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Steady-state pulses and superradiance in short-wavelength, swept-gain amplifierse
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The steady-state behavior of amplifiers in which the excitation is swept at the speed of light is discussed in the
semiclassical approximation. In the present work we examine the case where the decay time of the population
is comparable to that of the polarization. Pulse propagation is shown to obey a generalized sine-Gordon
equation which contains the effects of atomic relaxations. The analytical expression of the steady-state pulses
(SSP) gives two threshold conditions. In the region of limited gain the SSP is a broad pulse with small area
which can be obtained by small signal theory. In the second region of high gain the SSP is the superradiant e
pulse. Its pulse power is not limited as in usual superradiant theory because, as we show, for a swept
excitation the cooperation-length limit does not exist.

In considerations involving short-wavelength
lasers, it is clear that in view of the very short
spontaneous lifetimes, one would like to sweep
the excitation in the direction of lasing in order
that the atoms be prepared in an excited state
just as the radiation from previously excited atoms
reaches them. In several recent papers we have
considered the problem of the gain in such a sys-
tem, and we have found that the short lifetimes
have profound implications for amplifier behavior. '
In particular, we find that the small-signal regime
of the amplifier is highly anomalous, and that
superradiance plays an important role in the non-
linear regime. In this paper we calculate the
steady-state behavior for short lifetimes using
a semiclassical approach. This procedure is both
analytic and simple, and points out the unusual be-
havior of the amplifier in a straightforward and
transparent fashion.

One fundamental difference between a swept ex-
citation and simultaneous excitation is the fact that
in the first case the "cooperation length limit, "'
which is a strong limitation to the appearance of
superradiance'4 with simultaneous excitation,
does not exist. A number of previous calculations
have implicitly assumed swept gain conditions and
hence have shown superradiant behavior, ' ' al-
though it has been only recently that this has been
pointed out explicitly. ' ' The first example of this
behavior was the steady-state pulse (SSP}' in an
amplifier with linear losses described previously,
assuming that the decay time of the atomic popula-
tions, &„ is very long with respect to the decay
time &, of the polarization. In this case a hyper-
bolic-secant n' pulse exists or does not exist de-
pending on the unique threshold condition g/z&1,
where g/& is the gain-to-loss ratio. In this paper
we give an analytical description of an amplifier
with &, =&,. That is, we assume that 'E, has the

shortest possible value. Starting from the Max-
well-Schrodinger equations, we derive a gener-
alized sine-Gordon equation which contains the
effects of atomic relaxation and of field linear
losses. %'e give the exact analytical expression
of the SSP, which is formed asymptotically in the
amplifier after many linear absorption lengths. A
crucial feature arising from a short &, is that the
steady-state pulse exists only if spontaneous emis-
sion is explicitly taken into account (whereas if
T, » T„ it is enough to have an input pulse). In
our semiclassical model, spontaneous emission
is analytically simulated by a small initial value
of the Bloch angle P, (small polarization}. Since
the stochastic nature of the noise is not included,
the results refer only to the mean behavior of the
pulse. The small angle $0 is determined on the
basis of a simple argument and turns out to be in-
versely proportional to the square root of the
atomic density. Unlike the case in which T, is
much larger than T„ two different kinds of SSP
can exist if T, =1'„depending on the values of
g/K.

i. 1&g/z& ln(1/P, ). The SSP is a broad pulse
with small area and time duration of the order of
T, which can be described by a small signal theory.

ii g/z& in.(1/$0). The SSP is the hyperbolic-
secant superradiant pulse whose time duration is
shorter than T, and inversely proportional to the
density of atoms. %e have checked the formation
of the SSP by a computer analysis in which the
spontaneous-emission source is replaced by a
random-noise polarization. The SSP is affected
by large fluctuations in the small-signal regime.
However, these fluctuations become very small
in the nonlinear regime. In both cases the mean
field values agree with the analytical expressions
obtained by representing spontaneous emission
by a small Bloch angle.
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I. BASIS FOR CALCULATION

where Eo(&,z) is the envelope of the electromag-
netic field which w'e take, for the present analysis,
to be real (i.e., constant phase).

