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We discuss some implications of the description of spontaneous emission of radiation which
has been offered by Jaynes and his collaborators in their “neoclassical” extension of semi-
classical electrodynamics. In particular, we examine the thermal-equilibrium condition of
radiation interacting with a tenuous gas of atoms. We argue that rate equations may be used
to describe the interaction of such atoms with the chaotic thermal radiation field. For this
situation the neoclassical spontaneous emission rate is incompatible with the well-secured
laws of Boltzmann and Planck. Experimental evidence bearing on the accuracy of those laws
as well as on the accepted level population dependence of the induced emission rate is re-

viewed.

I. INTRODUCTION

The interaction of electromagnetic radiation with
material atomic systems has occupied a central
location among the problems of physics. The en-
ergy exchanges between material systems and the
radiation field were quantized in order to explain
the spectrum of blackbody radiation. The quantum
theory of atomic systems was invented to explain
their absorption and emission spectra, and to ac-
count for the important fact that their ground
states are stable against radiative decay. Finally,
the radiation field was quantized in order to pro-
vide a satisfactory description of both wave- and
particle-like phenomena such as might be repre-
sented by the interference of light and the photo-
electric effect.

Unfortunately, the resulting quantum electrody -
namics (QED) is still beset by many theoretical
divergences, such as the infinite zero-point ener-
gy of the radiation field, and some of these are
not so easily neglected. For this reason some
physicists feel that QED must eventually be modi-
fied in some rather fundamental way.

In recent years Jaynes and his collaborators
have looked for clues to such modification through
examination of the predictions of a theory which
they have termed “neoclassical” (NCT), in which
the radiation field remains unquantized. The usu-
al semiclassical theory® of radiation (SCT) de-
scribes the influence (induced emission and absorp-
tion) of an external classical radiation field upon
a system of quanial atoms. It does not normally
include any description of spontaneous emission.
Jaynes et al.?~% have extended and modified the
SCT by including the effects of the classical ra-
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diation reaction field on the atoms. The scope of
their resultant NCT covers spontaneous emission
and resonance frequency shifts. Thus, semiclas-
sical theory is projected into a realm which is
generally thought to be the exclusive purview of
QED.

The neoclassical theory recommends? that, for
an atom in a general pure quantum state v=27ad,,
the quantum expectation values of certain observ-
ables, including dipole moment and energy, be re-
interpreted as exact true values. The interaction
of the neoclassical atom with the electromagnetic
field is then treated classically in accord with
Maxwell’s equations. Several important aspects
of quantum theory, namely the discrete exact val-
ues imposed on certain observables (energy, for
example), and the associated quantum fluctuations
(i.e., uncertainty) are thereby eliminated. Thus,
in the above state ¢, if the ¢, represent energy
levels, the quantum theory requires that an exact
energy measurement yield one or another of the
energy eigenvalues E,, but it retains an essential
uncertainty about which E, will result, while the
neoclassical theory suggests that the result will
with certainty be the value }} |a,[2E,, i.e., the
quantum expectation value.

On this basis, one may expect to find experi-
mental evidence either supporting or contesting a
broad validity for NCT in areas where the discrete
exact values of observables and/or their quantum
fluctuations are accessible. Such areas which
come to mind, including some that are favorite
subjects for discussion in the context of SCT and
NCT, include the photoelectric effect (evidence
for field energy fluctuations), the experiment of
Franck and Hertz (evidence for discreteness of
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atomic energy), the experiment of Stern and Ger-
lach (evidence for discreteness of the components
of magnetic moment), and spontaneous emission
(evidence for dipole-moment fluctuations), along
with related areas such as noise in maser ampli-
fiers and Planck’s law of blackbody radiation.

In this paper we explore certain implications of
the NCT with regard to the thermal-equilibrium
condition of radiation and matter. The NCT elimi-
nates the quantization of energy exchange between
atoms and field, since in the NCT the energy of
an atom can take on a continuous range of values,
as can that of the field. The NCT therefore inval-
idates the usual derivations of Planck’s law. In
addition, the form of Boltzmann’s law appropriate
to the NCT has not previously been reported.

The distinctive feature of the NCT which evoked
our present work is simply that the NCT predicts
a smaller rate of spontaneous emission from an
atom in any given state than does QED. At the
same time, it is well known that the SCT (hence
also the NCT) and QED yield identical energy-
transfer rates when only induced emission and ab-
sorption processes are invoked. Since the ther-
mal-equilibrium state implies a balance of spon-
taneous emission and net induced absorption, it
seemed almost inevitable that the NCT would pre-
dict a thermal-equilibrium condition distinct from
that predicted by QED.

