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A dynamical equation for simple classical liquids is presented which is obtained by a systematic approx-

imation for the memory function of the conventional, equilibrium-averaged, phase-space correlation func-

tion. This "kinetic" equation is non-Markovian and spatially nonlocal. It agrees with the known limiting

behavior at high and low frequencies co and wave vectors k even for dense liquids. For intermediate k

and co, our equation represents an explicit interpolation model from which virtually all measurable dy-

namical properties of the simple one-component fluid can be obtained. This equation can be solved ana-

lytically. As an example, the dynamical structure factor S„„(k,co) for liquid argon near its triple point
was calculated. Our results are in excellent agreement with both coherent-neutron-scattering experiments

(for k = 1-4 A ') and computerdynamics results (for k & 1 A '). We want to emphasize that no ad-

justable parameters are introduced. We believe that this is the first kinetic theory which gives satisfac-

tory results for S„„(k,co) for the full range k, co for which data are available.

I. INTRODUCTION

The foremost goal of any microscopic theory of
dynamical processes in simple fluids is to cal-
culate the fluctuations of the particle density,
summarized in the wave-vector- (k) and frequen-
cy-(~) dependent structure factor S„„(k,~). This
quantity is important because almost all conven-
tional probes excite density fluctuations. Thus,
for example, S„„(k,&) for small k and & can be
measured by light scattering, while for larger
values of k and it can be obtained by coherent
neutron scattering, or derived from computer-
dynamics "experiments. " Because most quantities
of interest are proportional to the number of par-
ticles that contribute to them, a calculation of
S„„(k,u), for any system, is of fundamental im-
portance. In this paper, we report on such a
calculation for a dense classical liquid, namely,
liquid argon near its triple point.

The theoretical analysis of S„„(k,&) naturally
separates into three regions: When & and are
so small that kl«1 and «&1, where l is a mean
free path and w a collision time, S„„(k,(u) is easily
obtained from linearized hydrodynamics. ' For
very large frequencies, ~~ »1, S„„(k,&) describes
the instantaneous response of the liquid, ' and can
be calculated from the static average structure of
the liquid, which is accurately known. Our cal-
culation here concerns the difficult intermediate
region which in gases could be described by Boltz-
mann's equation. " In liquid argon, the region in
question comprises wavelengths between, say,
0.1 and 10 A and frequencies between 10" and
10" sec '. For this region, there is no good
microscopic theory. Yet, the wave vectors and
frequencies probed in neutron scattering and ob-
tained from computer dynamics fall into this re-

gion.
The primary quantity which the present theory

is aimed to calculate is the equilibrium-averaged
one-particle phase-space correlation function"
(Imz &0)

S (kz; g') = t d(t —t')
0

[ ] = (mv, )'& lf (rpt) —&f (rpt))., ]

X [f(r'p't') —(f(r'p't')) ]), (1.1)

where the one-particle density is given by

f(rpt) = Q&(r -r "(t)}&(p-p"(t)) (1.2)

a= Q P +-,' Q g(~r'-r'~),

where 'o(t) is the pair potential.
S(kz; $$') summarizes a host of measurable

correlation functions. The dynamical liquid struc-
ture factor is extracted from it as

S„„(k,+) = 2Im f d! Id('S(kz; kF')I, =

(1.5)

and other quantities of interest are similarly ob-

r "(t) and p"(t) are the position and momentum of
the &th particle at time t, and dimensionless mo-
mentum variables are defined by

g =p/mv„v', =(mP) ',
where m is the mass of the particle, and P '=ksT
The system which we investigate is specified by
the Hamiltonian
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tained.
More in particular, our theory is based on an

explicit approximation for the memory function
associated with S(kz; g$'), namely, the matrix
&(kz), which is defined to fulfill the "kinetic"
equation'

( — k $)S(kz; g$') —Z(kz ($)S(kz ~ $g')

= -S'(k; ($'), (1.6)

where ~' is known in terms of the static pair-
correlation function. In this equation, and through-
out this paper, an integration jd' $ over the barred
variable is understood.

Many authors have discussed Eq. (1.6), or equiv-
alent representations. Mazenko, ' and Boley and
Desai' have shown that for low particle density
(1.6} is the linearized Boltzmann equation as one
would expect, and they have considered correc-
tions to this equation. Forster and Martin' have
calculated &(kz} for a system of weakly inter-
acting particles. A formal microscopic repre-
sentation for &(kz) has been given by Akcasu and
Duderstadt. ' More recently, Mazenko" has dis-
cussed the self-consistent structure of &(kz}. His
techniques elucidate the processes which enter
&(kz) although they have not, as yet, led to practi-
cal approximations applicable to dense liquids.

The approximation made in this paper is based on
a, suggestion made recently by Forster7 (F): While
little can be rigorously said about the functional
dependence of &(kz) in the intermediate region of
wave vector and frequency, we have certain knowl-
edge about its asymptotic behavior for large z,
where sum rules are available, and in the hydro-
dynamic region. Properties of &(kz), pertaining
ta '.ther region, have been collected in F. In a
gas, (hese two regions are separated by a wide

gap in A' 3nd , and the asymptotic properties are
not overly helpful. In liquid argon, however,

hydrodynamics is a good theory even down to
wavelengths as short as about 10 times the first-
neighbor distance. The suggestion is therefore to
construct an interpolation model for &(kz; $g')
which is in accord with the known asymptotic
properties. Since simple liquids display far less
dynamical structure than do, for example and ob-
viously, crystalline solids, the hope seems justi-
fied that quantities like S„„(k,~) are not overly
sensitive to many details of such a model. Our
results seem to bear out this expectation.

