larized" intensity. We may then make contact with

-I
IO

IO

IO IO
a

IO

FIG. 5. Function F (0.) which describes the total con-
tribution to the measured scattering intensity from
double-scattering processes according to Eq. (3.20),
for five values of y. Curve labeled y =~ represents
the result of correcting for turbidity alone.

IO IO

FIG. 6. Function D (e), defined by Eqs. (3.25) and
(3.26). Behavior for +&10 ~ is accurately described
by Eq. (3.26).

IO
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the work of Reith and Swinney. '
In complete analogy to Eg. (2.9), the polarization

vector after the second scattering process is given
by

polarized is

1 —(p2 ' p, )' = 1 —sin'4'/sin2@'

y2Z2/ [(X2 +y2)2 +y2Z2] (4.2)

(4.1)

The fraction of the scattered intensity which is de-

The depolarized intensity from double scattering is
obtained by multiplying the integrand of Eg. (2.11)
by this depolarization factor:

rp rp a/2 $2Z 2

I = dy dr dzVH
P [X2 +Z2+ (1 I/P)y2] [y2 +Z2+ (1 I/P)Z2] (Z2 +y2+Z2) (4.3)

The evaluation of I„„,for all values of y =2&,/
I2 and p = (1 +-,' oP)2 may be carried out in complete
analogy to that of &,„ in Sec. ID. For comparison
with the results of Reith and Swinney, however,
it is sufficient to consider the limit P = ~ o.'-~
appropriate to the regime kg «1.'0 In this limit
Eg. (2.1) becomes

I(8, 4) =g sin24, (4.4)

where (ra =&/a2 is the differential cross section
per unit volume, and is independent of &. Then
the intensity from single scattering, which has
polarization parallel to that of the incident beam,
is I„v =o2. Thus, for &$«1,

I r rp a/2 $2 2
= 8 (Tp dp c6c dz

IVH

lvv

(4.5)

(4.6)

where the last line defines the function g(h/2r, ).
As in Sec. III the integration over z may be per-
formed by elementary methods. Introducing polar
coordinates p =&cos8, x =&sin6), and then inte-
grating iver r yields

tr /4
g=& y d6) tan ' —cos8 + —,

cos 6) y y'+ COS26I

(4.V)

where y =2&2/I2 as usual. As pointed out by Reith
and Swinney, measurements of Iv„/Ivv determine,
if g is known, the value of vp and thence the con-
stant B. By varying h the "collision-induced" con-
tribution to I», which is due to single scattering
from anisotropic clusters of molecules and there-
fore independent of A, may be removed.

A plot of g vs y ' = I2/2&0 is presented in Fig. V.
The range of y ' covered by Reith and Swinney's
experiment and Monte Carlo calculations is in-
dicated by the arrows. This range is expanded
in the inset with the results of Ref. 8 superim-
posed, and we have taken 2&p 6 m.m as given in
Hef. 8. In this range, an expansion of Eq. (4.7)

to order y ',
g=4&- r(1+2&)y '+o(y '), (4.9)

is accurate to about —,9p everywhere and is indi-
cated by the dash-dot line in Fig. 7. In Ref. 8, a
constant value g=0.77 was used for the range of
k used in the experiment. In the limit y-0, g
has the asymptotic form

g=-,'win(1+v 2 ) y+O(y'), (4.9)

0.7

0.5

O. l
I I I

2 3

y (= h/2ro)

FIG. 7. Function@(y ) vs y according to Eq. (4.7).
Dot-dash and dashed curved are the asymptotic forms
for small and large p

"~ as given by Eqs. (4.8) and (4.9),
respectively. Arrows indicate the range of y ~ covered
by the Monte Carlo calculations of Ref. 8. Region is
expanded in the inset and the results of Ref. 8, where
2ro= 6mm, are superimposed. Error bars represent '

the standard deviation of thirteen Monte Carlo calcula-
tions for each value of h.

which is indicated by the dashed line in Fig. 7.
The product gl'2 appearing in Eq. (4.6) varies

linearly with A with slope 4n, for small h, and
then bends over as I2/2&0 increases to the order
of unity and eventually saturates, according to
Eg. (4.9), at a value 2'2(v/2) In (1 + W2). Departures
from linearity should be observable if the experi-
ments of Ref. 8 were extended to somewhat larger
values of A.