In the following pages we argue, from consider-
ation of a simple model and the universality of the
required results, that rate equations similar to
those introduced by Einstein® give a sufficient ba-
sis for examination of this problem. We then re-
view the more recent experimental evidence bear-
ing on the validity of the rates of induced process-
es in addition to that bearing on the validity of
Planck’s law and Boltzmann’s law. Such evidence
overwhelmingly supports the QED result for the
spontaneous-emission rate, and supports other re-
cent evidence that the neoclassical theory of
Jaynes and his collaborators has extended the
semiclassical theory beyond its limits of validity.

II. REVIEW OF EINSTEIN’S EQUATIONS
AND RADIATIVE EQUILIBRIUM

The rate equations postulated by Einstein® in his
derivation of Planck’s law can serve as a conve-
nient starting point for our work. He proposed
that for a system of N two-level atoms, the rates
of change of the upper-state population density N,
due to spontaneous and induced radiative process-
es are given by

dN,
—=2 =—
< dt ) spont AN2 (21)

and

(%)md - (BN, - B,N,), 2.2)
where N, is the lower-state population density,

N, +N,=N, A, B,,, and B,, are the familiar Ein-
stein coefficients, and p(v) is the spectral energy
density of the radiation field near the transition
frequency v. These equations, which are in ac-
cord” with QED, were presumed to hold for ther-
mal equilibrium and those nonequilibrium situa-
tions where rate equations are applicable. In par-
ticular, radiative equilibrium demands that (2.1)
and (2.2) sum to zero, i.e.,

AN, =p(W(B,yN, - By, N,). (2.3)

The spectral energy density is given by Planck’s
radiation law:

8mA/
p()= c® \exp(hv/kT) - 1) : 2.9

The expectation number of atoms, N, in an equil-
ibrium state with-energy E;, is given by Boliz -
mann’s law from statistical mechanics,®

N;x exp( - E; /kT), (2.5)

where % is Boltzmann’s constant and 7T is the abso-
lute temperature. This expression applies® for
our two-level quantum system of distinguishable
particles, so that

N,/N,=(g,/8,)exp(hv/kT), (2.6)

where we have used the Bohr condition
E,-E, =hv 2.7

to relate the level energies to the transition fre-
quency v which characterizes emission or absorp-
tion. To allow for the fact that several different
quantum states may have the same energy, we
have included the statistical weights g, and g,. By
applying (2.4) and (2.6) to (2.3) one finds, upon
considering the limit 27>>Av, the principle of de-
tailed balance,

&1B12=8:B1 5 (2.8)

which in turn yields
A/B,, =8thv®/c®. (2.9)

The very simplicity of this derivation of the ratios
of the rate coefficients makes clear our present
concern. How can one alter only the spontaneous
emission rate, as it seems the NCT does, and
hope to maintain the experimentally verified laws
of Boltzmann and Planck?
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III. SPONTANEOUS AND INDUCED EMISSION
IN THE NCT

In this section we discuss the descriptions of
spontaneous and induced emission offered by the
NCT, and on the basis of a simple model we de-
rive rate equations which form the basis for our
later comparisons with experimental results.

The NCT extends the SCT by treating spontane-
ous emission as well as induced emission from a
semiclassical viewpoint. If an atom is in some
general state |¢), it has a semiclassical electric
dipole moment (for example) which will have com-
ponents oscillating at the various allowed transi-
tion frequencies of the atom. This semiclassical
moment is identified in both the SCT and the NCT
with the expectation value of the quantal moment,
namely, (¢|e¥[¢). Inboth the SCT and the NCT,
this semiclassical moment, summed over the var-
ious atoms, yields the polarization which is used
in Maxwell’s equations to describe the dynamics
of the field. However, while the usual SCT uses
only the external field in the Hamiltonian which
describes the motion of each atom, the NCT in a
sense completes the SCT by including the classi-
cal radiation reaction field, so that in the NCT an
atom undergoes spontaneous decay in a self-con-
sistent way as it radiates.

The crucial difference between the NCT and
QED, whose\consequences we shall examine, in-
volves the nature of the emitted field and the atom-
ic moment. The NCT assumes that the emitted
field is completely determined by the semiclassi-
cal atomic moment through Maxwell's equations.
In QED, the emitted field is similarly related to
the quantum atomic moment, but both field and
moment have quantum statistical fluctuations (un-
certainty). For a given state of an atom, the emit-
ted field in the NCT is equal to the expectation val-
ue of the emitted field in QED, but as a result of
the quantum fluctuations of the dipole moment, the
emitted power in the NCT is always less than the
expectation value of the emitted power in QED.
This is essentially a result of the fact that the
mean square of a random variable is always lar-
ger than the square of its mean. As a result, QED
always predicts a larger spontaneous-emission
rate than does the NCT. To complete the QED
picture, the quantum fluctuations of the emitted
energy are nicely correlated with the quantum
fluctuations of the atom’s energy so as to conserve
total energy in the spontaneous-emission process.