In the retarded frame z, p. =t -z/c, the coupled
Maxwell-Schrodinger equations read

(1.2)
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eg =o, '6' —zg .
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(1.3}

(1.4)

Here a is the linear losses of the amplifier, and

n' =g/T2 =4vp &popo/ch =3(&2/4v)v ' po, (1.5)

where 70' =yo is the rate at which the atoms decay
from the upper to the lower state, po is the density
of atoms excited at time p. =0, and @~, is the en-
ergy„difference between the two atomic levels.

The steady state in the amplifier is a pulse
propagating at the velocity of light without dis-
tortion. This means that sS/sz vanishes, or that

4'. = (z/o")~. .
The steady state, which is denoted everywhere
with the subscript s, is found by eliminating e
from Eqs. (1.3}and (1.4) and solving the resulting
pair of nonlinear differential equations. In many
cases the dephasing due to collisions dominates
the decay processes so that T2«&, . In. that case,
the decay of the atomic inversion can be neglected
during the time intervals of interest. The coupled
equations can then be solved exactly to give the
usual. hyperbolic-secant steady-state pulse

In the usual description of amplifiers, "one
deals with a medium consisting of atoms decaying
to some distant states at rates y, , y„where a(b}
denotes the upper (lower) atomic level. In most
cases, including the present calculation, the dis-
cussion is simplified by taking y, =y, = I/&, . The
decay rate of the off-diagonal elements of the den-
sity matrix (polarization) of the two-level systems
is

I/~, =."(r.-+rt, )+y h'.

where y„h„.„is produced by atomic collisions. The
atoms are excited into their upper state by a &-

function excitation swept along the sample at the
velocity of light. Let us denote by 6' the envelope
of the atomic polarization and by N, the atomic
inversion. We further introduce the Rabi flopping
frequency

The pulse width decreases as 1/po, while the in-
tensity grows as the square of the density of initial-
ly excited atoms. Thus we see that in the limit of
very high gain, the system goes "superradiant. "
For intermediate cases, however, one does not
expect such a pure behavior, and the intensity
grows as [(g- &)/&]'. Even so, we note that this
kind of behavior does not appear in lasers, where
the growth of the peak power goes as (g- &)/&

above threshold.
If one compares these results against the case of

uniform excitation, ' one sees that here there is no
limitation on the power, whereas in the other case,
the pulse width can be no shorter than the coopera-
tion time' T, = (o, 'c) ' ', and thus the power is also
limited. In uniform excitation there is a limita-
tion L « I, (=cT,) which comes from the require-
ment that the atom must still be excited when the
pulse arrives. In a swept-gain amplifier, since
atoms are excited only when the light coming from
the proceeding ones reaches them, it is not nec-
essary to impose a limit on the sample, i.e., the
cooperation length is infinite.

II. METHOD OF SOLUTION

In this section we present the main points in-
volved in finding the steady-state solution in the
ease T, =7.', . The details of this discussion are
found in the Appendix. We consider an amplifier
medium consisting of homogeneously broadened
two-level atoms decaying to some distant states
at the rates y, =y, =y, and excited in their upper
state by a &-function excitation swept at the ve-
locity of light. We assume that the effects of the
collisions are negligible, such that y»„„=0, an.d
thus

1 2 (2.1)

In this case we follow the treatment of Ref. 5 and
define a Bloch angle P(p, , z), whose time derivative
is the field amplitude 8 which obeys a generalized
sine-Gordon equation

4 (& ) 4'(& ) ~

y(g )8)sz 8$

where $ is the reduced time,

(2.2)

~, =T, [(g z)-/a] ' .
The radiation is emitted as a pulse of intensity
l (p, ) = (1/v,') sech'(p/7, ), with a tempor al width 7, .
If the losses are small compared to the gain (g» &), then
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(2.3) u, =(I/r) ln (g/~) . (3.4)

tan-, 8, = tanzpoe~ (2.5)

We discuss the properties of this steady-state
solution in detail in Sec. III.

III. PROPERTIES OF THE STEADY-STATE PULSE

Before presenting the properties of the steady-
state solution in detail, let us summarize its
principal features and concentrate on those fea-
tures which are new and interesting. The key
result of this section is that, depending upon the
initial atomic inversion po, the electric field can
reach interesting steady-state configurations in
one of two different regimes.

