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We develop a systematic method of operator perturbation theory in the Heisenberg picture, which is the
formal analog of time-independent stationary-state perturbation theory in the Schrodinger picture. However,
we use the eigenoperators and operator eigenfrequencies to calculate the time evolution of the dynamical
variables of interest. The spectrum of the unperturbed Hamiltonian is assumed to be discrete, The method is
especially well-suited for treating systems where the unperturbed Hamiltonian represents noninteracting
fermions and/or bosons, and therefore, we illustrate the method using the exactly solvable model of Jaynes
and Cummings: a single two-level atom interacting with a single quantized field mode. The time evolution of
these operator solutions is shown to be unitary order by order in powers of the interaction strength. We find
that the time evolution of exact operator solutions is well approximated for significantly longer times by the
time evolution of this method's operator solutions than by the time evolution of the same operator solutions
calculated using the Dyson expansion. We also demonstrate that time-dependent operator solutions are very
convenient for computing quantities such as correlation functions.

I. INTRODUCTION

A. Preliminary remarks

I et us consider a quantum system which is de-
scribed by the Hamiltonian H =H, + XH„where X

is a small parameter. Usually when we study sys-
tems described by a Hamiltonian of this type, we
initially know the energy eigenstates and eigen-
values of the Hamiltonian H, . What we would like
to find is the time evolution of the known system
Hp under the inf luence of the perturbation XH, . In
most cases of interest this cannot be done exactly
and, as a result, various time-dependent pertur-
bation methods have been developed. We will only
consider the case where H, is explicitly time in-
dependent.

One of the more general and widely used time-
dependent perturbation methods was devised by
Dyson. ' The time-evolution operator is expressed
as the product of the noninteracting time-evolution
operator Uc(t) with an unknown interacting time-
evolution operator U, (t). The solution for U, (t) is
found as a power series in X and, in general, to
some finite order in X. In this expansion each
power of X corresponds to a power in t such that
the exact solution is not weQ approximated for suf-
ficiently long times t. If the exact solution is
periodic, then the approximate nth-order solution
is not substantially improved by simply calculating
the (n+1)th-order solution.

Another method of time-dependent perturbation
theory is the phase-operator formalism developed
by Bi+'ynicki-Birula, Mielnik, and Plebahski for

Hamiltonians with continuous spectra. ' A fuQ per-
turbation expansion of the phase operator is de-
veloped with enables the time-evolution operator
to preserve unitarity in every order of the pertur-
bation and which preserves the exponential char-
acter of the time-evolution operator in every or-
der of the perturbation. However, it has been
shown by Rzgzewski that if one uses only a finite
number of terms in the perturbation expansion,
then the time evolution is unsatisfactory for suffi-
ciently long times. ' As in the case of the Dyson
expansion, powers of X correspond to powers of
t such that the ~th-order solution is not substan-
tially improved by calculating the (n+1)th- roder

solution.
Another method of time-dependent perturbation

theory is Dirac's Heisenberg-picture constants-
of-the-motion method. 4 Operator constants of the
motion are calculated such that their interacting
time evolution is in;the form of a power series in

The time evolution of the dynamical variables
of interest is found by using these operator con-
stants of the motion. These solutions, however,
are the same as those found using the Dyson ex-
pansion. As a result, the limitations in the validi-
ty of the time evolution of the Dyson expansion also
apply to the time evolution of the operator solutions
found by Dirac's method.

A general perturbation method which overcomes
the long-time limitations of the other three meth-
ods is the Weisskopf-Wigner method. ' The Schro-
dinger equation is solved for the time evolution of
the unperturbed Hamiltonian's state vectors by re-
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stricting the Hilbert space to only those state
vectors which are "essential" to the particular
problem being solved. However, while these solu-
tions correctly describe the long-time evolution
of the system, they are not calculated in a system-
atic manner. There is no order-by-order proce-
dure for improving these solutions.

After observing the limitations of these general
methods of time-dependent perturbation theory, we
see that it would be desirable to develop a system-
atic method of time-dependent perturbation theory
in which powers of X do not correspond to powers
of t such that solutions calculated to some finite
order in X are valid for relatively large values of
t. For periodic solutions this would mean that the
(n+1)th-order solution is valid in time for many
more periods of oscillation than the nth-order
solution.

In this paper we will develop a time-dependent
perturbation method in. the Heisenberg picture
whose operator solutions are suitable for approxi-
mating periodic functions and are valid for large
values of t. The usefulness of an operator ap-
proach is that we work directly with the dynamical
variables of interest. In addition, operator solu-
tions may be more convenient for calculating im-
portant physical quantities of interest, such as
correlation functions. The operator perturbation
method closely parallels and extends, on a formal
level, the Schrodinger-picture method of station-
ary- state perturbation theory. ' Eigenoperators
and operator eigenfrequencies are computed by
solving equations which formally parallel those of
stationary- state perturbation theory. These solu-
tions are then used to find the time evolution of
the dynamical variables.

This method is very general and can be used for
solving problems in many areas of physics, i.e.,
in quantum optics, solid-state physics, and many-
body physics. In particular, in this paper we will
place special emphasis on problems where H, is
expressed directly in terms of creation and de-
struction operators for fermion and/or boson sys-
tems. Any other operators of interest can be cal-
culated from a power series of these operators.
The method in this paper will be restricted to the
case where the spectrum of H, is discrete, i.e.,
Ho consists only of a finite number of different
creation and destruction operators. In Sec. VI we
will comment on the generalization of the method
for treating the case where H, has a continuous
spectrum.

B. Organization of paper

In Sec. II we develop a nondegenerate operator
perturbation method in the Heisenberg picture
whose solutions enable the time evolution of the

dynamical variables to be calculated. The close
parallel between this formalism and Schrodinger-
picture stationary- state perturbation theory is
discussed in Sec. III. In addition, an underlying
Hilbert-space structure for the operator pertur-
bation method is established.

In Sec. IV we illustrate the operator perturbation
method using the Jaynes-Cummings exactly solv-
able model of a two-level atom interacting with a
single mode of the quantized radiation field. ' A
comparison of the exact operator solutions with
the perturbation method's solutions to second or-
der in X is made. The advantage of using time-
dependent operators for calculating correlation
functions is also shown. In the Appendix, we ex-
plicitly demonstrate that the operator algebra is
preserved for all time by these approximate solu-
tions to second order in X.

In Sec. V a method of degenerate operator per-
turbation theory is developed which is based on the
nondegenerate perturbation method of Sec. II.
This method is again illustrated using the Jaynes-
Cummings model where the energy-level separa-
tion of the two-level atom is chosen to be degen-
erate with the energy-level separation of the single
field mode.

H =Ho+ XH~, (2.1)

where H, H„and H, are Hermitian and explicitly
time independent. Ho represents one or more non-
interacting systems, and XH, represents a coupling
between, or a perturbation of, the noninteracting
systems. The parameter X represents the strength
of the coupling or perturbation, and it is assumed
to be small.

For convenience, we will define the Liouville
operator L as

IR= [H, R], (2.2)

where L is a "super-operator" in that it maps
ordinary operators 8 into ordinary operators LR.
We will, in addition, define the unperturbed and
interaction Liouville operators Lo and L, as

I,R = [H„R] (2.3)

I,R =[H„R] . (2.4)

In order to use the method of operator perturba-

II. FORMALISM

A. Preliminary remarks

In this section we will develop a method of opera-
tor perturbation theory in the Heisenberg picture
suitable for attacking problems which can be de-
scribed by the Hamiltonian
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tion theory, we require an a prior knowledge of
the unperturbed system Ho. We assume that we
have solved the eigenvalue equation

~

q(0&) -g(0&
~

q(0&) (2.5)

for the unperturbed Hamiltonian's energy eigen-
states

~
(„'0&) and eigenvalues E„'0' Th. e unperturbed

eigenstates are used to specify the initial state of
the system

~
$(0)) =Z„c„~g"). In addition, we as-

sume that we have found a basis set of unperturbed
operators R' ' which satisfy the operator eigenval-
ue equation

R(0) —+(0)R(0) (2.6)

by the equation'

LSm=~mSm ~ (2.11)

5' (f) =e&"m&&& {0) (2.13)

We now look for approximate solutions for S
and Q in the form of a power series in the inter-
action strength X:

The operator frequencies Q are chosen such that

(2.12)

allowing the total time evolution of the operators
S to be exponential:

where 5=1, and that H, can be written in terms of
this basis set of operators R' '. The frequencies
or"', which may be operators, are chosen such
that

S =R(0)+~R(')+~'R(2)".

g = &(0)+au")+X'~(2' ~ ~
m

(2.14)

(2.15)

L, +«)=0
0 m (2.7)

allowing the unperturbed time evolution of the op-
erators to be exponential:

p(0&(t) —~&M~ tp( 0(&)0 (2.8)