Let us now examine these matters quantitatively.
Our line of argument will proceed in the following
manner. First, we examine the case of a single
sharply resonant atom subject to a blackbody ra-
diation field, and find its time (or ensemble) av-

erage behavior with respect to spontaneous and
induced radiation processes. Then we consider
a tenuous gas of such atoms and argue that in the
limit of high dilution the atoms must behave inde-
pendently. This result can be strengthened in a
possibly important way by the introduction of some
extra line-broadening mechanism which imparts
some width to the atom’s resonance line in addi-
tion to its natural width. This can be done with-
out appreciably affecting energy decay or transfer
rates. Finally, we add up the individual atom re-
sults to obtain rate equations appropriate to the
NCT’s description of the gas. In the later sections
of this paper we investigate whether such rate
equations are compatible with the existing data
regarding the validity of Planck’s law, Boltz-
mann’s law, and the induced transition rates.
Consider the component E(t) of the electric field
parallel to the dipole matrix element 7i,,=(1|e¥|2)
connecting atomic energy states |1)and |2). Since
the blackbody field is stationary, the autocorrela-
tion function [E(£)E(¢+7)],y (the average may be a
time or ensemble average) must be a symmetric
function of 7 only, and hence may be represented
by

[E@R)E(+D],, =4—g- Jmp(v) cos(2mvndv. (3.1

By setting 7=0, o(v) may be identified as the black~
body spectral energy density, as we have taken in-
to consideration that the electric and magnetic en-
ergy densities are equal and that there are three
independent orthogonal field polarizations. At

T =T,, the autocorrelation time of E(¢), (3.1) drops
to 1/e of its value at T=0. We now observe that
because of the breadth of the blackbody spectrum,
particularly because that spectrum broadly sur-
rounds the assumed narrow spectrum of the atom-
ic transition 12 under consideration, 7, is ex-
tremely short compared to the time required for
the atom to change its state (i.e., absorb or emit
an amount of energy comparable to v, or have
the phase of its transition dipole pegurbed by an
angle of order 1 radian). This means that in con-
sidering the interaction of the atom with the am-
bient blackbody field, distinct time intervals :of
duration somewhat greater than 7, may be consid-
ered independently, and further that during any
such time interval the state of the atom changes
only slightly. This in turn means that a perturba-
tion method is appropriate for handling the inter-
action problem, and indeed perturbation theory
carried to second order in the field strength E
yields the Einstein induced-rate result in straight-
forward fashion, namely,

<%:)ind.av c- ZBP(V)(Z)"” (3.2
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where, if an atom is in a state

v=a,|1)+a,|2), (3.3
then z is proportional to energy and is defined as
z=|ay)? - |a,|?, (3.9

and B is the Einstein coefficient 27| 1,,|2/3%% which
was introduced in Sec. II. Since (3.2) seems to be
a crucial result, we call attention to the accom-
panying paper,'® hereafter referred to as I, where
the corresponding result [Eq. (2.23) of I] is derived
for a multilevel atom from the NCT.® Again, the
average indicated in (3.2) may be a time average
or an ensemble average for a stationary situation.
Note that (dz/dt),, may have a finite time average
for a stationary system where (dz/dt), ,, vanishes.

Consider spontaneous emission in the NCT at
this point. The spontaneous emission process
proceeds independently of the induced process
(3.2), except for appropriate changes (i.e., power
broadening) in spectral shapes. The reason is
that both rates are established in times much
shorter than the inverse transition rate. The
semiclassical dipole [I corresponding to the state
Y of (3.3)is

(3.5)

and the power Pyon Which this dipole radiates spon-
taneously at frequencies near v,, according to
classical theory is

- .,
H=agaslh,, +aza,lhy, ,

(3.6)

4
P =28 | 1y 2Pl
The establishment of this emission rate requires
a time only of the order of a few cycles of the
emission frequency. While the exact frequency
spectrum of the emission can be and is perturbed
by the ambient blackbody field, according to (3.6)
this does not appreciably influence the emission
power in our limit of a narrow resonance line.