Introducing the explicit form of the hyperbolic
secant, the steady-state electric field 8(p) may
be expressed as

exp[(1 —e "")g/~]
I+ —,'P', exp[2(I —e ~")g/z] '

(3.1)

Let us first consider the case

It is clear from this that all analytic solutions to
the pulse propagation problem that have been found
from the sine-Gordon equation can be reinvesti-
gated in this case. The solutions wil1. formally be
the same, obtained by merely replacing p by (,
but the physics they describe will be very different.
We choose the case of the steady-state pulse be-
cause the changes in. the physics are particularly
clear and important in that case. One important
difference is that in this case, for an amplifier with
nonzero ~, it is vital that one have a nonzero initial
condition $(0, z) that represents the effect of the
noise. Otherwise, one finds that Q-0 in the limit
z -~ (i.e., the pulse vanishes asymptotically). If
we call this initial angle $0, we find the steady-
state solution to be

S.(u)=(I/~, ) e&"sech(I/~. )[((l )-(.] .
(2.4)

Here v, =zT, /g, which differs from the previous
notation, and (0 is given by Eq. (A17}. If we define
the area of the pulse ~, as the Bloch angle in the
limit of infinite time, we find that

If g/~& 1, the maximum of the electric field is at
p, =0, that is, the pulse is essentially a decaying
exponential characteristic of spontaneous emis-
sion.

Let us now consider the case g»&. From Eq.
(2.5), we see that now the pulse area is of order
m and the sma1.1-signal analysis is no l.onger valid.
In this case the requirement g»K means that the
term in the denominator dominates the decay of
the trailing edge of the pulse, and furthermore,
that the entire pulse grows and dies in a time that
is short compared to y '. In this limit the reduced
time is equivalent to the retarded time over the
interval of interest, and we see that

E(p) = (I/v, ) sech [(p, /~, ) —g, ], (3.5)

77
I

i.e., we recover the hyperbolic-secant solution. '
Since this occurs in the regime g/z»1, we see
that this pulse has the superradiant properties
discussed in Sec. II.

In Fig. 1 we have plotted the area & (dashed line)
and width (solid line) of the pulse as a function of
(g- z)/z. The area remains small for g& win(I/

P,}, indicating that the amplifier reaches the
steady-state configuration in the small-signal
regime, and the width remains large. At the point
g/z-In(I/p, ), the area becomes v, and there is
an abrupt decrease in the width showing the be-
havior of the pulse at the second threshold.

In Fig. 2 we show the various pulse waveforms
that are associated with the steady state. In Fig.
2(a), we have plotted a pulse shape typical of the
region g «. The exponential decay characteristic
of the spontaneous emission is still very apparent.
The pulse in Fig. 2(b) corresponds to the inter-
mediate regime z& g«ln(1/Q, ). Here the maxi-
mum of the pulse is about four orders of magnitude
higher than that of Fig. 2(a). However, the pulse
area is still very small (8=10 ~), and the width
is of the order T,. In Fig. 2(c) we show the pulse

eg/Ic « I (3.2)

which, from Eq. (2.5), is seen to be equivalent to
a pulse whose area ~ is much less than w. One
can drop the term in the denominator in Eq. (3.1)
and get

@(p)=(0,/~. ) — eexp[(1 —e "")g'/~] (3 3)

If g/z &1, it has a maximum at

FIG. 1. Semilog graph of the width t (solid line) and
the area 9 (dashed line) of the pulse as a function of the
parameter (g- v)/z.
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for the case g/z& In(l/P, ) on the same scale as
the other two. One sees that the width is substan-
tially shorter, as indicated by the behavior in Fig.
1.

In Fig. 3 we show the behavior of the pulse width
t as a function of (g- &)/z, on a logarithmic scale,
for different values of the ratio T, /T2 Th. e curves
for &,+ &, have been obtained by numerically
solving the Bloch equations (1.2) and (1.3) with the
substitution of the condition in Eq. (1.6}, and the
initial condition N= I, + =sin&[&0. For large values
of (g- &}/&, all cases converge on the dotted
straight lines, which represent the value of the
width in the limit T, -~. The threshold is seen
to move to progressively smaller values of (g —K)/

as +y gets larger .