The explicit expression for &(kz) which we have
analyzed is of the following form: It is generally
true that &(kz) separates into two pieces,

(1.7)

where the first part summarizes the short-time
response which is driven by an effective mean
field, and is given by

~'"(k; 5) = «(k-) & (k &)e('h), (1.6)

k(k) = c(k)[1 —«(k)]

is the Fourier transform of k(r) =g(&) —1, and

g(&) is the pair-correlation function. It is the
collision term ~'" which we have approximated,
by an expression of the structure (8 =-8js))

where c(k) is the direct correlation function, n is
the particle density, and

y(~) (2 ) s/z -K /2

~"' determines the initial value S, which appears
in Eq. (1.6), to be of the form

(1/&) S'(k a') = 0(&)~( &
—&') + 0(&)&k(k)0(('),

(1.10)

where

~'"(kz; $&')4(&') =A"'(& s')p(h)~(k -7')+(&g/'hghg+A, "gg((hgh, —~g, )(5„'hf —6„)
+A ~'f(k '

&)(&f (,' —~)~)+(5- t')l/A(&)0(&'). (1.12)

This expression is here meant only to elucidate the
momentum dependence of our approximate colli-
sion kernel The first t.erm in (1.12) describes
the forward scattering of individual particles.
This term is familiar from the theory of Brownian
motion 2nd the Fokker -Planck equation. ' The
other terms in (1.12) are backflow terms which
are required by momentum and energy conserva-
tion. Because the eigenfunctions of the Fokker-
Planck term are known (namely, the Hermite
polynomial tensors, the first few of which occur
also in the backflow terms), Eq. (1.12) allows an

explicit analytic solution of the integral equation
(1.6). Obviously, this is a highly welcome feature
of this theory since it enables us to scrutinize the
impact which various approximation steps might
have on the final results.

We do not want to give the impression that the
approximation (1.12) is simply an ad koc ansatz.
Bather, we have derived it from the microscopic
theory in a systematic fashion. Therefore, the
coefficients A " (k, z) in (1.12) are all explicit
functions of k and z which can be calculated from
the static structure of the liquid. We will explain
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the ideas on which the derivation is based in Sec.
II, delegating much of the necessary but not very
informative algebraic detail to Appendix A. In
Sec. III, we will exhibit the approximate ~'" in a
form which makes the coefficients A(")(k, z) ex-
plicit, and we will explain the microscopic param-
eters which enter this theory. In Sec. IV, we will
show that ~'" satisfies all the asymptotic prop-
erties of the kinetic memory function which have
been discussed in F.

The solution of our kinetic equation (1.6) is given
in Sec. V, with some detail deferred to Appendix
B. In Sec. VI we will discuss numerical results
for liquid argon which we have obtained, and com-
pare these with experimental data. A summary
and discussion concludes the paper.

Z„'"(k; gg') =limzZ'"(kz; Q'), (2.1}

has been given by several authors. """Z"(k),
which is also given in Eq. (3.1a) below, is of a.

very simple structure, and can be explicitly com-
puted from the pair-correlation function and the
pair potential.

It is therefore suggestive to approximate
Z'"(kz; $$') by

Z'"(k; (5') = Z'"(k; ((')f (k,.) (2 2)

where the numerical function f(k, z) must equal
1/z at large z. Such an approximation is guaran-
teed to give valid results at high frequencies, and
if one uses

f (k, z) =I/[z + is '(k)J, (2.3)

one has an explicit and soluble theory which lumps
many unresolved microscopic processes into one
k-dependent relaxation time 7(k). Sum-rule-in-
spired approximations of this sort have become a
standard tool in the analysis of time correlation
functions. "'" In the present context, Eq. (2.2)
has been considered by Lebowitz, Percus, and

Sykes, "and applied to argon by Duderstadt and
Akcasu. " The numerical results are quite good
for large & and but fail when k becomes smaller
than about 1 A '.

II. DERIVATION OF THE APPROXIMATE MEMORY

KERNEL

The separation (1.7) of the memory function
Z(kz) is one that is natural if one considers very
high frequencies z or, equivalently, the short-time
response. Namely, the mean-field term Z"'(k)
is the limit of Z(kz) as z -~. Since the collision
kernel Z'"(kz), therefore, vanishes in this limit, '»

an expansion in powers of 1/z will result in high-
frequency sum rules of which the first,

+~ u r" —r ~ r —r", (2.4)

whose potential part is important in a liquid, but
is not a moment of the one-particle density f(rpt).

Instead of the "~&&~' matrix S(kz; $g') (with
matrix indices g and g'), we thus consider the
"(~+I)&&(~+1)*' matrix

(
G~~(kz; jg') G~, (kz; $) (- )
G„(kz; t') G„(kz)

(2.5)

of correlation functions of the dynamical variables

[&„(r i))=—[f(rV)»(r i)). (2.6)

p, serves as a counting index, comprising the
matrix indices g and e. The correlation functions
are defined as in (1.1}, by

The reason is obvious. Equation (2.2) is in ac-
cord with the requirements of mass and momentum
conservation but it does not conserve energy. As
a consequence it will not, for small & and &, give
the correct hydrodynamic behavior. Since, as &

decreases, the dynamics is strongly channeled into
the hydrodynamic modes, Eq. (2.2) fails in this
region. It is safe to predict that for liquid rubidi-
um, which Copley and Rowe" and Rahman" have
recently investigated experimentally, Eq. (2.2)
would do even worse.