Conservation of energy, with which the NCT
concurs, requires, by virtue of the radiation re-
action field, that the atom lose energy equal to
that spontaneously emitted as radiation. Since
the energy of the atom, W, is given by

(3.7

where level 2 is the upper level, we see that, from
(3.6), conservation of energy requires the result

dlay)®
[l et BN - 2 2
( % ) Ala,Playl?,

Witom :h:wm |a212 ’

(3.9

where A is the appropriate Einstein coefficient
A =4wd |, |2/80c° . (3.9

Comparison with B [following (3.4)]yields the cor-
rect ratio (2.9) of the coefficients.
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Let us pause to examine (3.8) briefly. The
standard QED result for spontaneous emission is

<d_|a£>spom =-Ala,f?, (3.10)

dt
the change from (3.8) being interpretable as due
to quantum fluctuations of the dipole moment. The
two rates differ by a factor |a,|2, with the NCT
rate being always the smaller in absolute value.
_For a model “two-state” atom, where |a,|?+|a,|?
=1, the two rates approach one another when the
atom is only slightly excited, with |a,|?<<|a,|2=1.
A great deal has been made of this fact in the lit-
erature. However, for a multilevel atom, and
particularly if the atom is considerably excited,
the individual |a, |? will generally be very small,
and so the NCT spontaneous emission rate may
be expected to depart very greatly from the QED
rate. Also, if the ground state is degenerate, one
might expect the two rates to disagree markedly
even in the low-temperature limit. This is in
fact a result we have derived in I. However,
many-level effects are inessential complexities
to our present purpose. Let us assume a model

two-state atom, and use the relation
la,|? +]a,|*=1. (3.11)

We can then express |a,|? and |a,|? individually in

10
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FIG.1l. Plot of the normalized spontaneous-emission
rates for a single atom as given by QED [Eq. (3.10)] and
the NCT [Eq. (3.8)] vs the probability of finding a two-
level atom in its upper state. The two rates are equal
only when the atom is close to the ground state. The
straight line is the QED result.
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terms of the quantity z of (3.4), obtaining

(—df)spm ~1A(z2-1). (3.12)

at
This expression was given in a basic paper® on the
NCT. A plot of the two spontaneous-emission
rates (3.8) and (3.10) is shown in Fig. 1. Note that
the NCT rate has a maximum at |a,|?=0.5, where
it is just one-half of the QED rate. Figure 1 im-
plies that in the thermal-equilibrium problem the
greatest departures between the predictions of the
two theories are to be expected in the high-tem-
perature limit, where the atoms do not remain
near the ground state. This is precisely what we
find. It now remains to extend these results for
single atoms to apply to a set of N atoms. To this
end, we define the quantities

Nliﬁkz“lz, Nzailam‘lzo (3.13)
=1 =1

These quantities, which may simply be called lev-
el populations, have somewhat different signifi-
cances in QED and in the NCT. In QED they rep-
resent ensemble mean values of the level popula-
tions which would be found by suitable exact mea-
surement of those populations. In the NCT they
can have no particularly well-defined physical
meanings; however, various intrinsic properties
of the set of atoms depend on them as though they
were level populations. For example, the energy
W of the set of atoms, which is simply the sum of
the energies of the individual atoms so long as the
interactions among the atoms can be neglected,
may be expressed [see (3.7)] as

W=hwy, N,, (.19
and of course we have
N,+N, =N, (3.15)

In order to proceed from this point to any quan-
titative ideas and results it is helpful to have a
model system in mind. It is easy to create a suf-
ficiently complicated model (after all, the real
world is very complicated) that further progress
is quite difficult to make or to be sure of in re-
trospect. We argue, however, that the conditions
of thermal equilibrium are most probably univer-
sal, so it is useful to look for the simplest model
from which one can derive the desired results.
Let us therefore consider a set of N atoms tenu-
ously distributed in space so that their most im-
portant interactions are through the radiation field,
and further let us suppose that these atoms couple
to the total radiation field sufficiently weakly that
the whole sample is optically “thin.” Let us sup-
pose that these atoms find themselves in a black-
body enclosure surrounded by distant absorbing

walls at temperature 7. In the absence of the
atoms the enclosure must then be occupied by a
“blackbody” field (at temperature 7). We argue
now that one can simply add the induced and spon-
taneous rates for the individual atoms to find the
corresponding rates for the set of atoms. This
simplicity is model dependent; particularly, it
depends on independent behavior of the individual
atoms. Both assumptions of our model lead toward
independent behavior. The atoms of our tenuous
gas may be arbitrarily far apart. As the atoms
get farther apart, the fields they see become less
correlated, since these fields result from the ad-
dition of many waves coming from many direc-
tions. Correspondingly, the spontaneous-emission
rates of the individual atoms become more nearly
additive, with different phase relations among the
various dipoles resulting simply in different direc-
tionality of the radiation pattern. In addition, the
extra line breadth we invoked earlier aids in this
matter. Whether homogeneous or inhomogeneous,
its effect is to remove any phase coherence among
the atomic dipoles in a time of the order of the in-
verse linewidth. This must enhance the indepen-
dence of the individual atoms. Coming back to the
generality argument, we feel confident of proceed-
ing on the assumption of effective independence,
because any residual correlations among the atoms
are dependent upon density and linewidth, whereas
the equilibrium properties of the gas which we
seek should be independent of those parameters.