IV. COMPARISON WITH OTHER TECHNIQUES

In swept-gain amplifiers with finite population
decays, the existence of a steady state depends
in a fundamental way on the presence of sponta-
neous emission. As already mentioned, if spon-
taneous emission is not included in the descrip-
tion, one finds not just that nonzero SSP's do not
exist, but that the pulse itself will vanish in the
limit of large z. In the previous discussion, the
"noise" was simulated by a nonstochastic initial
value (at p, =0) to the polarization described by the
angle Q, . In view of the vital role that the noise
plays in this prob1em, it is worthwhile checking
to see whether the nonstochastic nature of Po af-
fects the solution.

In the case of the small-signal pulse this check-
ing is straightforward, since it is possible to solve

IO

the fully quantum-mechanical problem in this
regime. ' In that case, one finds that the steady-
state value for the mean intensity is given by

(f.(p)& ~ «e ""(fe([2gs(1—e '")]"')&'
2Kg (4.1)

where I, is the modified Bessel function. To avoid
complicating the discussion, we omit the constants
that appear in the equation. This formula can be
put in a, more transparent form if one uses the
asymptotic form for Io. This is appropriate, pro-
vided one does not evaluate the result at p, =0,
since the argument becomes large as z -. In
that case, one gets

(4.2)

When this result is compared with the square
of the field given by Eq. (3.1}, one sees that they
are the same except for a term in the denominator
that alters the leading edge of the pulse. Thus the
semiclassical description gives a reasonable ap-
proximation of the small-signal steady state.

To test whether an abrupt threshold exists, and
whether the pulse goes over to the hyperbolic-
secant form, we have taken Eqs. (1.2)-(1.4), modi-
fied them to allow for nonconstant phases, added
a stochastic noise term, and solved the problem
numerically. The steady state is found by carrying
out the calculation for sufficiently large distances.
We find that the predictions of the semiclassical
theory are fully confirmed. The threshold is
spanned by a factor of 2 change in g/&, and the
pulse is a hyperbolic secant above the threshold.
The numerical solution also shows what happens
to the fluctuations, which are absent in the semi-

IO 0-

g/K = 64

IO
I 2

(g K)

FIG. 2. Pulse intensity as a function of time, for dif-
ferent values of the gain-to-loss ratio. The time is in
units of y ', and the intensity is given in arbitrary units
which are the same for the three cases.

FIG. 3. Pulse width as a function of the parameter
(g- f(:)/&, on a logarithmic scale, for different values
of the ratio T&/T2. The curves are monotonic in T&/T2,
so only the outer two are labeled. The dashed curve
represents the limit T& =~.
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(A4)

C) r,"
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O

(A5}

It is straightforward to show that

6'2+M~ =1 (Ae)
is a constant of motion of these equations. (This
constant is equal to one with our particular nor-

malizationon.

)
From now on, the method of solution parallels

that of Arecchi and Bonifacio. ' Consistently with
(A6), we define an angle P such that

FIG. 4. Behavior of the peak power of the pulse on a
logarithmic scale as a function of distance ~ (arbitrary
units). The curves correspond to gain-to-loss ratios of
8.4, 12, and 22, which correspond to the three different
regimes of the amplifier.

+=sin&(p, z),
Alt

N=cosp(p, z) .
From (A3) and (A5), we infer that

(A7)

(Aa)

APPENDIX

In this appendix we discuss in detail the method
of solution for this problem. Following the nota-
tion introduced in Sec. 11, we take 1/T, =1/T, =y.
%'e then introduce the new variables,

6' =6'e~", (Al)

(A2)X=Xe» .

classical result. In Fig. 4, we show the behavior
of the peak power of the pulse on a logarithmic
scale as a function of distance z in the asymptotic
(large-z) limit. Here we take T, =T, and K =1,
and show three different values of the gain. For
g=8.5, the pulse is so small that the nonlineari-
ties are completely negligible. The large in-
tensity fluctuations are characteristic of the
Gaussian fluctuations in the spontaneous emis-
sion. The case g=12 represents a case where
one is near but not yet at the threshold. Here
the nonlinearities play a small but non-negligible
role, and the fluctuations are slightly suppressed.
Once the threshold is passed (i.e. , g=22), the
fluctuations are substantially suppressed and the
intensity is practically constant. '

We see, then, that the simple semiclassical
results are well verified by the numerical and
analytical calculations that take into explicit ac-
count the fluctuating feature of the noise. We see
that the small-signal steady state is characterized
by large fluctuations, whereas the fluctuations on
the n pulse are comparatively small.