For systems Ho which are boson or fermion, the
operators R' ' can be conveniently chosen simply
to be the usual harmonic-oscillator or spin- —,

'
creation and destruction operators, where the fre-
quencies (d"' are c numbers which trivially satis-
fy condition (2.7). Another possible choice for
R'0', which will be discussed further in Sec. III, is

~(0&
~
~&0&)y&o&

~
(2.9)

where the single operator index nz in the definition
of (2.6) implies both indices i and j in (2.9). The
fre&luencies &dI0&& are found from (2.6) to be

~(0) g (0) g (0) (2.10)

8. Perturbation method

We would like to find the time evolution of the
system, which is described by the total Hamilton-
ian B=Ho+AH„by solving the Heisenberg equa-
tions of motion for the operators R"' which are the
interesting dynamical variables for fermion or
boson systems. However, because of the presence
of the interaction Hamiltonian XH„ the time evolu-
tion of these operators is no longer simyly expo-
nential and is, in general, very complicated.
Therefore, we propose to solve the Heisenberg
equations of mot;ion for another set of operators
S whose time evolution is simply exponential,
and to use these operators to find the time evolu-
tion of the operators R"'. The operators $ satis-
fy equations similar to those satisfied by the op-
erators R&0& [(2.6)-(2.8)], but with respect to the
total Hamiltonian II. The operators S are defined

[L +XL j[0&"'+X(d"'+ ~ ~ ~ )=0 (2.17)

We can solve these equations for R'&' and or'~' by
solving an equivalent set of equations which are
found by setting the coefficients of equal powers of
X in (2.16) and (2.17) e&lual to zero:

[L ~&o&]R(o& —0 (2.18a)

[Lo- (0' ']R"'+[L,—&0("]R '=0 (2.18b)

[L ~(0&]g(o &+ [L (d(& &]g(1& 0&(o &go&& —0

(2.18c)

[L ~(o&]R(3&+[L ~(1&]it(2&

(o&ft(1& 0&(1&g(0& —
Q (2 18d)m m m m

etc. , and

I o~m

L'om

L'o~m

Lo(O„(3)

=0

+I QP =O1 m

+L, (o")=01 m

+I. co("=01 m

etc.

(2.19a)

(2.19b)

(2.19c)

(2.19d)

where each of the operators R'~' and e"' for j
= 1,2, 3. . . , will be found as a series of basis op-
erators R ' If X=O then $ =R( ) and Q
The index j which appears in R"' and ~'~' indicates
the power of X which multiplies R'~) and m'~), and
it will henceforth be called the order index. It is
interesting to notice that we distinguish two sepa-
rate perturbation expansions, one for the operator
amplitudes and one for the operator frequencies.
If we substitute the formal solutions (2.14) and
(2.15) into (2.11) and (2.12), we obtain the equations

[I.,+ ~L, —&0&'& - X&0&'& — .][a&'&+ &(R &'&+ ]= 0

(2.16)
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+C, .R&'),

etc. , and

(d(l) — (L ) 1[L ~(0)]+D

0&(2 & = (L )-1[L (0(1 &] + D

0&(3) = —(I„) '[L, (d(2&]+D3 „,

(2.2lc)

(2.22a)

(2.22b)

(2.22c)

etc. , where we have added to the particular solu-
tions for R'&' and v'~' the homogeneous solutions
CJ R"' and D~, respectively. Cz and Dz are
arbitrary unperturbed constants of the motion
which will be specified later.

The iteration procedure for solving Eqs. (2.21)
and (2.22) begins with the substitution of R(0) and
0&(0& into (2.21a) and (2.22a), and after specifying
D, and C, we obtain solutions for R"' and w"'.
These operator solutions are substituted into

The formal similarity between E(ls. (2.11),
(2.14)-(2.18), and those of the usual stationary-
state perturbation theory in the Schrodinger
picture can be easily seen by letting I.o Ho,
(d„'J'-E(~', and R'~'- ~)f)(~'). However, we cannot
solve Eqs. (2.18) by using Schrodinger-picture
methods, because for interesting operators R"',
i.e., for boson creation and destruction operators,
there is no well-defined scalar product in which
L,, and I., would be Hermitian super-operators,
and because the frequencies ~'&' are operators
which must also satisfy E(ls. (2.19). Therefore,
another method of solution for E(ls. (2.18) and
(2.19) must be devised. The formal similarity be-
tween this operator perturbation method and sta-
tionary-state perturbation theory will be discussed
further in Sec. III.

We define for an arbitrary operator function
G(L,) acting on the basis operators R„"' the eigen-
value equation

G(I )R"'=G(M"')R"' (2.20)

which follows from the well-defined action of I.,
on R(0& and (d(0) [(2.18a), (2.19a)). After remem-'

bering that the operators R'~' and ~'~' are a series
of basis operators such that the action of any op-
erator function G(L,) on R'&) and (dU' is also well
defined, we can solve E(ls. (2.18) and (2.19) by
operating from the left on E(ls. (2.18) with the op-
erator (L0 —&u(0&) ' and on E(ls. (2.19) with the op-
erator (L0) '.
R(1& (L &(0))-l[(~(l& L )R(0)]+G ~(0)

(2,21a)

R(2& (L + 0)) 1[(0 2)R 0)+ ((d(l) L )R(1&]
O m m m m 1 m

+C2 R' ', (2.2lb)

R(3) —(L (0(0))-1[(d(3)R(0)y (0(2)R(1)+ (0)(1) L )R(2)]
fft 0 m m m m m m 1 m

(2.21b) and (2.22b), and after specifying D, „and
C, we obtain solutions for R"' and (d"'. This
step-by-step procedure is repeated until a desired
order of approximation is reached.

In order to specify the unperturbed constants of
the motion D,. and C&, we must look in more
detail at E(ls. (2.21) and (2.22). Since the operators
R.~, (o ~', and the interaction Hamiltonian H, are
written in terms of the basis set of operators R„"',
we recognize that the operators in the brackets in
(2.21) and (2.22) are only formal expressions for
the basis operators R„"'. Therefore, it is possible
that the operators in these brackets may contain
an operator unperturbed constant of the motion in
(2.22) or an operator unperturbed constant of the
motion multiplied by R' ' in (2.21) which will di-
verge after being operated on by the inverse op-
erators (L0) ' in (2.22) and (L0 —0&(0)) ' in (2.21).
In E(ls. (2.21) we can eliminate divergent operators
by simply specifying the arbitrary constant of the
motion D& .' For example, in E(l. (2.21b), if
there is a part of the operator [((d(') —L,)R"']
which is an unperturbed constant of the motion K
multiplied by the operator R"', then after substi-
tuting 0)(2& from (2.22b) into (2.2lb) we can cancel
this operator KR"' by simply choosing D, =-K.
This method for choosing the operators D&

uniquely specifies the operator frequencies v'~'.
It is important to notice, however, that if there
exists an operator R ~" for m Wk such that &"'
= (0'20', and if the curly brackets in E(ls. (2.21) con-
tain an unperturbed constant of the motion multi-
plying the operator R'o', then this term will also
be divergent. However, it is not possible to eli-
minate this type of divergent term from (2.21) by
simply specifying D~ . We will henceforth assume
that if there are operators R'„" which are degen-.
erate with the operators R"', i.e. , ~"'= ~~'-' for
m 4.P, then they must be uncoupled by this pertur-
bation method. In other words, when we solve for
the operators R'&', the operators R',"will not ap-
pear in the square brackets. We will denote the
perturbation method which we are developing in
this section as nondegenerate operator perturba-
tion theory. In Sec. V we will discuss degenerate
operator perturbation theory.

In E(ls. (2.22) if the s(luare brackets contain a
divergent operator part, then we see that it cannot
be removed, as there are no free parameters left
in (d'~' to be specified. The appearance of a diver-
gent term would therefore imply that the constants
of the motion simply cannot be expressed as a
power series in the interaction strength, and an-
other method of solution must be devised. We will
continue the development of this method of nonde-
generate operator perturbation theory under the
assumption that all the constants of the motion can
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be expressed as a power series in the interaction
strength.

At this point, the arbitrary unperturbed constants
of the motion C& are still unspecified. Since the
operators S„are only going to be used as a means
of finding the time evolution of the operators R"'
and for this development have no real meaning,
we simply set C~ =0. We should point out, how-
ever, that this choice does not have to be made.
In particular, if these operators S for some prob-
lems do have real significance, then some other
choice should be made. " For example, it may be
important to require that the operators S satisfy
the same algebra as their unperturbed operator
counterparts R"'. In this case, we would choose
the operators Cz such that, order by order, the
algebra of the operators S is the same as the
algebra of the operators R"'.