With this model in mind we can forge ahead. The
linear QED spontaneous rate equation (3.10) for a
single atom is simply transformed to read

QED
<£lc_11yt-z.>spom = —ANz ’ (3.16)

which is identical to (2.1). However, the nonlinear
NCT equation (3.8) becomes, after substitution of
(3.13),

(%a)cz —A<N2 - ﬁj 1a2‘|4). (3.17

We may describe any distribution of the |ay;|? in
terms of its mean and variance, and so express
the sum in (3.17) as

}ilazil%’y—v; +NE3, (3.18)

where £2 is the variance
N 2
NEz= i(]aﬁ]z__z) , (3.19)
=1 N

so that spontaneous emission in the NCT is given
by
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dN. NCT
< dt )spom - —Asz’ (3.20)
___ —_—f2
=N N, E (3.21)
Since £2 =0, one may set up the inequality
N, _N,
¥ >N -, g (3.22)

where the equality is obtained only if £2=0. The
limiting form of (3.20) is

AN.\NCT
-2 Ny
< dt >Spom,max AN 2N (3 23)

The significance of (3.23) is the fact that no matter
.what the particular distribution is, the discrepancy
factor between NCT and QED spontaneous emission
rates is af least N,/N, which for RT>>hv isf=3
This factor of 3 figures prominently in the impli-
cations of (3.23) in the limit 27 >>%v. Toward the
end of this paper we will consider an explicit dis-
tribution which has been derived in I for the con-
dition of thermal equilibrium and which for our
case results in £2#0 and f=3, i.e., an even larger
discrepancy.

The inclusion of level degeneracies modifies
(3.23), generally reducing the NCT spontaneous-
emission rate further. If one includes degeneracy
in the NCT formalism (for a case in which the
Einstein A coefficient is the same for all the de-
generate states of the upper level), one finds cor-
responding to (3.23) the result

AN, \NCT N
=2 - _ B
< dat >spom,max ANzglN ¢ (3.24)

That is, the NCT spontaneous-emission rate is in-
versely proportional to the degeneracy of the lower
level. To see qualitatively how this comes about,
we recall that in QED the spontaneous decay of the
upper-level probability proceeds independently of
the lower-level configuration of the wave function.
In NCT, on the other hand, the form of the lower-
level part of the wave function is important, and

if the lower-level degeneracy is large, only a few
of the possible lower-level configurations (at most
three independent ones) are coupled to a particular
upper-level configuration by the dipole operator.
By “level configuration” we mean a particular
choice of the amplitudes of the degenerate states
which comprise the level. Other lower-level con-
figurations may be coupled to the upper level by
higher multipole operators, but these do not give
rise to appreciable radiation. Thus, as the lower-
level degeneracy increases, a decreasing fraction
of the lower-level population remains effective in
NCT for the generation of spontaneous emission.

Apart from the fact that the introduction of de-
generacies makes the discrepancy worse at kT
>>hv, it also introduces discrepancy at the other
extreme, hv>>kT, where previously there has
been agreement. We recall that with no degener-
acy and £2=0, f=3 for kT>>hv and f=1 for hv
>>kT. Now we find that for £2=0,

pNo 1
&N g1 +N,/N,)

so that when 2T>>hv, f=1/(g, +&,), and when hv
>> kT, f=1/g;; there is no limit in which NCT
agrees with QED. A more sophisticated analysis
in I affirms this conclusion.

We shall use (3.24) as an important base for the
remainder of the paper. However, lest the reader
become too concerned with the appearance of the
degeneracy factor in (3.24) and with whether this
is a proper result of neoclassical theory, we note
that our basic conclusions do not depend on how
level degeneracies might be handled in NCT. The
simplest case g, =g, =1 is sufficient.

In Secs. IV-VI we shall be concerned with the im-
plications of the NCT spontaneous-emission rate
(3.24) in the light of existing experimental results.
The procedure will be to substitute (3.24) for the
quantum rate, (2.1) or (3.16), in the rate equation
for radiative equilibrium whose quantal form is
(2.3). Starting with NCT equations,® Gordon!° has
derived the equivalent rate equation for NCT; in
Appendix A we indicate the transformation into a
form appropriate for our use. In accord with our
comments in Sec. I, the average induced absorp-
tion and emission rates turn out to be identical
with the Einstein rates (2.2).