A side remark may be helpful. Effectively, Eqs.
(2.2) and (2.3) lump into one relaxation time all of
those processes which are not explicitly carried
by the one-particle property f (rpt). This is likely
to be successful if all of these processes do in fact
decay on a similar microscopic time scale. If
they do not, it will fail. An example of a much
simpler sort concerns the one-particle velocity
autocorr elation function in a liquid, (v (t) u (0)) .
The approximation, which for this function corre-
sponds to Eqs. (2.2) and (2.3), would predict simple
exponential decay. In fact, in all except hard-
sphere liquids, (&(t)&(0)) has a damped oscillatory
behavior. " The reason is that hydrodynamic back-
flow, imposed by momentum conservation in this
ease, fluctuates on a much slower time scale than
do almost all other microscopic processes.

If the side remark has been helpful, the remedy
is obvious. Since, at least for small 0, there is a
slow mode (which becomes heat conduction as
k-0) required by energy conservation, this mode
has to be separately accounted for. There are
several ways of doing that. The simplest by far
appears to be to expand our set of explicitly con-
sidered dynamical variables by one, namely, -, „;-'

total energy density

~(F~) Jdp f("p~)=
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G„„(kz)= i dt e'"G„,(k, t), (2.'la)

G„(k, t)= J/d(r-r')e '"'" "'

x (6A„(r, t)&A „(r',0)),q,

where

6A„(r, i) =A„(r, i)-(A„(r, t)) .

(2.Vb)

G'„„(k)= G„,(k; i = 0),

and 0„„is obtained as

Q„„(k)= i G„„(k;i =0)G'„,'(k).

(2.10)

(2.11)

Both matrices can be obtained explicitly as to
their $ dependence, and they involve a few k-
dependent equilibrium correlation functions; see
Appendix A.

&„,(kz) vanishes as z -~. Asymptotically, it is
given by the sum rule

~„.(kz) = (I/z) ~",.(k) +o(I/z'), (2.12)

Z"„,(k) =-[G(k; i=0)G' '(k)+Q'(k)j„„(2.13)

which can be calculated explicitly as to its ( de-
pendence, and in terms of static correlation func-
tions as to its numerical value. If we now approxi-
mate &„„(kz)by

R„,(kz) = R"„,(k)o(k, z), (2.14)

we have in Eqs. (2.9)-(2.14) an explicit approxi-
mation which can be solved, in principle and in
practice, for Gzz(kz; &t') =S(kz; $g'). This is the
approximation on which this paper is based. For
the relaxation function o(k, z) we have used a sim-
ple exponential-decay model,

(r(k, z)=1/[z+ir '(0)j (Imz&0), (2.15)

so that the sum rule (2.12) is fulfilled. We will

While for the one-particle correlation function
~ -=off energy conservation is not easily expressed,
it is a simple matter for the matrix G&„since it
essentially reduces to the equations

B,G,&(kt; 8') =0, s, G«(k, t) =0 as k-0, (2.8)

which standard approximations will not violate.
A memory-function representation for G„,(kz),

formally similar to Eq. (1.6), is

[z&„„-Q„„(k)—R„„(kz)]G„,(kz) =-G'„„(k),

(2.9)
where the caret is used to differentiate the "ma-
trix" memory function ~ and frequency term 0
from the corresponding quantities in Eq. (1.6).
Note that Zff ls not equal to Z or to Z'". Gp. is
the matrix of equal-time correlation functions,

describe below how the relaxation time ~(k) is
determined.

As described here, our approximation appears
as a straightforward generalization of the Duder-
stadt-Akcasu ansatz (2.2). However, because we
have included t:he energy fluctuations explicitly, the
major shortcomings of that ansatz are remedied.
The penalty we pay is that our approximation in-
volves additional coefficients. Again, we will show
below how these are determined.

Since kinetic theory has been previously dis-
cussed within the context of the Eq. (1.6), it is
convenient to cast Eq. (2.9) in the standard form
(1.6) once an approximation for & is found. This
procedure will allow us to draw on previous work. '
Given ~„„ it is a trivial if laborious matter to
extract the corresponding &'"(kz; g$') from Eq
(2.9), so long as G'„, is sufficiently simple that its
matrix inverse can be obtained. This is the case.
Delegating the awful details to the Appendix A, the
approximate kernel ~'" which emerges is given in
Sec. III.

where the first term is the one utilized by Duder-
stadt and Akcasu, "namely,

~'"(k; $k')4(5') =='v'; (0)s (s+ $)4($)~($ —&')

—[v', ~(k) —mv', k,k,.c(k)]
x (.t'.Q($) Q(g') (3.1a)

with coefficients which are explained below. The
second term in (3.1) accounts for the influence of
energy-density fluctuations, and can be written in
the form

~,'"(k; ((')y((')
= (0/~)[P„(&)/x„(&))

x [-o'(k, z) v', (k. $)(k. $')