C. Operator time evolution

The nth-order approximate operator solutions
for S and Q, which we define as S'"' and 0'"',
respectively, have been found using the oyerator
perturbation method of Sec. II B:

S(n) R(0)+ ~ ylR(l)
m m ~ m

lA
(2.23)

~(n) (0)+ ~ ~r&(r)
m m ~ m (2.24)

By substituting these approximate solutions {2.23)
and (2.24) into Eq. (2.13) for S and 0, we find
the nth-order approximation to the time evolution
of the operators S (f):

S(n &(t)
—

exp(& g (n &f)S(n&

[Our notation is now chosen such that operators
without any indicated time dependence, e.g. , S'"'
and 0("& in (2.25), are operators evaluated at the
initial time t = 0.] The solution (2.25}, however, is
not "consistent" to nth order. From Eqs. (2.18},
which we used to find (2.25), we see that each
separate equation in (2.18) has an order in X

[(2.18a) -zeroth, (2.18b)-first, (2.18c) -second,
etc.}],and that each separate term, for example
in the nth-order equation, has this same order n
indicated by the sum of the order indices of prod-
ucts like co"'R'~', where i +j =n. In particular,
Eq. (2.18c) is of order 2 and has three terms,
[L,—e„']R"' [I. (d ')R"' and &o"'R"' in
each of which the sum of the order indices is 2.
However, in the solution (2.25), the exponential
which contains frequencies w"' is multiplied by
operators R'~) where l+ j can be greater than n.
These terms are not defined by the perturbation

method to nth order and shouM be neglected in
(2.25). The "consistent" nth-order solution be-
comes

S(n&(t) —g &(1exp(f0 (n &&f-)R (( & (2.26)

where for each additional power of X in the ampli-
tude, the frequency operator contains one less
power of X such that term by term the sum of the
order indices in the frequency and amplitude op-
erators is n. The "consistency" of solutions of
this form, which we will explicitly show in Sec.
IV, is that the algebra of the operators R"' is
preserved in an order-by-order manner for all.
times, where the order in this context refers to
the power of X appearing in the amplitude. We
should also notice that in the limit n- ~, the form
of the approximate operator solution (2.26), which
for any finite order n is a power series of opera-
tors with exponential time dependence, becomes a
single operator with exponential. time dependence
(2.13).

The time evolution of the operators S„'"'(t) can
now be used to find the time evolution of the opera-
tors R,'0'{f). After inverting the expansion (2.23)
of the operators S'"' such that we obtain an expan-
sion of the operators R,'" in terms of the operatox s
S'„", we can simply substitute the solution (2.26)
for the time evolution of the operators S„' '(t) into
this expansion, thus finding the time evolution of
the operators R,"'(t).

The expansion for the operators R,"' in terms of
the operators S'~' can be found by inverting Eqs.
(2.23) in a step-by-step manner. We first bring
the second term on the right-hand side of {2.23)
to the left-band side of (2.23}:

R(0) —S(n) ~ ylR(1 }
m m ~ m (2.2V)

R(l) —~ d mlR(0)
m (2.28)

where d
&

' are known constants, then after substi-
tuting (2.28) into (2.2V), we find

n

R (0) —S(n) ~ yl ~ d mlR(0)
m

{))
(2.29)

which can be rewritten as

Since the operators R"' are functions of the basis
operators R~(0&, we can iterate Eq. (2.2V), eliminat-
ing order by order the operators R"' from the
right-hand side of (2.2V) and replacing them order
by order with a series of operators S,'" "'. For ex-
ample, if the operators R„"' are only in the form
of a sum of oyerators R&(0),
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g(O) -g(n) y~ dmlg(0) ~ yl ~ dm&g&O)

{j) l=l {j)

(2.30)

g() $( - ) ~ )p~dj g()
k=z

(2.31)

into (2.30) in order to iterate (2.30) to first order
in ~:

n-z
p (p) g (n) g ~ dmz S (n - z ) ~ g& ~ df ~ g(p)

0 =z

Since in the second term on the right-hand side
of (2.30) B(n) is multiplied by &, we only substitute
the (n —1}th-order solution

III. RELATION TO TIME-INDEPENDENT

'STATIONARY-STATE PERTURBATION THEORY

(3.1)

which can be chosen as the starting point for the
perturbation method of Sec. II. Since the action
of these operators (3.1) takes us from state Ig(0))
to state I

ft(')), we shall call them "transition
operators. " These operators satisfy the eigen-
value equation

I" g(p) (p)g(p)
p jj jj jj (3.2)

The relation between the operator perturbation
method of Sec. II and the usual stationary-state
perturbation method will be shown by considering
the general basis set of operators

))&0"'I

dmf g(p)
t=s

(2.32}
where

+(p) E(p) g(p)
COj j (3.3)

By simply interchanging dummy indices in Eq.
(2.32}, the first-order iterated solution for B(0)
becomes

g(p) g{()t) )„~dmz S(n -z) ~ gl ~ E~lg(p)
m m ~ j j +~ ~ j j

Similarly, we can define transition operators for
the total Hamiltonian H =Hp+~Hz:

(3.4)

satisfying

where the constants Ej ' are defined as

(2.33}
I Sjj ——QjjSjj

where

(3.5}

(3.6)
Emt ~ (d mtdi t-1} dmt

i j j
(j)

(2.34}

This step-by-step iteration procedure is con-
tinued until the operators 8 are written ex-
clusively in terms of the operators Sj( ).

In stationary-state perturbation theory it is as-
sumed that the eigenstates I tc)t) and eigenvalues E,
can be expanded as a power series in the interac-
tion strength:

(3.7)

R(0) g ( ) )t P mtS(n-t) (2.35)

where the constants e,. ' have been found during
the iteration procedure. After evolving to time
&, we can simply substitute the solution for the
time evolution of the operators St(" ')(t) from Eq.
(2.26) into Eq. (2.35) giving us the time-dependent
solution

ft(P)(t) Q ( )„)t g mt Q ) tt (~g(n —t -tt ) t)ft(tt)
g=O Er =p

gn g(n) (3.8)

)(n Q I
p(t))(q(n-t)

I g )(nfl(n)
g=p l =p n=p

(3.9)

Therefore, we find after substituting (3.7) and
(3.8) into (3.4) and (3.6),

In the case where the expansion of the operators
Bj ) consists also of products of operators 8;P,
it will become necessary for consistency to elimi-
nate some terms which are of an order higher than

These terms can be removed in a manner anal-
ogous to that used in going from Eq. (2.25) to Eq.
(2.26).

g ~ ) n (@(n) E(n) ) ~ )„n (n)

n=p
(3.10)

where we have used Eqs. (2.14) and (2.15) in de-
fining &j(j and wj(j . However, in order to solve
for Bjj and wjf, it is not necessary to work with
the Schrodinger-picture variables I

p&(")) and &&("),
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because an analogous Hilbert-space formalism,
which works directly with the variables R,~ and

~&&, can be- developed. In this formalism the
operators R;&, ~&&, and L play a role which cor-
responds to the role played by the state vectors
~AID)&, by the energies E~io), and by the Hamiltonian
H, respectively.

We will now define the underlying Hilbert-space
structure for the operator formalism which will
allow us to solve Eqs. (3.9) and (3.10). The Hil-
bert-space & contains all the operators A satis-
fying the condition

Tr [A'A]&- . (3.11)

() (R(o)~L R())

(, ) ~ I(RI IL, R,",'I'
fi ~ ~(o) ~(o)

COgg
—COg )

(3.16a)

(3.16b)

etc. , and

where we have used the definition of L and the
cyclic symmetry property of the trace.

At this point, the operator perturbation method
can be developed exactly in the same manner as
the standard Schrodinger perturbation theory. The
solutions to Eqs. (2.18}become

For every A, B~&, the scalar product is defined
by

R(i) ~ (Ra) ILI RIs ) R(o)
f j ~ (0) (0) Al

kloof j fd kl
(3.17a}

(R(o) (A)R(o) (3.14)

for all A~&. Therefore, the transition operators
&&; form an orthonormal basis in &. The I.iou-
ville operator I is Hermitian in :

(A( LB) = Tr [At(LB)]= Tr(At[H, B])
= Tr[([H,A])'Bj =(LA( B), (3.16)

(A~ B)= Tr[A'B] . (3.12)
It should be noticed that the creation and destruc-
tion operators for the harmonic oscillator do not
belong to &. However, we easily observe that
the transition operators belong to and satisfy
the orthogonality-normalization condition

(RI;.) ~

R&;) ) =6,, 6, ,

and the completeness relation

(.) r r (R-'.) IL.R~) }(Rao))IL.Rlo)) )
(0) (0) (o J (0)

pygmy )) k) & i) (~)j ~kl )(~)) ~mn )