After a summary of the conclusions to be drawn
from these three experimentally oriented sections,
we shall consider the actual probability distribu-
tion (£2# 0) for thermal equilibrium as derived by
Gordon'® and indicate how the results correspond-
ing to £2 =0 must be modified. Section IX examines
the work of others.

It will be convenient at this point to introduce a
shorthand notation. Thus, let E,=Einstein’ s spon-
taneous-emission law (2.1); J,=the neoclassical
spontaneous -emission law (3.24); E; =Einstein’s
induced-emission-and-absorption law (2.2); B,
=Boltzmann’s distribution law; and P=Planck’s
radiation law. The requirement of radiative equi-
librium for a system of atoms and field at a com-
mon temperature interrelates these laws, so that
the substitution of J; for E; requires alteration of
at least one of the other laws. Of the three possi-
bly suspect laws, B,, E;, and P, we shall in each
of the next three sections assume that only one
must be altered, and find the alteration required
by the existence of equilibrium. The revised sus-
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pect laws are then examined in the light of exist-
ing experimental evidence. We find that indepen-
dent experimental verifications of B,, E;, and P
are each sufficiently accurate so that the drastic
modifications required by J, (particularly in the
high-temperature limit) are not permissible, nor
indeed is any combination of such modifications.

It may seem odd that we have included E; in the
list of suspect laws, since it has been demonstra-
ted in I (see also Appendix A), that E; is also a
prediction of the NCT. The inclusion is made for
the sake of completeness, and because there exists
some nice experimental evidence favoring E; which
we wanted to call attention to.

IV. IMPLICATIONS OF A MODIFICATION
OF BOLTZMANN’S LAW

A. Theoretical inconsistencies

We shall commence by applying E; (2.2) with the
associated expressions (2.8) and (2.9), P (2.4), to-
gether with J; (3.24) to a situation of radiative
equilibrium, We seek the modified form of B,.
Since we shall be making comparisons with the
results of experiments performed on paramagnetic
solids and gases wherein the presence of a mag-
netic field removes energy-level degeneracies, we
shall set g, =g,=1. Equilibrium demands that
(N,/N,)’ satisfy

n(N/N,)'2 = (N, /N,)" =n =0, @1
where
n=1/[exp(w/kT)-1]. (4.2

In QED parlance, » is just the average number of
photons per mode. [Note that throughout the paper,
all quantities characterized by primes denote mod-
ifications of the conventional expressions which stem
directly from a use of (3.24).] Since (3.24) reduces
to (2.1) when 2v>>kT and g, =1, we require
(N,/N,)’ to be equal to (2.6) in the same limit.

Thus the (- ) solution of the quadratic equation
(4.1) is unacceptable. The solutions to (4.1) are
then

(N,/N;)' =N, /N, =exp(hv/kT), hv>>kT, (4.3)

(N,/N,)'=1+3hv/RT, hv<<kT. (4.9
B, (2.6) in the latter limit gives
N,/N,=1+hv/kT, hv<<PkT. (4.5)

Thus, with AN=N, —-N,, we see that (AN/N,)’ is
one-half of AN/N,. Equation (4.4) disagrees with
the conclusions of quantum statistical mechanics.®
There is clearly an implied disagreement as well
with classical statistical mechanics® as might be
represented by Maxwell’s velocity distribution in
the kinetic theory of gases.

Before we examine experimental results, we
wish to make a useful observation. Regardless of
the correct form for B, [(2.6) o7 (4.3) and (4.4)],
it must be independent of the type of interaction
which established atomic equilibrium. To see
this, we consider a paramagnetic atomic species
embedded in a crystalline lattice where it inter-
acts not only with the electromagnetic radiation
field but also with the elastic modes of the crystal
host. If the separate interactions of the lattice
and free-space fields with the atoms produced
different Boltzmann distributions when the entire
system was at equilibrium, then one field would
supply energy to the other and the concept of an
equilibrium temperature would be invalidated.
Thus, not only would the zeroth law of thermody-
namics be violated but the second law as well.

B. Experimental results

For molecular beam experiments, the normal
Maxwell velocity distribution must be multiplied
by an additional factor'! equal to the velocity v, so
that the intensity of molecules in the beam between
v and v+dv is < viexp( -mv?/2kT). This expres-
sion has been verified in detail for a wide range
of values of the exponential Boltzmann factor by
many experiments.'?> However, since (4.4) was
derived in connection with a quantum system, it
is important to examine evidence which directly
disproves (4.4) and which was also obtained for
systems with discrete states.