For very small h one has to take into account
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the finite width w~ of the incident beam. However,
we show in the appendix that the resulting correc-
tions are totally negligible provided (11Is/2&, )«1.

Finally it is interesting to consider the case
where the incident beam is polarized horizontally,
i.e., in the x direction. Then all of the light re-
ceived by the detector has undergone double (or
higher-order) scattering. Neglecting the higher-
order scattering, which is justified (even for sim-
ple fluids} in the hydrodynamic regime &$«1 suf-
ficiently far from the transition temperature, the
ratio I„v /I«of the scattered intensities polarized
vertically and horizontally is a pure number which
depends only on the sample geometry. We proceed
to calculate this ratio.

In the hydrodynamic regime k(«1, I(e, C') is
given by Eq. (4.4) so that Eq. (2.7) becomes

6. =8go dy dx dz 2 2 2

COSCI = Q/$2iy 2+@2)1/2

From Eq. (2.9), 4' is determined from

(4.11)

(4.10)

The angle 4' is given by, instead of Eq. (2.8),

where the last equality only holds when, as in the
present case, the range of the integral in the x and
y directions is the same. Integrating over z and
& = (x2+y2) ' yields I„v/I„„as a ratio of single
integrals:

d 8I„8IHH o p

d 8I„„(e}, (4.1 f)

where

I„v(6)=—
8

tan ' —cos& +
1 1 x 1 y
2 cos8 y y'+ cos'8

The ratio IHv/I« is plotted versus p in Fig. 8.
For large y (small I3) the asymptotic form is

I„v/I„„=[1ny+0. 42 8+O(y 2)] (4.19)

(where 0.428 =1/II'+ln2 —(2/IT)G, G being Catalan's
constant), while for small y (large h) the ratio
saturates to a value

21 (S) = sic'Scos'S isc ' —cos S)HH cos 8 y
4

+ —ln 1+
y cos'8 y2+cos28 '

(4.18)

(4.12)

(4.12)

cosc" =p, k, =(1 —cosc'cos&')/sine',
A sss

since po. k, =1 for the present case. Using Eq.
(2.8) for cos8' and Eq. (4.11}for cos@ yields

cos4is = (y2 +22)1 2/(x2 +y2 +82)1 2

lim " =M2ln(1+M2) =1.25 .

V. SUMMARY

(4.20)

Hence

'rp

&;„=8g2 dy
rp h /2 ~2(y2+z2)

dz
(g2 +y2 +z 2}3

(4.14)

We have calculated the double-scattering con-
tributions to the measured scattering intensity in
a binary liquid. Although the results of this paper
are equally valid for a simple fluid, their greatest
usefulness mill be in the analysis and interpretation
of scattering intensity data for binary liquids with

This is the total intensity from double scattering.
The fraction polarized horizontally is, for a given
double-scattering process, given by (p, ' k,)'.
Using Eq. (4.1) for p, and Eq. (2.9) for p, yields

p, k, =p, k, /sine"

I.2—

I I I I i I I I

= —cosc' cos&/sin@ sine' =
y2~z2 1 2

(4.15)

where we have used kp k2 kp pp 0 Hence the
intensities polarized horizontally and vertically
are

M

X

0.4—

I„„=8 p
dy

'rp a /2 x2y2
dz

(~2 +y2 +Z 2)3 0
IO

I I I I I I I I I I I I I i I

IO

rp n/2 X2Z2
IHv =80' dy dx

VH (4.16)

FIG. 8. Ratio I„&/I„H vs y according to Eqs. (4.17)
and (4.18). Dash-dot curve is the asymptotic form for
large y, Eq. (4.19).
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approximately matched refractive indices. For
such systems there can be a range of temperatures
near the critical point where the double-scattering
correction is sufficiently large that its inclusion
is essential for correct interpretation of the data,
yet not so large that still higher-order effects have
to be included.