(&Io) &(0) )2 ~n
fj mg

(3.17b)

etc. , where (R~o))~R)i~)}=0 for n =1, 2, 3, . . . , and
the sum Q», ) means that if t =j (k =i) then
k+i (le j). By substituting the definitions of L„
RI)o), and &BIO)) [Eqs. (2.4), (3.1}, (3.3)] into Eqs.
(3.16) and (3.17), we can rewrite the solutions
RI)) and &uI)) in the form defined by Eqs. (3.9}and
(3.10) and thereby illustrate the connection between
the operator and state-vector solutions. For ex-
ample,

——(RID) ~L~RI) )=Tr(R)t& [H„Ri&]))o=&Q& (H, ( g3o &
-&)I)io (H ~

g)i ) =E ' —Ei (3.18)

R(, ) ~ (R)I, IL,R,) )R),
~(0) ~(0)

g l ~f9 id k

Tr (R), 0 [H„R,O~ ] )R),0)

N(0) (d(0)
Al &5j gj kl

&0"'IH I(")&It")&&0")I
g(o) g(0) g(0) g(0)

k&i k )&J

(
y(t)&

&
)1)(0)

( +[ y(o)&
&

~(z)
[ (3.19)

For many systems there are an infinite number
of transition operators R,~ . We find for a sys-
tem which consists of a finite number of different
harmonic oscillators, however, that all the transi-

tion operators can be written as a series of crea-
tion and destruction operators which, like the tr an-
sition operators, will have c-number frequencies.
Therefore, the basis set of operators B which is
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used to begin the operator perturbation method in
this case can consist of only a finite number of
harmonic-oscillator creation and destruction op-
erators instead of an infinite number of transition
operators. These operators, and not the transi-
tion operators, are the physically interesting op-
erators for most problems.

This very convenient simplification of the basis
set of operators, however, forces us to solve Eqs.
(2.18) using the method developed in Sec. II, and
not the Hilbert-space formalism developed in this
section. In addition, we will, in general, find
that the frequencies w(" become operators. For
example, the harmonic oscillator which has equal
spacing of its energy levels (E('), —E&~o) = &u, for
j =0, 1, 2, . . . ) has creation and destruction oper-
ators of the form

IV. JAYNES-CUMMINGS MODEL

A. PrelImmary remarks

%e will illustrate the method of operator per-
turbation theory developed in Sec. II by choosing
a model problem which shows the interesting and
important features of the method and is exactly
solvable. In addition, we want the unperturbed
Hamiltonian to be represented by fermion and
boson creation and destruction operators. The
simplest model which satisfies these criteria is
the model considered by Jaynes and Cummings:
a single two-level atom coupled to a single quan-
tized field mode. '

The Hamiltonian for this model in the rotating-
wave approximation is

(j + 1 )1/2It(o) (3.20) H=-,'(doo, +(d(a a+-,'}+)((a o +o,a), (4.1)

g j l/oR(o)
2-lo 2 (3.21}

where we require &~ (o —(oo~
' « I The two-level

atom, which has energy-level separation ~„ is
represented by the usual Pauli matrices oj, g
=-1, 2, 3, where

(4.2a)
If we act with Lo, ln pal'tlclllax', oil (3.20), we

find (4.2b)

Loa = g (j+I)'/oL R
i=0

o, =-,' (o, + i o, ) . (4.3)
—g (j+1)l/o(E(o) E(o))It(oz)

o) Q (j + I )1 /2 It(o) (3.22}

The single quantized field mode, which has energy-
level separation ~, is represented by simple
harmonic-oscillator creation and destruction op-
erators a and a, where

[a, a'1=1 . (4.4)
Under the influence of the perturbation, Eq. (3.20)
becomes

(3.23)

The eigenvalues and eigenstates of the unperturbed
Hamiltonian are

(4.5)

where S,, is defined by Eq. (3.4). However, the
action of L on S may no longer result in simply a
t." number multiplying S if the interaction disturbs
the equal spacing of the energy levels of the total
Hamiltonian (E, +, —E/kconst, for j =0, 1,2, , ):

IS = Q (j I)'+/ IS,o+, ,

The basis operators P(o) and frequencies (o)
which satisfy Eqs. (2.6) and (2.7) are simply

It(o) (o at o }

(4.6)

(4.7)

(4.8)

4 const &8 . (3.24}
A

Therefore, the equation. M =AS requires G to be an
operator.

where we have not included the operators a and
o in (4.7) since they are simply the Hermitian
conjugate operators of a and o+. o3 which equals
2o,o -1, can obviously be computed from a knowl-
edge of the operators o+ and o, and has only been
included in (4.7) for convenience.
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B. Perturbation method

and

1 1 I
(1)

Since (L, —&uo)
' acting on the operator a o, in

(4.9) is well defined, we choose D, ,=O. The ar-
bitrary unperturbed constant of the motion C, , is
set equal to zero. The first-order solutions now
become

(4.10}

and

R&'& =(&u- &u,) '(arv, ) (4.11)

(4.12)

We substitute these operator solutions into Eqs.
(2.21b) and (2.22b), finding

We will begin the perturbation method by cal-
culating the operators S and 0 to third order in
~. It will be sufficient for this example to calculate
only the operator S1, where @,' =0+, and to sim-
ply state the results for S,' and S,'), where &,'
=a and R, =o,.

We substitute the operator 8,' and the frequency
&ur&'l into Eqs. (2.21a) and (2.22a), finding

RI'l =(L —&u2} '( &uI'r v+ +atv2] +C, , ,v+ (4.9)

&u&2 =(L ) '2(&u —&u, ) '(v, a —atv )+D,~, . (4.18)

Since the action of (L2 —&u,) ' on the operator
—(2ara+l)atv2+(1+o, a a)a in (4.17) is well
defined, we choose D, , =0. The arbitrary un-
perturbed constant of the motion C, , is set equal
to zero. The action of (L2) ' on the operator
(v,a —a v ) in (4.18) is well defined. The third-
order solutions now become

R, ' = —(&u —&u2) 'atav, at (4.19)

&ur&2r =-2(&u- &u, ) 2(v+a+atv ), (4.20)

where we have substituted (4.20) into (4.17) and
combined terms.

The third-order solutions for S,' and 0, ' are
easily found by combining equations (4.11), (4.12),
(4.15), (4.16), (4.19), (4.20), and the definitions
g(o) d (o)

S"'=v, + narv, —n2v (at)2 —n2atav, at (4.21)

Rr2 = (L —&u ) '( &u,
" V, —(&u —&u ) '(2ata+1)a V

+ (&u —&u,) 2 (1 + v2ata)a t ] +C,~,&r,

(4.17)

and

xj&u&2ro, —(&u- &u,) '[2v (at)2 —(2a a+1)v+77
Q&'& = &u —A. n(2ata+1) —2&n2(atv +o,a),

(4.22)

yC2, 0 (4.13) where

n=A. (&u —&u ) ' . (4.23)

(4.14)

The action of (Lo —&u2}
' on the operator o (a )'

in (4.13) is well defined. However, the action of
(L2 —&uo)

' on the operator (2a a+1)v+ in (4.13)
is divergent and can be eliminated by choosing
D, , =- (&u- &u ) '(2a a+1}. The arbitrary un-
perturbed constant of the motion C, , is set equal
to zero. The second-order solutions now become

0,' =&u —&nv, +&n 2(arv +v a},
S,"'= &r, —2 n(a' v + v,a),

(4.25)

(4.26)

By following similar procedures for the operators
S, and S, we can find their third-order operator
solutions:

S,' =a +nv, +n'[2v (a )' —(2a a+1)&r+],

(4.24)

R&2)
(&u &u ) 2v (at)2 (4.15) (4.27)

&u&2r =- (&u —&u ) '(2ata+1) . (4.16)

We substitute these operator solutions into Eqs.
(2.21c) and (2.22c), finding

C. Operator time evolution

The time evolution of the operator S|&2r(t} can be
found by simply substituting the solutions (4.11),
(4.15), (4.19), and (4.22) into Eq. (2.26):

S~&2l(t) =exp(i&u, t)( exp[-i (An(2ata+1)+2&n. '(atv +v, a)) t]v,

+nexp[-iAn(2a a+1)t]a v2 —n o (a )' —n'a av, a ) . (4.28)
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In the remainder of this section it will be sufficient
for our purpose of illustration to simply work to
second order in ~. The time evolution of the oper-
ators Soo (t) and So (t) is

S(') (t}= exp[i ((d —A nv, ) t ]a + n exp (i (o t)v+,

v+ =S") —natg +n'g (at)'

a~ =S"'- no,2 +

vo -—S3 +2n(a g +v+a) .

(4.31)

(4.32)

(4.33)

S(»(t) =v, —2n(a v +v,a),
(4.29)

(4.30)

where in calculating (4.29}and (4.30) we have fol-
lowed procedures similar to those used in calcu-
lating (4.28).