In particular, we shall consider the simplest
case of a two-level system, a single spin with no
orbital moment (S=%, L=0). If the magnetic mo-
ment associated with the atom is y, then in a mag-
netic field H, there will be two energy levels. The
upper level has an energy E, =+uH and a popula-
tion density N,, while the lower level is charac-
terized by E, =- pH, and N;. The magnetic mo-
ment for the entire system is M = (N, - N,)u. If we
use B, (2.6) and, as before, set N =N, +N,, we
find M = Nutanh(uH/RT). In the limit 27 >>hv
(=2wH), we find M = Nu®H/kT which, in terms of
the susceptibility x =M /H, becomes

X =U2N/ET, RkT>>hv. (4.6)

The 1/T dependence is known as Curie’s Law.
Clearly, the form of B, (4.5) appropriate in this
limit could also have been used in the derivation.
If, instead, (4.4) had been used, we would have

X' =3U2N/RT, EkT>>hv, (4.7

An experiment!®!* has been performed on the
paramagnetic ion Cu*? (two-level system) in
CuSO,* K,SO, * 6H,0 (copper Tutton salt) in which
x was measured from 1.6-290°K where kT >>hv



throughout. The number density N of paramag-
netic ions may be determined from N=pN,/MW,
where N, is Avogadro’s number (molecules/mole),
p is the density (g/cm®), and MW is the molecular
weight (g/mole). Not only was x found to be in-
versely proportional to 7, but the absolute value
of

(XT/Pexp=1.03x10"3 (CGS units) (4.8)

was also given for a powdered sample. By using
(4.6), which is based upon B,, and setting u=y,
(Bohr magneton), we compute

XT/p =Nyu2/E MW =0.85x10~° (CGS units).
(4.9
Using instead (4.7), we have

X'T/p=3Nyu2/E MW =0.43 X10™ (CGS units).
(4.10)

The difference between (4.8) and (4.9) arises be-
cause of incomplete quenching of the orbital ang-
ular momentum. In the limit 27 >>hv, the correct
quantum-mechanical expression for arbitrary ang-
ular momentum for ions of the iron group is giv-
en!® by multiplying (4.6) by a factor 3[L(L+1)
+4S(S+1)], where L and S are the orbital and spin
quantum numbers. When the orbital angular mo-
mentum is quenched (L =0) and S=3, then this fac-
tor is unity. If, as is the case with Cu*? in a Tut-
ton salt,'® the orbital angular momentum is not
completely quenched, then the factor will exceed
unity, and the susceptibility will be increased
somewhat. Thus, while X, is 20% larger (which
is in the right direction) than the theoretical value
of x, the value of x’ (based upon a modification of
B,) is a factor of two smaller than x, and this must
be viewed as a serious disagreement.

There are examples of complete quenching
(L =0) in paramagnetic crystals for multilevel sys-
tems Cr*3 (S=%), Fe*? (S=%), and Gd*® (S=3%),
where careful measurements of the temperature
dependence of x have been made.'® For arbitrary
values of 2v/RT the susceptibility is proportional
to the Brillouin function'*''® whose argument is
hv/ET. (In a later section of the paper we will
use the probability distribution derived by Gor-
don'® to calculate the NCT equivalent of the Bril-
louin function.) For the three ions just mentioned,
this function has been accurately verified (to with-
in ~3%) for all values of 2v/kT. These results
are inconsistent with the modified Boltzmann dis-
tribution (4.4) and provide striking confirmation
of the validity of (2.6) in quantum applications.

For the atomic systems in the experimental ex-
amples just cited, interaction is primarily with
the elastic waves of the solid. However, there
have been measurements performed on paramag-
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netic gases which reach thermal equilibrium by
means of collisions. In the case of monatomic po-
tassium vapor, (4.6) is applicable. Using for u
the value of the Bohr magneton and Avogadro’s
number N,, we compute the molar susceptibility
to be N,x/N=0.375/T. The experimental value,”
which had an uncertainty of ~10%, was determined
to be 0.38/T, in excellent agreement with expec-
tations. For the oxygen molecule (Q,), (4.6) ap-
plies, multiplied by the factor $[4S(S +1) +A?]
where A is a molecular quantum number. For
S=1,A=0, appropriate for O,, and 20°C (293 °K),
Nyx/N=3.42X10"%, The average result'” of the
experimental findings of seven different groups of
workers was (3.38+ 0.06)x1073, Again, we have
superb agreement and again confirmation of B,.

We note that the experimental verifications of
B, did not involve E,, E;, or P in any way.