"(~, )g(k; &)i(k; &')le(()e(&'),

(3.1b)

where we have used the abbreviation

k(kz; &) =v.(k h) --'o(&, z)[PX;(&)/n] '

x~;, (k)(&;&, —6;;). (3.1c)
The relaxation function v(&, z) which we have used
is given by (2.15). It determines the function

III. THE EXPLICIT FORM OF 2'&(kx;(&')

The considerations described in Sec. II result
in the following approximation for the kinetic
memory function:

~'"(kz; &(') =o(~, z)~-'"(k &(')+~'"(kz r$')

(3 1)
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A. General properties

It is apparent that our Z("(kz; $$') has all the
symmetries which follow from the invariance of
a liquid under translations, rotations, parity, and
time reversal. These also include detailed bal-
ance. Of course, the relaxation ansatz (2.15) for
o'(k, z) builds in irreversibility. To maintain time-
reversal invariance we would define —v(&, -z)
=g(k, z). From the construction of our approxi-
mation in Sec. II, it is also clear that the stability
requirement that -Im&("(kz) be a positive matrix
for Imz &0 is satisfied, so long as 7(k) &0 and the
coefficients of Eq. (3.1) have their usual thermo-
dynamic positivity properties. Finally, the first
high-frequency sum rule, namely Eq. (2.1) above,
is of course satisfied.

Note, however, that the next sum rule on ~'",
namely Eq. (F2.10), cannot be fulfilled by our
approximation. Indeed, because of the relaxa-
tion ansatz (2.15) for o(k, z), the integral

f d(u (3) ImZ("(k, &) diverges. It would be desirable
in one sense to modify ~'" so that this sum rule
is finite as well since it would open the way for the
utilization of additional microscopic information.
While it is not difficult to find such a modification
we have decided not to pursue this goal in this
work. Namely, from the structure of the second
sum rule (F2.10}it is apparent that a theory which
incorporates it w'ill not likely be analytically solu-
ble. We enjoy this feature of Eq. (3.1) but point out
that in the computer age its value has limits.

B. Conservation laws

From the construction of our approximation as
described in Sec. II, it is apparent that it must
satisfy the conservation laws. Indeed, the local
and Markovian collision operator

K( $, $') = lim lim i&("(kz; $$')
z ion o

(4.1)

has the simple and interesting form

K(&, &')e(&)=-"~{s (s &)y(&)5(&-(')

+ y(h)rh h'+-'(0 —3)(&"-3)]4((')],

(4.2)

where

v'=(n/3m) fgrg(r)V'v(r) (4.3)

is the square of the Kirkwood22 friction constant,
and v-=~(k =0). Equation (4.2) is the Fokker-Planck
collision operator studied by Yip and Rangana-
than, ' who obtained it by linearizing a, conserving,
stochastic collision model, and applied it to fluc-
tuations in gases. The present microscopic deri-

vation of Eq. (4.2) is new. It is interesting to note
that our derivation makes no reference to low
density. However, only in a gas would it be a good
approximation to replace iZ("(kz; $$') by its local
and Markovian limit K($, g').

Even in a liquid, however, the equations

d 1, , K, g' =0, (4.4)

which are satisfied by the kernel (4.2), do in fact
express conservation of mass, momentum, and
energy as has been pointed out in F. Apart from
the five vanishing eigenvalues which correspond
to the conservation laws, the eigenvalues of
Kr)/'v] ' are all positive integers. This means,
of course, that our approximate &("(kz) is not
blessed with, or plagued by, the long time tails
which have made headlines recently. " We also
note that for finite 4' and the damping operator
-ImZ("(k(d; $$') has only one eigenfunction with
eigenvalue zero, namely, (C)($) =1. As k-0, three
more "invariant" eigenfunctions appear, namely,

i =1, 2, and 3. Only as &-0 does the eigen-
value corresponding to $' go to zero, too.

C. Local equilibrium

An occasional reader might want to know the
form of the potential stress tensor 7'&, , energy
E, and energy current ~,'. functions which have
been introduced in (F2.14). They emerge from the
present approximation in the transparent form

T (&)=& 0& 'X (0)(e —3)/3,

E(5) =P~ 'X„(0)(&'—3)/3,

&(()=p~ 'X„(0)&,.

(4.5a)

(4.5b)

(4.5c)

(4.6b)

where the scalar-product notation is as de-
fined in F or by Eq. (5.1) below. These are
the properties which have been shown in F,
and also by Mazenko, " to be necessary and suf-
ficient (with the usual analyticity caveat} if the
dynamical operator &("(kz) is to establish local
equilibrium properly. Hence, our approximation
(3.1) is guaranteed to yield the correct hydro-
dynamic mode intensities, the Laplacean expres-

Because of the thermodynamic relations (3.11}
and (3.12), the requirements (F2.20) and (F2.21)
are thus fulfilled, namely,

, 3 ((,lg'"(gg)l('/3)(, .„„=„3 (gr)
—(,

(4.6a)
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sion for the speed of sound, and indeed all the
properties discussed by Kadanoff and Martin' on
the basis of the Navier-Stokes equations.