After finding the expansion for the operators
v, (t) in terms of the operators S(„)(t), we can
simply substitute the time evolution of the oper-
ators from (4.28}-(4.30} into this expansion, ob-
taining the time evolution of the operator g, (t)
The expansion for the operator o+ in terms of the
operators S " can be found by an iteration pro-
cedure after inverting Eqs. (4.21), (4.24), and
(4.26}. We invert these equations by bringing all
the terms from the right-hand side of these equa-
tions to the left-hand side with the exception of the
first term:

The first-order iteration of Eq. (4.31) is found by
substituting Eqs. (4.32) and (4.33) to first order in
& into the term proportional to A in (4.31):

v =S(» —n(S(" —nv, )[S"+2n(atv +v, a)]

+ nog (a1 )o (4.34)

By combining some terms and dropping other
third-order terms, Eq. (4.34}becomes

a =S&»- eS"'S&»+ 1 2 3

+n'[g+S, —2S, (a v +v+a)+g (a )']

(4.36)

The second-order iteration of Eq. (4.31) is found

by substituting Eqs. (4.31) and (4.32) to zeroth
order in ~ into the term proportional to ~2 in
(4.35):

g S(2) nS (x)S(i)+ na [S(o)S(o) 2S(o)(S(o)St(o) +S (o)St (o))+S &(o)(S(o))2]

At time t, Eq. (4.36) becomes simply

g (t) S(2)(t) nS(1)(t)S(l)(t)

~ n2(S(o) (t)S (o)(t) 2S (o)(t) [S(o)(t}St(o)(t) ~S(o)(t)St (o)(t)] ~St (o)(t) [S(o)(t)]o}

In a similar manner, we find the second-order iteration of Eqs. (4.32) and (4.33) at time t:
at (t) S(2)(t) nS(1)( t) + noS(0)(t) S(o) (t)

v (t) S(o)(t)+2n[S(z)(t)St(z)(t)+S(z)(t)St(z)(t}] 4no[S(o)(t)St(o)(t)+S(o)(t)S&(o)(t)S(o)(t)]

(4.36)

(4.37)

(4.38)

(4.39)

The time evolution of the operator v, (t) to second order in )( is found by substituting the solutions (4.28)-
(4.30) into Eq. (4.37):

g'+(t) =(exp(i[&oo —&n(2a a+1)] t}v++ ne' ao,t—gn e' o'g (at)' }
—n{(e' 'a + ne' 'o, ) [v, —2n(a v + g,a)]}
+n'((e' o'o+)v, —2(e' 'a )[(e' 'a )(e ' o'v ) +(e' o'o+)(e ' 'a)]+(e '"o'v )(e' 'a )'} .

(4.40)

By combining terms of similar order in )( and by dropping terms of third order, Eq. (4.40) becomes

v+(t) =e' o'(ex p[-i& n(2a a+1)t]g, +n(l —e'(" o) ')a v,

[(1 2e(( Qlo) + eo((&U i&I )ot) v(a1 )2 (1 s( QJ QJ()) )(2a1 1) ]}
In a similar manner we find the second-order time evolution of the operators a (t} and v, (t):

(4.41)

a (t)=e' '[e ' "'&'a +n(l —e " o")v +n'(1-e " o'')v at],3

v, (t)=v, —2n[(1 —e' o)')atv +H.c.]+2no[(e' o '+e ' ~o ' —2)(o,v +atav, )]

(4.42)

(4.43)
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The solutions (4.41)-(4.43) evaluated at the initial
time t =0 satisfy the proper boundary conditions.
In addition, the initial-time commutation relations
(4.2) and (4.4) of the operator solutions (4.41)-
(4.43) are preserved for all times to second order
in the interaction strength & (see the Appendix).
The order-by-order preservation of the commuta-
tion relations is a very attractive and important
feature of the operator solutions found by this per-
turbation method, since it means that the oper-
ators' time evolution is unitary order by order.
In this context, as we have pointed out in Sec. II C,
the order refers to the power of ~ appearing in the
amplitude.

D. Exact so1ution

where the total excitation number N and the de-
tuning z are defined, respectively, as

N=a a+v+cr (4.45)

(4.46)

Two constants of the motion, N and C, can be
found from the Hamiltonian (4.44) by simply
noticing that [N, C] =0, where

C = —yo, +~I',
I' =a 0 +cr+a .

(4.4V)

(4.48)

The Heisenberg equations of motion for the oper-
ators a and o+ are obtained by using the Hamil-
tonian (4.1}:

In order to clarify the sense in which the ap-
proximate operator solutions found using this per-
turbation method represent the exact operator solu-
tions, a comparison of them will be made. For
this model, we should compare the approximate
and exact solutions for the operators v+(t) and
a (t). Before making this comparison we must
calculate the exact operator solutions. "

We begin by rewriting the Hamiltonian (4.1}as

H =ruN —ya, +A, (a o +a,a), (4.44)

ei B+td ei8-td (4.s2)

where P„d„and s, are initial time operators.
«Eqs. (4.51) snd (4.52), we write the same ex-
ponential time dependence for both o'+ and a~,
since they both satisfy the same second-order
differential equation

+ v a +~+2C

(4.53)

Pa + +rt (4.ss)

where

C +[g2(N 1 }+ yQ]1/2 (4.56)

The assumption [P, C] =0 is easily satisfied by
(4.ss).

In order to determine the operator constants
s, and d„we must apply the boundary conditions
at t =0. By simply evaluating (4.51) and (4.52) at
t=0, we find

0'+ =S++S

a =d+ +d

(4.57)

(4.58}

If we substitute the solutions (4.51}and (4.52} into
(4.49) and (4.50) and subsequently evaluate these
equations at & =0, then we find that s, and d, also
satisfy the equations

r d++r d =&(s++s )=&e+,
r s++r+s =X(d, +d )=Aat .

(4.59)

(4.60)

After solving the algebraic equations (4.5V}-(4.60)
for d, and s „we can find the solutions to Eqs.
(4.49) and (4.50):

v, (t) =e' '[e'"+'(r, —r ) '(r, g, —Aa~)

+e'" '(r, —r-) '(- r a„ytut }],

By substituting a trial solution of the form e' '
into (4.53}, we obtain the auxiliary equation for P,

P' —2P(&u+C)+ (u(&u+2C) +&2 =0, (4.54)

which, if we assume [P, C] =0, has two roots:

(
di —+co a =-Ao+

dt +

. d
i —+e+2C e+ =hz~ .dt

(4.49)

(4.so)
at(t) =e' '[e'"+'(r, —r ) '(-r a~ yPo, )

+e'"-'(r+ -r ) '(r, a~ —Ao, )] .

(4.61)

Since C is a constant of the motion, we can solve
(4.49) and (4.50) as two first-order linear coupled
differential equations with constant coefficients.
We must be very careful, however, since we are
dealing with operators. In (4.50), the constant of
the motion C appears to the left of e+. We there-
fore look for solutions of the form

a (t) = e'@ s++ e'8-'s

(4.62)

Equations (4.61) and (4.62) are the exact operator
solutions for the basic Jaynes-Cummings vari-
ables.

In order to compare the exact solutions (4.61)
and (4.62) with the approximate second-order
solutions (4.41}and (4.42}, found using the per-
turbation method of Sec. D, we should expand the
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exact solutions to second order in ~. We can find
these solutions by dropping terms in (4.61}and

(4.62) of order higher than second in the same
manner as that used to reduce (2.25) to (2.26). By
substituting the expansions

(.,—.)-'-(2 )-'[1-2 *( -1)1, (. )

r, -2y[C/2y+-, '+ n'(N 1-)] (4.64)

into Eqs. (4.61) and (4.62), and using the algebraic
properties (4.2) and (4.4), we find

o', (t) =e' '(exp(t2y[C/2y —2 —n'(N-1)]t ta, —ne' '(2i sinyt)a a+a + n'(1 —e "&')(N- 1)o,),
a (t)=e' '(exp(t2y[C/2y+a+n'(N-1)]t}2(1+o, )a +exp(i2y[C/2y ——,

' —n*(N 1)]-tj-,'(I —v, )a~

—n[e' '(» sinyt)(Pa — a)] +n'[(e '' "'& ' —e'& ' '~ ')(N-l)a, a ]).

(4.65)

(4.66)

(4.6V)

The solutions (4.65) and (4.66) do not look the same as the solutions (4.41) and (4.42).
Before commenting on this fact, let us look more closely at the operator e' ' which appears in (4.65} and

(4.66). By using the relation C' =&'N+y' and the usual Taylor-series expansions for the sine and cosine
functions, the exponential operator 8' ' can be rewritten as

e' ' =cosC t+i sinCt =cosy(1+4n'NP~'t+ t[C/y(1+4n'N)'~'] siny(1 +4n'N)'~'t .
If we expand (4.67) to second order in &, we find

e' '-e'&&'"" "~'2(I —a,)+e '&i'" " '-,'(I+a, )+n(2isinyt)P+n'(2i sinyt)a, N, (4.68)

where we have used (4.V) and (4.48). If we sub-
stitute (4.68) into (4.65) and (4.66), and neglect
terms of order higher than second, then after com-
bining terms in equal powers of ~ and making use
of the operator algebra (4.2) and (4.4), we recover
the operator solutions (4.41) and (4.42).