The calculations cover a family of experimental
geometries, in which the scattering volume is a
cylinder, or a cuboid with square cross section,
of arbitrary dimensions and in which the scat-
tering angle is fixed at 90', with the direction of
scattering perpendicular to the polarization vector
of the incident beam. This type of geometry is a
typic al one in many exper iments.

The results show that a simple turbidity correc-
tion is in general a poor approximation, especially
near the critical point when the logarithmic di-
vergence in the scattering "out" term due to
turbidity is cancelled by scattering "in" contribu-
tions due to double scattering.

We have exploited throughout the fact that the
width of the sample seen by the detector is a small
fraction of the total sample width illuminated by
the incident beam. Using this simplification we
have also computed the depolarization due to
double scattering. In the hydrodynamic regime
&$«1, we have derived a simple expression (as
a single integral) for the function g introduced by
Heith and Swinney, and computed g for all values
of the sample height, obtaining explicit analytic ex-
pressions in the limit of small and large @. For
the case in which the polarization of the incident
beam is parallel to the direction of scattering,
double scattering dominates since single scattering
is forbidden. The ratio of intensities polarized
perpendicular and parallel to the plane of scatter-
ing is a pure number which depends only on the
sample geometry.

(A1)

h+g h+u
(A2)

where g(x} is defined by Eq. (4.7), and we have
specialized as in Sec. IV to the hydrodynamic limit
k («1. Hence

k+u h+u
(A3)

Now the finite beam width only becomes significant
when h is comparable with m~. Since both h and
u~ are then small compared to 2&„we may use
the asymptotic form Eq. (4.8) for g(&) in Eq. (AS):

g2

tion ratio (Sec. IV) and on the total intensity due
to double scattering e;„(Sec.III). Assuming al-
ways that us/(2&, )«1, we will find that in the
former case the effect of finite w~ is completely
negligible, while in the latter ease the effect is
small but calculable.

For simplicity we consider a rectangular incident
beam, with height m~ and uniform intensity, cen-
tered on the p axis, though the calculation can be
extended to any intensity distribution. The cross-
polarized scattered intensity due to the element of
beam between the planes y =~2 and y =2(u+ du) is
[see Eq. (4.5)]

dQdI vH 2K~

0 f'p h/2 0 /2 p2 2
x + dx dg

-(g/2+g/2) ( +3 +z )
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APPENDIX: CORRECTIONS FOR FINITE BEAM WIDTH

We wish to take into account the finite width MI~

of the incident beam, which we have so far re-
garded as small compared to the sample height

We will compute the effect of finite ~ on the
function g(h/2&, ) associated with the depolariza-

(h +u)'x 4v —8 (1+-,'u) +
(2&,)'

(A4)

Ivs —guo jl /ws ~ k~&s (Ae)

fvs =o', ~h&- x (I+-'&)l. (~/2&, )'+(u, /2&, }21+ j
(A5)

The expression in the curly brackets is the cor-
rected g. The term in (sue/2~, )~ represents the
effect of finite beam width. Since ws/(2&, )«1
(typically zus/(2&u) -10 2), this term is completely
negligible compared to the leading term 4r. Only
when 0 is reduced below m~ does the finite beam
width take effect, for then the effective incident
intensity is reduced by a factor h/sos, giving
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To compute the total double-scattered intensity
e,.„, Eq. (A8) has to be replaced by

gx .82 1
(2P —1}(1—1/P)'" u(s

du in ~--) +ii (a(, (A7)
(h+u) 2x

2&0 h +u

where we have used the small h form [Eq. (8.25)j,
for the contribution to &,.„ from an element of in-
cident beam since it is only for small h that the
finite beam width becomes important. The inte-
gral is elementary and yields:

2 pxB2 1
&;„=

(2p 1)(1 1/p)
'2

y
[»r+D(~)+f (~,/h)1,

(A8}

where

f (x) =—,
' —[(1+x)2/4x11n(1 +x)+[(1—x)'/4x] ln(1 —x)

(A9)

represents the finite beam width correction. For
small x, f (x) = —-', x "', decreasing to (-,

' —ln2)
= —0.193 for x =1.
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