LlMl)')= )I
-8Jd)'y)))M)) )')y)& ))()'')

(5 1)

D. Transport coefficients

In F, general expressions for the shear and bulk
viscosities p and ( and for the heat conductivity ~
have been obtained, namely, Eqs. (F3.16), (F3.20),
and (F3.21). The approximate E'" is so simple
that these formulas can be explicitly evaluated.
The method applied in F gives each transport coef-
ficient as the sum of two contributions which one
might call "kinetic" (primed) and "correlational"
(double-primed). The results are

S„,(~)=(e„l[ — '(k) -E(ks)) 'le, &,

with

~'(k' 5(') = &o(-k' &)5(& —('),

(5.2)

which has already been introduced in F. For pure-
ly technical reasons which will be explained in
Appendix B, no complex conjugation for the func-
tion y(g) appears in (5.1). In fact, (5.1) is used
for real functions y and g here.

Equation (1.6) then leads one to consider the
matrix

q'/mn =-,'v', [v'~] '

q"/mn =7[v' —v,', (k)]k 'l~

= 2~[c',„(0)—v', ],
« /nka = ~~[v T]

(4.7a)

(4.7b)

(4.8a)

for the following four Hermite polynomials (p, =0
to 3)

fqr„($)j = (I; („(P—1)/))2; (g+ $', —2)/2},

(5.4)

«"/nka = vv', y, (0). '(4.8b')

Here v is the Kirkwood friction constant (4.3),
w =—w(0) is the collision time, and mnc', „(0) is the
high-frequency shear modulus which has been
studied by Zwanzig and Mountain, '~ and used in
viscosity calculations by Forster et al." The
collisional bulk viscosity f' vanishes; the corre-
lational part f" can be easily written down but is
not needed here.

Equations (4.7) and (4.8) involve the two param-
eters v = r(k =0) and y, (0) for which we have not
given explicit expressions above. If one is willing
to utilize those sum rules which involve the triple-
correlation function g, (r, r'), both parameters
can be microscopically calculated. The present
theory would then also constitute an approximate
calculation of transport coeffic ients. However,
since similar calculations have in fact been done, "
and since our main interest here centers on the
spectrum of fluctuations outside the transport
regime, , we have decided instead to utilize experi-
mental values for q and & in order to determine
the parameters 7 and y, (0) via Eqs. (4.7) and (4.8).

V. SOLUTION OF THE KINETIC EQUATION

Since our approximate kinetic theory, codified
in Eqs. (1.6)-(1.8) and (3.1), has all these good
properties, we can now proceed with confidence
to solve the integral equation in momentum space.
&'"($, (') is essentially a, Fokker-Planck kernel
which allows an analytic solution. It is again con-
venient to utilize the scalar-product notation for
matrix elements in $ space, namely,

which are invariant under rotations about the 3-
axis which is chosen to be the direction of k.
There is, therefore, no matrix element of ~ which
would connect any of the functions (5.4) to the
transverse momentum density $„say. Equation
(5.2) is, of course, the formal solution of the
kinetic equation (1.6) from which we obtain, in
particular, the dynamical liquid structure factor
in the form

S„„(k,~) = [-2kaTy„„(k)]ImS„(k, ~+ i0). (5.5)

The remainder

R(kz; ($'}—= [~o(k)+Z(kz) -A(kz}](t, $') (5.7)

contains all the polynomial contributions to ~"'
and to &'"; see Eqs. (1.8) and (3.1). If we there-
fore define

S'„,(k ) =&9 „I[ -~(k ))-'l~.&,

we obtain for S»(kg) the following 4&&4 matrix
equation:

(5.8)

~~v =~pv+~'„~~)„~.v, (5.9)

Equation (1.6) with (3.1) is soluble because we
known the eigenfunctions of the Fokker-Planck
operator 8 (S + g), and the remaining, polynomial,
terms in (3.1}are separable Solutio. ns to essen-
tially similar equations have appeared in the liter-
ature. """We can therefore be brief, giving
only an outline of the method of solution.

The essential part of the integral operator in
(5.2) is the Fokker-Planck matrix

&(~; tt') =4',(k' $) —v'o(k, a)S '(S+ $)]5(& —&').

(5 6)
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y(o', x) = d~e '~" ' (Re&&0),
0

(5.12)

which is tabulated.
With this, the 4&&4 matrix equation (5.9}can be

easily solved, and the dynamical liquid structure
factor (or other functions of interest) calculated.

Transverse fluctuations. The transverse mo-
mentum-density correlation function S,(kz) is de-
fined by

S, (kz) =i dt d(r —r')e'" '" "
P eJ

& &~.(ri)a. (r'0)&. (5.»)
It is even simpler to calculate. Taking y~(g) = („
it is given by

S,(kz) = -n(mv, )'S„(kz). (5.14)

Since $, does not couple to any of the other Hermite
polynomials contained in B, one obtains

S,', (kz)
1+v' (k)g(k, z)S4~(kz)

' (5.15)

This is identical to the result obtained and dis-
cussed by Duderstadt and Akcasu" who used the
approximation codified here as Eq. (2.2). Indeed,
since our improvement over that approximation
concerns the impact of energy-density fluctuations,
it should not affect the purely transverse modes.