We now see that in working with operator solu-
tions we should not expect that the form of any one
solution is unique, since the operator algebra al-
lows the solutions to be written in many different
ways. For example, in (4.13}we made the choice
vP~ = —(u& —ruo) '(2a a+1), but instead we could
have chosen v~'~ =- (&u —&oa) '(2N-1}, since the
operator (2a a+1)v+ could have been written as
(2N-1)&r, in (4.13}. If we had made this new

choice for ~,', then the operator form of ~,'
and AI'~ would not be the same as (4.19}and (4.20).
In addition, we should point out that the solutions
(4.65) and (4.66}, which appeared to be of second
order actually contained higher-order terms hidden

t

in the operator e' ' [see (4.67) and (4.68)]. There-
fore, in reducing the approximate solutions (4.65)
and (4.66} to the form of the solutions (4.41) and
(4.42), we have illustrated that different-looking
operator solutions, which are calculated to the
same order n, are equal to order n. For this
reason either of the second-order operator solu-
tions (4.41}, (4.42) or (4.65}, (4.66) can be used
for second-order calculations.

E. Correlation functions

The advantage of having computed the time
evolution of operators is that it is now easy to
calculate important quantities like correlation
functions which are difficult to calculate in the
Schrddinger picture. For example, let us write,
using (4.42) and its Hermitian conjugate, the cor-
relation function for the destruction of a photon at
time t' and the creation of a photon at time t:

(at(t)a(t'))=([e ' " 3'a +(n&x, +n'osa )(1 —e ' o")][e' " &' a+(na +n'o, a)(1 —e'i o&' )])e' &' '& (4.69)

After specifying the initial state we then must
onl. y calculate the expectation values of the initial
time operators in (4.69) in order to find the corre-
lation function. The complication of finding the
correlation function in the Schrodinger picture
can be seen if we rewrite this same correlation
function in the form

(a (t)a(t')) =($(0)~ e'"'a~e '"'e'"' ae '"'
~ $(0))t, t' g I,"

(4.'t 0)

where

g I y, (O))&y, (0) I
=1.

F. Long-time evolution

In order to evaluate the long-time validity of the
time evolution of the operators calculated in Sec.
IVC, we will, for convenience and simplicity,
focus our attention on one particular quantity of
physical interest —the probability of emission,
P~, or absorption, P„, of a single photon. This
probability was calculated by Jaynes and Cum-
mings after simply diagonalizing the Hamiltonian:
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P„= i(+, n —Ii tr(t)[ —,n)]'=Ps =)(-,n[U(t)[+, n —I&i'

(2Mnhi(w-~)J' . , ~-w„2Mnz *

1 + [2MB'./((d —(do)]
(4.71}

It is interesting to notice that the expansion pa-
rameter &i &u —u&oi

' «1, discussed in Sec. IVA,
appears modified by the factor 2vn in the exact
solution (4.71). We therefore restrict the excita-
tion number n such that

2' A. /((d —(do) =b, « I . (4.72)

In the Heisenberg picture, we can calculate the
quantity (4.71) by looking at the time evolution of
the expectation value of the photon number opera-
tor, where absorption [emission] of a photon cor-
responds to the choice of initial state i g(0)) =

) —,n)

[i $(0))= i+, n —1)]. The expectation value of the
photon number can be easily found from the corre-
lation function (4.69) by setting t'=t:

number of terms k in (4.75b) is

i
Pt»+» P(»~

i

( ~ (g
- »+~

@„) - &'
2

' t . (4.76)

The time t at which the relative error in any order
is proportional to 4 is

(4.77)

The probability calculated to any arbitrarily high
order is not valid for a time t longer than I/2mt(, '
periods of oscillation.

The probability of emission or absorption of a
photon P(t) using the method developed in this pa-
per is, to second order,

(-, nba (t)a(t)i —,n)=n —6'sin'[ —,'((d —&u,)]t, (4.73)

(+,n- ll a (t)a(t) I+, n —1)

=n —1+&' sin'[-,'(&u —(do)] t .

(4.74)

P(t) = &' sin'[~((d —(do)] t,
and is, in general, to order 2k+2,

k

P(t) =Q Q (—Q )sin
2

(4.78a)

(4.78b)

P(t) = t(' sin'[-,'(&o —&uo) j t,
and, in general, to order 4k+ 2,

k 2m

P(t) =dP Q F (t) 6' ' t
m=0

(4.75a)

(4.75b)

where the time evolution of the functions F (t)
can be seen from (4.71) to be in the form of pro-
ducts of sin[g((d —(uo)]t and cos[—,'((u —(u,)]t. Cor-
rections of order b also appear in F„(t), but they
are unimportant for this discussion. A rough es-
timate of the r elative er ror made in using a finite

In (4.73), the atom is initially in the ground state
such that only absorption of a photon is possible.
The expectation value of a (t)a(t) is therefore al-
ways less than or equal to the number of photons
at time t = 0. In (4.74), the atom is initially ex-
cited such that only emission of a photon is possi-
ble. The expectation value of ai(t)a(t) is therefore
always greater than or equal to the number of pho-
tons at time t =0. The probability of absorption
or emission can be identified as the magnitude of
the second term on the right-hand side of Eqs.
(4.73) and (4.74). If we expand (4.71) to second
order in X, then (4.71) reduces to the probability
contained in (4.73) and (4.'74}.

If we calculate the probability of emission or ab-
sorption of a photon P(t) using the Dyson expan-
sion, then we find to second order

where

and

~&' ) = g „,c,(t ')'
l=0

CO=1,

„,C, =[(g)(g —1) (-,
' —k+1)j/kl

(4.79)

(4.80a)

(4.80b)

for k=1, 2, . . . . The binomial coefficients «,C,
in (4.79) will henceforth be neglected for conven-
ience. Let us again compute the time t at which
the relative error in any order is proportional to

It can be shown that the relative error in the
amplitude is proportional to 4'«4. Therefore,
the most important contribution to ihe error oc-
curs when the phase of the approximate solution
(4.78b) eventually becomes —,'w out of phase with
the exact solution (4.71):

(&')"'"[-'(~—~.)] t -&,
which can be rewritten as

[-,'((d —(o,)] t —I/t(, '"' .

(4.82)

(4.83)

(4.81)

If we simply require that the phase difference
should never be larger than 4, i.e., the relative
error should be less than or proportional. to 4,
then we find
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As a result, the probability calculated to order 0
is valid for I/b2 periods of oscillation longer than

the probability calculated to order A —2.
We should point out that, to second order, the

solutions (4.78a) and (4.75a) are the same and

both valid for

[2 (o) —(do) ] t - I /a . (4.84)

[-,(o) —&so) ] t - 1/t), ', (4.86)

which is already an improvement over (4.85)."

However, the Dyson expansion computed to any
higher finite order can only be improved to the
point where

(4.85)

Thus, the solution computed by this perturbation
method, which distinguishes expansions in ampli-
tude and frequency separately, is significantly
improved order by order. For exampl. e, the
fourth-order solution is valid for times t such
that

zero. We now assume that the action of L, on

8, generates an operator A~, degenerate with
B~~), where i w j. (It is interesting to note that the
interaction may couple 8,' to an operator which
is degenerate with it and which is not contained in
the basis set. In this case, we would simply ex-
pand the original basis set to include this new op-
erator. As we will see in Sec. VB, this is typical-
ly the case. ) Other operators that are nondegen-
erate with 8, may also be generated, but since
they are well defined, after being operated on with
the operator (Lo- o)o) ', we can temporarily ne-
glect them in (5.3). Since the operator B(oI, after
being operated on with the operator (I,o —o)(o)) ',
is not well defined, and since this type of diver-
gence cannot be removed by simply specifying

„we are not able to continue the perturba-
tion method.

Therefore, we shall begin the perturbation meth-
od again by defining a new basis operator with fre-
quency u, which is an arbitrary linear combina-
tion of these two degenerate operators:

V. DEGENERATE PERTURBATION METHOD (5 5)

A. Formalism

and

(5.2)

for all n wm. Since we usually do not know if the
degenerate operators in the basis set are coupled
or uncoupled, we will. simply begin the perturba-
tion method of Sec. II by substituting the operators
A(o) and frequencies o)(„) into Eqs. (2.2la) and
(2.22a):

R(i) (L o)(o))-i[(o)(i) I", )g(o)) (5 3)
(&) n

Cyme =-l, m, 1 (5.4)

where the homogeneous part of the solution in Eq.
(5.3) is unimportant and has been set equal to

In Sec. II we presented a method of nondegener-
ate operator perturbation theory in the Heisenberg
picture. In order to begin this perturbation meth-
od, the degenerate operators in the basis set were
required to be uncoupled. In this section we wil. l

develop a perturbation method for treating the
case where the degenerate operators in the basis
set are coupled. This method wil. l simply consist
of a procedure for decoupling degenerate operators
such that the method of Sec. II can be used.