~(u, ~) = —,„4(V,z) .8
(A9)

Introducing (A 7) and (A9} in (A5}, we obtain the
gener alized sine-Gordon equation

= Q e r~sln$ —K
~pz Bp,

(A10}

In the steady state, the z derivative vanishes, and
the equation reduces to

d(P, 1' =—e ""sing
*s S

where we denote

(A11)

N, = (3/4 )phd, l, 2. (A13)

The "coherence brightening" criterion for having
a superradiant decay time much shorter than ~,
leads to the condition N, »1.

We now introduce the "reduced time" $( p, ) from
Eq. (2.3), and we see that we recover Eq. (2.2).
In the present case Eq. (2.2) becomes the equation
for an overdamped pendulum, whose solution is

tan-'P, = (tan-'Q, )e' "' (A14)

v, = (K/g) T, = 7,/N, , (A12)

which differs from the previous notation [Eq. (1.8}]
in that the dependence never goes as g- ~. We
introduce N, to show that this expression relates
to the usual superradiant decay times, ' 4 by the
replacement of the sample length with the absorp-
tion length l, =1/K. The "cooperation number" N,
is defined as

Equations (1.2)- (1.4) become

86'

8p.
(A3)

$0 is the value of Q at time p. =0, and its value
will be discussed later on. From this formula,
one obtains immediately that the area under the
steady-state pulse, defined as



is given by

tan 2 6, = (tan-,
'

Q,)e ~ "

Introducing the value (0, where

$0 = &, ln cot-,' P, ,

(A15)

(A16)

(A1'7)

the effects of spontaneous emission by a small,
nonstochastic angle $0. This procedure turns
out to give satisfactory results in the analysis of
the mean properties of the steady-state pulses.

We evaluate this small angle Po by imposing that
at time p. =0, the atomic inversion decays as

N(P =0) = —roN(P =0) = —yo, (A19)
we use (AV) and (1.6) to write the electric field of
the steady-state pulse in the usual hyperbolic-
secant form:

8, (it) =(1/v, )e &" sech(l/~, )[/(p) —$,]. (A18)

The basic difference between the electric field in
that case and that in the usual case (I', » T, ) is
that here it is symmetric in the reduced time $

instead of the retarded time p. . Transforming
back, the solution shows that the steady-state
pulse is asymmetric in this kind of an amplifier.

The solution (A18} is not complete until we have
specified the value of Q,. This cannot be done
rigorously in a semiclassical theory such as that
presented here; we have to introduce an ad koc
noise term taking into account at least the most
important features of a complete @ED theory,
namely that even with no initial field and no ini-
tial polarization, the vacuum fluctuations induce
atomic decay and thus contribute to the growth
of the electric field. This process is intrinsically
random, and should be simulated semiclassically
by a random Langevin-type force (as it is the case
on computer simulations}. However, we shall not
do this in the present work, but rather we simulate

N =—(sin/0) Qe .
But, from Eq. (A11),

= (1/&, ) sing
dQ

(A20)

(A21)

for (=p, -=0. Therefore, combining Eqs. (A19)-
(A21) gives an approximate value of Qo:

Q, —= sing, =N ' ~' («1) . (A22)

Hence, we finally obtain for the steady-state solu-
tion

(A23)

where yo =&0' y is the rate at which the atom
decays from the upper to the lower level by
spontaneous emission. (The effects of the decay
to the distant ground states have already been ac-
counted for in y and are not relevant for the evalua-
tion of Q, .) For the purpose of evaluating the ef-
fect of 1„we drop the z from Eqs. (1.2)-(1.4) to
find
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