VI. DYNAMICAL STRUCTURE FACTOR

(COMPARISON WITH EXPERIMENTS)

From the present theory, we have calculated the
dynamical liquid structure factor S„„(k,&) for liquid

where

R„„(k ) =-(V &IR(kz)IV, & (5.10)

and where the implied index sums in (5.9) only
extend over p, =0 to 3 as defined in (5.4). The R
matrix is easily read off from Eqs. (1.8) and (3.1).
For example, ~«=0, and

R„(kz) =~z[n/pX„(k)] cr(k, z)[a(k, z)v„(k)]'.

(5.11)

Thus it remains to calculate the Fokker-Planck
functions So,(kz}. For the inversion of the opera-
tor A of (5.6), everybody seems to have his own
favorite method. Chandrasekhar" and Gross, "
in whose treatment o is a negative-imaginary con-
stant, solved the associated equation in real time.
Lebowitz et af."inverted [z -A] by Fourier trans-
forming in the ( variable. We prefer an operator
technique which is briefly explained in the Ap-
pendix B. Suffice it here to say that all functions
S&,(kz} can be simply expressed in terms of the
incomplete z function, defined by'

~&(c —c ) X..'(o) =T(dP!dT).'. (6.2)

(nP) 'X„„(0)=S(k =0) =0.0522 is the extrapolated
experimental value from Yarnell et aL. The 4'

dependence of x„(k) and x„,(k) cannot be deter
mined from available data. Arguing that fluctua-
tions of the energy and the particle densities should
be locally proportional to each other, we have used
the approximations

x„(k)= [x,.(0)/X..(o)]x..(k),

x„,(k) = [x„,(o)/x„„(o)]x„„(k).

(6.3a)

(6.3b)

There remain the two dissipative coefficients
T '(k) and y, (k). Following Duderstadt and Ak-
casu, "we argue that for large k, 7 (k) and y, '(k)
should vanish. We have used the simplest possible
interpolation, namely,

'(k) =7 '(0)[1+(k/k, )'), (6.4a)

y, (k) =y, (0)[1+(k/k, )']. (6.4b)

For kp, we used the reasonable value 1.5 A ' used
also by Ref. 33. We did not vary &, to obtain a best
fit. As indicated in Sec. IVD, we found T (0) and
y, (0) from experimental values of the shear vis-
cosity g and the heat conductivity &. The values
used are" q =0.28 cP and &=2.9&&10 ~ cal/Kseccm.

Our results are given in Figs. 1-4, covering a
0

range in wave vector from 0.183 to 4 A '. Fre-
quencies are given in units of 7, , where &p

=(mo/4&a)' ' =3.112&10 "sec serves as a natural
reference time for argon. In Fig. 1, we have com-

argon at 85.2 K and a mass density of mn =1.416
gem '. This is the temperature and density for
which Skold et al."have reported an absolute neu-
tron scattering measurement of S„„(k,&), taken on
a coherent sample. It is also essentially the state
for which Levesque et al."have performed molec-
ular-dynamics experiments. The triple point of
argon is at T =83.78 K. We have chosen the cus-
tomary Lennard-Jones potential

&(&) = 4e [(o'/&)" —(o/&)'], (6.1)

with the parameters e/ka =119.8 K and &x=3.405 A

which have been used in the computer experiments
by Levesque ef' al." For the pair-correlation
function g(&), we have used the experimental data
obtained by Yarnell et al.29 by neutron scattering
from liquid argon. ' From these data, we com-
puted" X„„(k), X,„(k), and X„(k) as well as the
coefficients v', &(k) and &(k) defined in Eqs. (3.13)
and (3.14).

To obtain X„(0)and X„,(0), we have used the
thermodynamic statements (3.11) and (3.12). We
inserted the experimental specific heats" mcus/ks
=2.32 and mc&/ks = 5.06, which determine (dj/dT)„
since
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pared our results with the molecular-dynamics
data of I,evesque et at. ,

"for very small wave vec-
tors. It is seen that we obtain good agreement in

the over-all shape of the spectrum. The most
prominent feature at small & is the incipient Bril-
louin sidepeak which has not been obtained before
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FIG. 3. Longitudinal momentum-density correlation
function for liquid argon, for selected values of k. The
dots are the neutron scattering results of Ref. 27.

from a kinetic theory. While the experimental
Brillouin peak levels off at about &=0.26 A ', it is
slightly more persistent in our theory, where it
disappears at & =0.3 A '. Only at +=0 is the fit
to experiment poor; our theory gives a value for
S„„(k,0) which is 1.5 times larger than the ex-
perimental one. However, computer-dynamics
results for very small are unreliable since they
involve times longer than those that can be reached
by computer dynamics. Also drawn in Fig. 1 is the
longitudinal momentum-density correlation func-
tion
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S, (k ~) =(m'rd'/k')S (k (d) (8.8)

For larger values of k, a comparison can be
made with the neutron scattering data of Skold
et a/. 27 In Fig. 2, we show our results for k rang-

0
ing from 1.4 to 4.0 A '. Figure 3 gives the corre-
sponding results for the longitudinal momentum-
density correlation function. Again, there is ex-
cellent over -all agreement. The small discrepancy
in the region from k = 2 A ' to k = 3 A ' could be
due to several factors. It appears most probable
that the simple interpolation (6.4) for the relaxa-
tion times is the reason. We have not attempted,
however, to adjust the value of ko to aim for a
better fit, or to complicate the dependence of 7 '(k)
and y, (k) on k.