For notational convenience, we will write the
set of basis operators 8 as A(, , where the in-
dex i denotes different operators which have the
same frequency co( such that

I~(o) &(o)ft(o) (5.1)

where the set [k} contains two elements i and j .
By substituting (5.5) and the frequency (d(o) into
Eqs. (2.21a) and (2.22a), we find

ft () —(I,o —o) ) [(o) () -I.,)R ()] (5.6)

(~)
m(lf} ~, m, fa} ~ (5.7)

The action of the operator L, on R '~'„} may gener-
ate another operator 8, for q wi, j, which is de-
generate with A'

~~}.. In this case we must begin
the perturbation method once again, by defining a
new operator with frequency &' which is an arbi-
trary linear combination of these degenerate op-
erators:

+(o) ~ Cm+(o)
4 l ml

l pffft}

(5.8)

where the set [k}now contains three elements, i,
j, and q. Eventually, however, after repeating
this procedure as many times as is necessary,
we will find an operator 8 which, when oper-(o)

ated on by L,„will not generate any operators
R~~~~ for Pf(k} and which, as a result, is decou-
pl.ed from all other operators A ~.

At this stage, the decoupled basis set of opera-
tors R (~) remain unspecified, since in (5.8) CP
are arbitrary constants. However, before specify-
ing these constants, we will define the action of

(o)
Lrj on the operators A (l,}, .'
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L,R~'&&,&- g c,"L,R".I
ie ja)

= Q c," p apt~;~+ g g P~,'p),
Cia} re(&} s&m r

(5.9)

where &", and I'„' are known constants and, for
definiteness, we have specified that I.,R, does
not generate any products of basis operators.
The first term on the right-hand side of (5.9)
represents the part of the operator L,R„)„)
which is divergent after being operated on by
(L —u„o~) ', and the second term represents
the part which is finite.

After substituting (5.9) into (5.6), we find that
in order for the operator R ~~} to be well defined,(~)

we must choose D, ~~}. such that

D, („)R„(~)—Q CP Q E",Rlo~ =0 . (5.10)
re&a}

fn particular, if in (5.9) F„' =0 for all r, s, then
(5.10) reduces to the eigenvalue equation

(L, -D, (~)) Rlo(l„) ——0 . (5.11)

The solutions to Eqs. (5.10) and (5.11) are a set of
decoupled degenerate operators R ~,~, and their(o)

corresponding frequencies e ~». The index b
(i)

distinguishes for each m and fk all the different
solutions; i.e., for the solutions to (5.11), the in-
dex b distinguishes all the different eigenfrequen-
cies and eigenoperators. From (5.7), we see that

represents the various solutions for D,
If the interaction removes the degeneracy to first
order, then each frequency u ~~}, wil. l be different.(x)

If the interaction removes the degeneracy but not
to first order, then each frequency ~ ~,},will be(i)

the same and it wil. l become necessary to fol. low
a procedure similar to the one developed here,
but in some higher order of the perturbation meth-
od, in order to remove the degeneracy. In addi-
tion, since D„ i.e., e '(„), for each b, is an un-
perturbed constant of the motion, i.e., it may be
an operator, the method for soLving Eqs. (5.10)
and (5.11) is not well established. Therefore, we
cannot specify a general method of solution here,
but will illustrate one particular method in Sec.
VB. The set of first-order operator solutions
R (,) which are found from Eqs. (5.6) and (5.9)
are

~(p} ~ f ~ 4 s m r sr
)g(~}. g&mi r

(5.12)

they are different for different 5 such that R '(~)
-R ~~~„. The procedure for continuing the pertur-(b)

bation method to the point where we obtain approx-
imate time-dependent solutions for the basis oper-
ators R, (t) is at this point the same as that de-(o)

scribed in Sec. II.

H=u&( o, o+ata)+a(a u +o,a), (5.13)

where we have used the operator identity o+o
= —,'(1+v,). The basis operator set Rlol defined in
(4.7) now contains two degenerate operators R~ol

= o, and R„=a with frequency u,
We begin the perturbation method of Sec. II by

substituting the operator R,, and frequency u,
into (2.21a) and (2.22a):

(5.14)
~(~) nII lyl sl

Since the action of (Lo —e) ' on c,a is divergent,
and since this divergence cannot be removed by
specifying D, , „we must defi~e a new basis op-
erator R,~~} with frequency +, which is an arbi-
trary linear combination of the two degenerate
operators R ' and R„' =o,a~:

(5.15)

R ( ) Q C~gR, ~g~, (5.16)

where the set (k] contains two elements, 1 and 3.
In addition, we have increased the size of the
basis set by including the operator o,a~.

We begin the perturbation method again by sub-
stituting the operator R, (~) from (5.16) and the(o)

frequency &ulo~ into (2.21a) and (2.22a):

(x) " -i ( j.) (o)R, (,)-(LO-~)- ~~,,„)R,(,,+c, ,
—C,'(2Po,a'+ o,)], (5.17)

(5.18)

where P, which equals H„ is defined in (4.48).
Since the action of (Lo —&u)

' on 2Po,a is diver-
gent, and since this divergence cannot be removed
by specifyin~ D, , (~), we must define a new basis
operator R,~~}

with frequency u, which is an arbi-
trary linear combination of these three degenerate
operators R ' R and R =I'a,a

B. Jaynes-Cummings model

We would like to illustrate the degenerate opera-
tor perturbation method developed in Sec. VA
using the Jaynes-Cummings model of Sec. IV.
In order for the model to be degenerate, we will
set &u = &uo in the Hamiltonian (4.1):

where the set of constants C, are obtained from
the eigenvalue equations (5.10) and (5.11), and

R, (~)
= Q C',R~~o~,

&... (n}

(5.19)
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R,(„)=Q (C,'P'o, +E',P'o, a ), (5.20)

where the set [k} contains all the operators P'o+
and P'o, a „where l = 0, 1, 2, . . . .

Before specifying the arbitrary constants Cf
and &', , we will. calculate the action of L, on B,(~~
from (5.20):

L,R (~)
——Q (C',P'L, (x +E', P'L, o,a )

l=o

= Q [C",P'(- o,a )+E',P'(2Po, a +o, )]
t=o

= (2PE —c)(x,a +Eo, , (5.21)

where we have used the definitions and properties

where the set fk} contains contains three ele-
ments, 1, 3, and 4. In addition, we have again
increased the size of the basis set by including
the operator Po,a .

Since L,P = 0 and L,o,a = 2Po,a + o„we can
see, after subs tituting the operator 8,(,'~ from
(5.19) and the frequency &u into (2.21a) and (2.22a),
that the action of L, on A, („~ gives rise to two new

degenerate operators, P'o, a and Po.+, which con-
tain only higher powers of P multiplying a, and
o3a . By continuing this pr ocedur e, we find that
only higher powers of P multiplying o, and o,a
are generated. Therefore, the new basis opera-
tor with frequency v becomes

tain

[(2P -Di, i,{~)}Di.i, {~)—1]c = o

which for t: 0 can be satisfied by setting

(2P-D, , (~))D, , (~)
—1=0 .

(5.26)

(5.27)

If we assume [D, , (~) P] =0, then we can simply
solve (5.27) as a quadratic equation. The solution
is

Dx =P+~N-1 (5.28)

where P'=N and, obviously, the assumption
[D, , (~), P]=0 is satisfied. In addition, D', from
(5.28) should be an unperturbed constant of the
motion, and this condition is also satisfied since
LOP =0. By substituting (5.28) into (5.25b), we
find the relation between E and c for the two roots
(5.28):

E' = (Pa v'N —1 ) c ', (5.29)

(5.31)

where we have defined the new variables ~' and
distinguishing the two solutions which corre-

spond to the two roots D', . The two solutions for
A, (~~, which we define to be A, (~~ „are(o) (o)

R (,), —c '[o, + (P+v'N —1 )o,at], (5.30)

where the operators t.
' ' are unspecified functions

of P. The first-order operators 8,'(„~, and ~,(,~,
are found from (5.28) and (5.30}:

(z)8 (~)~ 0

t=o

glPl

[P, c]=[P,E]=[c,E]=0.

(5.22a)

(5.22b)

(5.23}

(5.32)cu (&
=P+lN-1 .

By substituting these solutions into (2.21b) and
(2.22b), we find that R,( ), and tu, ( ), are zero,
which means that all higher-order terms iden-
tically vanish. The operator solutions S,(„~, and
Q, (~) „where S„and Q„are defined by (2.14) and
(2.15), become

After substituting (5.21) into (5.6) for m =1, we
find that in order for the operator B,( ~

to be well
defined, we must choose D, , (,~ such that it satis-
fies (5.11):

a,nd

S,(~), = c'[o, +(Pa vÃ —1)o,at]

Q~(„)~ =(@+A[Pa v'N 1] . -

(5.33)

(5.34)
(2PE —c)o,a +Eo, =D, , (,)(co, +Eo,at),

(5.24)

(2P —D, , (,})E=c (5.25a)

where 8, = co, +Eo,a . We can solve the eigen-(o)

value equation (5.24) by equating the operator co-
efficients of the operators o, and o,a, obtaining
two equations:

c =T'/(T+ —T ), (5.35)

where T'=P~v'N-1. Since T+T =T T'=1, we
can write (5.33) as

Using these operators (5.33) and (5.34), we
would like to find the time evolution of the opera-
tors o, (t) and a (t). We will first look for o, (t) by
choosing

& =a~,&,(~~~ . (5.25b)

S„=(T'—T ) '(T'o, +o,at) .
The operator o, can now be written as

(5.36)

By substituting (5.25b) into (5.25a) for E, we ob- o+ Sj ~ $ + ~ (5.37)
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After evolving to time t and using the solutions

(t) ei((a+aT ) tg (5.38)

we find

o, (t) =e'~[e' '(T' —T ) '(T'o, +o,a )

-e' '(T' —T ) '(T o, +o,a }] .
(5.39)

By choosing

c ' = (T')'(T' —T )

and by rewriting

o, +T'o,a =o, +T'(at —2Po, )

= (1 —2PT ')o+ + T'a

(5.40)

=- (T')'o, +T'a

Eq. (5.33) becomes

S„=(T'—T } '(T'at —o, ) .
The operator a can now be written as

a =S~ -S~

(5.41)

(5.42)

(5.43)

After evolving to time t and using the solutions

(t) ei((u+ XT )tS (5.44)

we find

a (t) =e'"'[e'" '(T' —T ) '(T'a~ —cr )

+e'"" '(T" —T ) '(T'o, —at)] .
(5.47)

By restricting Eqs. (4.61) and (4.62) to the case of
resonance (co = coo), we find that r, -AT', and the.
solutions (4.61) and (4.62) become equal to the so-
lutions (5.45) and (5.47), as they should.

Since we have not explicitly calculated the exact
operator solution for o,(t) in Sec. IVD, and since
it can be calculated from a knowledge of o, (t)
from (5.4V) and its Hermitian conjugate, we will
not calculate it here. In addition, we would like

—e' " '(T' —T ) '(T at -o, )] .
(5.45}

We would like to compare the sojutions (5.39)
and (5.45}with the solutions (4.61) and (4.62). For
convenience, we will rewrite solution (5.39) by
using the relation

T'cr++o3a = T'cr++a —2I'o+ = —T'cr, +a

(5.46)

Equation (5.39) becomes

o, (t) =e' '[ e' '(T' —T -) '(T o, —a )

to point out that we are able to find exact operator
solutions relatively easily for this model. only be-
cause the operator P =H, is an unperturbed and an
exact constant of the motion. For most problems,
exact operator solutions will not be found so easily.

VI. REMARKS

In this paper we have developed a systematic
method of operator perturbation theory in the
Heisenberg picture which is suitable for finding
the time evolution of systems characterized by
the Hamiltonian H =Hp+~, . We have required
that H, consists only of a finite number of differ-
ent fermion and/or boson creation and destruction
operators. The significance of this requirement
is that the time evolution of the solutions is ex-
ponential in form and characteristically periodic.
It would be desirable to generalize the perturba-
tion method to include model. s where Hp consists
of an infinite continuum of different fermion and/
or boson creation and destruction operators,
since a large number of physical models have a
continuous spectrum. The difficulties which oc-
cur in generalizing the perturbation method are
due primarily to two factors: (a) the quasidegen-
erate nature of the usual model Hamiltonians,
and (b) the power-series expansion in the coupling
constant ~ which cannot be exactly written as two

separate power-series expansions, one in ampli-
tude and one in frequency. The quasidegenerate
nature of the Hamiltonian leads to nonperiodic
time evolution, which is usually approximately
in the form of exponential decay for long periods
of time. The nonexistence of separate power-
series expansions in A. of the amplitude and fre-
quency leads to the inability of this perturbation
method's sol.utions to preserve the unitarity of
the time evolution order by order in ~. In fact,
for the case of a harmonic oscillator interacting
with al. l modes of the electromagnetic fiel.d, it can
be seen that terms in every order of X are needed
in order to preserve the unitarity of the time evo-
l.ution. " Nonetheless, since the interacting time
evolution, which is typical of most systems with
a continuous spectrum, is exponential but with
frequencies which have both a real and imaginary
part, we suspect that a generalized perturbation
method can be developed which will almost consist
of two separate power-series expansions, one in
amplitude and one in frequency. This generalized
perturbation method for treating systems where
&p has a continuous spectrum is pres entl y being
formulated. '
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and for his hospitality at the Theoretical Physics
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g, (t)g (t) =-,'[1+g,(t)],
g, (t)g+(t) = g+(t),

o, (t)g, (t) = —o, (t),
[g, (t)]' =0 .

(A2)

(A3)

(A4)

(A6)

APPENDIX

It is important to demonstrate that the canonical.
commutation relations (4.2) and (4.4) are preserv-
ed for all time by the solutions (4.41)-(4.43) to
second order in A, . We will not compute the com-
mutation relations (4.2) directly, however, but
will verify the equivalent set of conditions

(A1)

In addition, we will verify the commutation rela-
tions

[a(t), a~(t)] = 1,
[g, (t), a~(t)] = 0,
[o,(t), a(t)] = 0 .

(A6)

(A8)

We begin by substituting Eq. (4.41) and its Her-
mitian conjugate into the left-hand side of Eq. (Al):

g(t)g (t) (g ei 1n (2a a+1)t + +g a(1 e t(ur~a) t) (22[a2g (I & -t(a~o) t)2 +g (2a'ta + 1)(1 e t(v--wo)t)]].T +

&& (e -i% n(2a a +1)to+(z(.1 e t((rr-(up) t)atg ~2 [(I et(u~o) t)2g (at)2 + (I c t((u wo) t )(2-ala + I )g ]j
(A 9)

By combining terms in equal powers of A, , by neglecting terms of order higher than second, and by using
conditions (A1)-(A8) at the initial time t =0, Eq. (A9) becomes

o (t)g, (t) = —,'(1 —g2)+t&. [(1—&'( o)')a o' +H.c.]-o2[(e' " o '+e ' tt)t —2)(g, g +aao, )]=2[1—o,(t)],
(A10)

where we have used Eq. (4.43) for o,(t).
In order to verify Eq. (A7) we substitute Eqs. (4.41) and (4.42) into the left-hand side of (A7):

[g (t) at'(t)] e i(fd+tu&t) tte-i 1n(2a a+1) t g + ~(1 ei(h™0)t)aug

&2[(1 8 t((u~())t)2g (at)2 + (I ei((u too)t)(2ata-+ I )g ]].

)([e i1n 2t t ~(1 e (Id d )t) (I e (ld ill )t) -t]

et(~+~o)'[e ' naatai'+(2(1 e t(~~)t)g +&2-(1 e-t(cd~o)')g at' ]

&&(e
' ""' "'"g +(2(1 —e' o")a o —n'[(I —e' 0")'g (a )'+(1 —e' o")(2a a+1)g, ]]. .

(A11)

By combining terms in equal powers of ~, by ne-
glecting terms of order higher than second, and
by using conditions (Al)-(A8) at the initial time
t =0, Eq. (A11) becomes

[g (t) at(t)]=et(~+~0)t(e t&. n(2a a+1)tg &-11 aatn

e -11na2tate t& n(2a a+1) tg-)+

=0, (A12)

where we find that the frequency operators in the
exponentials cannot be trivially commuted with the
amplitude operators, as was the case in verifying
(Al). The time-dependent operator coefficients of

each power of A, in amplitude are zero for all time.
In order to verify the remaining relations

(A2)-(A6) and (A8), we must simply follow the
same procedures as those used in verifying (A1)
and (A7). These two relations were chosen as
they explicitly illustrate different aspects of these
types of calculations: the commutator equals an
operator, the commutator equals a c number, and
the frequency operators in the exponentials cannot
always be trivially commuted with the ampl. itude
operators.

We therefore find that to second order in ~ the
operator algebra, represented by equations (Al)-
fA8), is preserved for all times.
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