In Fig. 4, we have plotted the dynamical structure
factor S„„(k,~) as a function of k, for a range of
frequencies. The agreement with neutron scatter-
ing experiments is impressive.

VII. SUMMARY AND DISCUSSION

We have presented a kinetic theory of dynamical
fluctuations in simple fluids which has several
appealing features. From a pragmatic point of
view, it is satisfying that the theory gives very
good agreement with experimental data over the
full range of wave vector and frequency where
those are available. It is also very appealing that
the theory is not only very simple mathematically,
but that it can be derived microscopically. We
note that the derivation which we have presented
in Sec. II does not impose an explicit restriction
to the very high density for which we have tested
our approximation. Indeed, not only does our
theory properly reduce to hydrodynamics for small
k and , and agree with the rigorous sum rules
for large , but it also reduces, in the low-density-
gas regime, to the local and Markovian Fokker-
Planck equation, "which gives a satisfactory de-
scription of gas kinetics. No previous theory has
been able to describe, in a unified fashion, such
a wide range. This is not to say that quantitative
agreement with experiment can be expected to be
as good in a gas as it is at liquid density. In a
gas, the region in k and + over which we interpo-
late is much larger than it is in a liquid. Never-
theless, the Fokker-Planck model does describe
this region satisfactorily if not fully quantitative-
ly 34

It is interesting to notice that in our application
to a liquid we find that the transport coefficients
are largely correlational. Our fit to Eqs. (4.7)
and (4.8) gives q" » q' and v" » a'. In a gas, the
opposite would be true. This is an indication of the
fact that, although the approximation (3.1) is remi-

niscent of models used in gas kinetics, "'"the
role which the various terms in &'"(kz) play is
very different at liquid density.

We would like to point out that our use of ex-
perimental values for a and q is sensible for the
present purpose, but that it is not necessary as a
matter of principle. Explicit calculations" have
demonstrated that transport coefficients can be
microscopically obtained from sum rules of higher
order. If we were willing to use the triple-corre-
lation function, or a superposition approximation
for it, it would be a simple matter to calculate the
k-dependent relaxation frequencies r '(k) and

y, (k) as well. Indeed, there is hope that such a
procedure might improve the results in the re-

0 0

gion of k=2 A to k=3 A . A similar comment
applies to the static susceptibilities. In this sense,
our theory is free of adjustable parameters.

We have not, in our figures, included the re-
sults obtained on the basis of previous theories,
mainly because these have been tested for argon
at different temperature and density. Earlier
theories have been compared in the paper by Rowe
and Skold. " These authors have also recomputed
some results for the temperature and density con-
sidered here. The best of these theories appears
to be that of Pathak and Singwi, "at least for suffi-
ciently large values of k. Even in this region, our
theory compares very favorably with that of Pathak
and Singwi.

Most of the earlier theories are quite different
from ours in purpose and approach. They repre
sent S„„(k,e) in terms of a collective memory func-
tion'8 or a similar object, "use an ad hoc ansatz
for the latter, and determine its parameters from
microscopic sum rules. Even when this approach
is successful, it yields little microscopic under-
standing of the dynamics. " By contrast, the kine-
tic-theory approach is on a level much closer to
the microscopic dynamics, a level which is inter-
mediate between that of generalized hydrodynamics
where the microstructure is ignored, and a full-
scale attack on the &-body problem. Although we
have not done so, it would be interesting to in-
vestigate how sensitive quantities like S„„(k,&)
are to changes in the structure of the collision
kernel &'"(lu). This could provide some addi-
tional justification for the ansatz procedure of
generalized hydrodynamics. Although we have at
present only calculated S„„(k,~), it is worth point-
ing out that many additional and interesting corre-
lation functions could be easily obtained from our
kinetic theory.

We want to point out, final'y, that our approxi-
mation is restricted to simple classical fluids,
but not to the special case of I ennard-Jones fluids.
An interesting case for future investigation. is
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liquid rubidium. For this system, both neutron
scattering data' and a computer simulation20 have
been reported recently. The prominent feature
of these experiments is a Brillouin sidepeak which

0

persists to wave numbers 0 as large as 1 A ',
corresponding to a wavelength of the order of the
first-neighbor distance. It seems likely that the
relatively much softer core of the rubidium poten-
tial is responsible for this persistent oscillatory
mode. We will report on an application of our
theory to this system in the near future.
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l. Static correlation functions

The matrix Go, (k) is easily obtained. Its ele-
ments are given by

G;,(k; «') =no(&)6(&-~')

+ [P-'X..(k) —n] e(&)e(&'), (A1a)

Gqo, (k; () = Go~(k; f, )

= [«.(&).P-'X.,(k)] y(~),

G„(k)—= p 'Xe, (k).

(A1b)

(Al c)

Equation (Ala) is identical to (1.10) above, of
course, the susceptibilities X„s(k) are as defined
in (3.3), and

e,(g) =——,'mv', (P —3). (A2)

APPENDIX A: DERIVATION OF Z ' (kz;$( ')

In this appendix, we furnish some of the calcula-
tional details which enter the derivation of the ap-
proximate memory kernel ~'" which we have de-
scribed in Sec. II. The calculation is tedious if
straightforward, and the lengthy formulas which
are written down here are given in the hope that
they might be useful for other purposes as well.
It is apparent from Eqs. (2.9) through (2.13) that
we have to compute the matrices G„„G„„and6„,
each at t=o.

sense, can then be found. It has the elements

(G')jg'(k; &(') =In%(5)] '5($ —0')+& '(k)

& b..(k) .(4) ,((')
+ X.,(k)[~.(5) +~,((')]

+ [X„(k)—-',n p-' —(p/n)~(k) J ),
(A3a)

(G') '( &) =(G') '(k ()
= -& '(k)[X..(k)e, (4) + X.,(k)],

(G')„'(k) =b. '(k)X„„(k),

where

g (k) = X„„(k)[X„(k)- -,'(n/P)] —X'„,(k).

(A3b)

(A3c)

2. First time derivatives

The matrix G„„(k;t=0) is also easy to calculate.
Most conveniently, one uses the classical fluctua-
tion-dissipation theorem

(Aa& = P-'([A, II]), (A4)

where here [, ] are the Poisson brackets, to de-
rive the following expressions:

i Gqq(k; $ $') = nv, (k ()P($)&( &
—$'), (A5a

iG~, (k; $) = iG,y(k; g)

=,(k &)e(&)[X„(k)—(nip). «.(&)J,

(A5b)

iG„(k)=0. (A5c)
The last equation is a consequence of time-rever-
sal invariance. Equation (A5b) is in accord with
momentum conservation. Given Eqs. (A5) and
(A3), the elements of the matrix Q„,(k) of Eq.
(2,11) are found by straightforward if laborious
matrix multiplication. They will not be written
down here.

3. Second time derivatives

Similarly, the second time derivatives G»(k;t=0)
can be calculated which are needed to find ~»(k).
They are given by

G„(k;rh') = -nv'. (k' h)e(&)~(~ —&')

+nv', , (0)&,. (S,. + (,.)y(()6(( —(')
+nv', ,(k)s;8,'P($) P(('), (A6a)

G„(k; () = G„(k; k)

Equations (Al) can be written down because clas-
sically canonical averages over momenta and over
positions factorize, and the potential-energy den-
sity does not depend on the particle momenta. The
matrix inverse Go„'(k), defined in the obvious

=-n 2IU E +~n drg s 'U s

+-,'np-' v', k'o. (k)y(()+ ,'np-'—
x [&';g(k) —&';g(0)1(&( (g —5(g)4 (f), (A6b)
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G«(k) = — dr cos(k r)&e(&)e(0)). (A6c)
which is generated by

U =e.~(a -a) =eh i -a (B8)

The coefficients in these formulas are those de-
fined in Sec. IIIB. Matrix multiplication, as in-
dicated in Eq. (2.13), gives the elements of the
matrix Z"„„(k)which shall not be reproduced here.

Given 0, Z, and G' as they enter Eq. (2.9), it is
then a simple matter to rewrite this equation in
the form (1.6) for G&&—:S, and thus to extract the
kinetic memory function &(kz} which is given in

Eqs. (1.7), (1.8), and (3.1).

APPENDIX B: FOKKER-PLANCK FUNCTIONS

(B1)

Because 9, (B, + P,, )Q(g) =0, the calculation of
S,', (kz), as well as the other matrix elements de-
fined in (5.8), is essentially a one-dimensional
problem, involving only the 8-coordinate if $,
=(k $)/k. It is convenient to define the operators

a = (s, + $,) and at = -6„

produces a new vacuum,

a~0)=0 and &0(a =0,

which is given by

)0) =UFO&.

With the excited states given by

~n)=(n!) ' '(at)"~0),

one obtains

Z(g, !}= &Ol [g -a'a] -'l 0)

~ &O~n)&n~o)

g-n

One easily finds that

&O~n) =&n~0)=e "~')P(n!) '~',

so that

(B9)

(BIO)

(B11)

(B12)

(BI8)

which are indeed adjoined within a "scalar-product"
definition as in (5.1), in the sense that &y~a~ g)
= &/~atty), and for which

[a, at] =1. (»)
Moreover, the "vacuum, " defined by

a~O) =0 and &O~a =0, (Bs)

corresponds to the function y, ($) =1 of (5.4).
Therefore

E(g y) (B14)

(B15)

This determines S',,(kz). The other functions
S'„„(kz) of (5.8) are most easily obtained by using
relations such as

It is related to the incomplete y function quoted in

Eq. (5.12) by

E(g, x) = -e-"(i&)"r(-&, -&').

S'„(kz) =[v'v(k, z)] 'E(g, A), (B4) u, kS~O, (kz) =z So,(kz) —1, (B16)
where

Z = v,k/v'v(k, z),

g = [z/v'(x(k, z)]+X',
(B5}

E(g, ~) = &0~ [g A(a+a—) , ata ~—'] '~0—) (B6).

8 can thus be calculated with the algebraic methods
used when one discusses harmonic oscillators.
The transformation

etc. , which follow directlv &rom (5.6). Note that

So»(kz) = [v'v(k, z)] 'E(& —2, A.),

which can be further reduced since

fE(g, A.) = 1 + AE(g —1, A.), .

(B17)

(B18)

and also that So»(kz) =0 for p, =0, 1, and 2. Final-
ly, the function which occurs in the formula (5.15)
for the transverse fluctuations is

a=a+~ and a =a +~, (B7) S,', (kz) = [v'o(k, z)] 'E(g —1, &). (B19)
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