V. IMPLICATIONS OF A MODIFICATION OF EINSTEIN’S
INDUCED EMISSION AND ABSORPTION EQUATIONS

A. Theoretical inconsistencies

In this section we pretend that P (2.4) and B,
(2.6) are correct, and together with J; (3.24) in-
vestigate the implied changes in E; (2.2) and the
associated equations (2.8) and (2.9). We preserve
the form of E; and simply replace B,, and B,, by
B, and B;,. Since the modified B’s will be tem-
perature dependent, we cannot properly examine
the high-temperature limit of the equation of ra-
diative equilibrium in order to find a relationship
between the B’s. However, for the purposes of
illustration we shall assume that the principle of
detailed balance still applies, i.e.,

&Bi,=8:Bx, (5.1)
so that

A __A Ng _8uwv?

TR 3 [1+exp(—-mv/RT). (5.2
21 21 1

Since the values of A which appear in (2.1) and
(3.24) are identical and equal to 64n*v®(er, )?/3hc?,
where e7,, is three times the dipole matrix ele-
ment, we see from (5.2) that B}, must be tempera-
ture dependent. This result is inconsistent with'
the SCT (and therefore the NCT also), whichshows
that B,,, like A, is dependent only upon internal
properties peculiar to a given atomic transition
(frequency and dipole matrix element) and inde-
pendent of any external parameters such as tem-
perature. Solving (5.2), we find

Bj, =B, N,/Ng, . (5.3)

Since a similar expression holds for Bj,, we are
led directly to a modification of E; which consists
of multiplication of the right-hand side of (2.2) by
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N,/Ng,. This result (5.3) is inconsistent with the
common prediction (2.2) of all the theories under
present consideration (the SCT, the NCT, and
QED), which are based on Schrddinger’s equation.
We include it in part because of the existence of
some experimental evidence strikingly in favor of
the usual level-population dependence of the in-
duced-emission rate and therefore at variance
with (5.3).

B. Experimental results

The measurements made by Geusic and Scovil,®
employing ruby as a three-level optical maser
amplifying medium, provide a dramatic confirma-
tion of the dependence of the induced emission and
absorption rates upon the population densities as
given in (2.2). The usual single-pass, low-signal
(decibel) gain is proportional to (2.2), i.e.,

G [N, - (g,/8,)N,], using (2.8). N, is the popula-
tion density of the upper amplifier level, and N,
is the density of the lower level (ground state).
The populations of all three levels, including the
one above the upper amplifier level, were known
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FIG. 2. The solid curve represents the normalized
gain based upon the Einstein equations for stimulated
emission and absorption [Eq. (2.2)]. This curve, as well
as the experimental points for two ruby-laser amplifier
lengths, was taken from the work of Geusic and Scovil
(Ref. 18). The dashed curve represents the gain if one
were to accommodate the spontaneous-emission rate of
the NCT [Eq. (3.24)] in radiative equilibrium by modify-
ing Eq. (2.2) while preserving Planck’s law and Boltz-
mann’s law. The experimental results do not favor this
modification.
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as functions of the pumping energy. The single-
pass, unpumped loss L is the magnitude of G when
all atoms are in the ground state, i.e., L <(g,/g,)N.
In Fig. 2, the experimental values of G/L are plotted
against the pumping energy. The solid line, which
corresponds to

G _ N, - (8,/8,)N, 5.4
L (&/g)N ° ’

is seen to agree very well with the experimental
points. K the modified form of (2.2) prevails, then
G'=[(N,/g,)/(N, + N,)]G and L'=(1/g,)L, so that

G’ N, G

I m'; - (5.5
This is plotted in Fig. 2 as a dashed line. Deriva-
tions of the explicit forms of (5.4) and (5.5) are
presented in Appendix B. [Note that the additional
factor in (5.5) contains in its denominator the pop-
ulations of the two amplifying levels, N, +N,,
which is notf equal to the total population, N
=N, + N, +N,, in a three-level case; in the pre-
viously discussed two-level case the factor is, of
course, just (N,/N).] G’/L’, unlike G/L, has its
maximum value when N,# 0. We conclude that the
dependence of the stimulated emission and absorp-
tion equations of Einstein upon population density
has been well verified experimentally throughout
the normal and well into the region of inverted
populations.

From the calculations in Appendix B, we have
seen that the evaluation of the solid curve in Fig.
2 required the use of B,. Our contention is that
(2.2) [where By, and B,, are given by (2.8) and
(2.9)] has been accurately verified because (i) B,
has previously been shown (Sec. IV) to be indepen-

" dently established as correct, and (ii) even if the

modified B, (4.4) were used in Appendix B, the
change in the values of G/L given by Eq. (B5)
would be less than 10%, i.e., while the experi-
ment of Geusic and Scovil is extremely sensitive
to the detailed form for (2.2), it is very insensi-
tive to the form of B, in the limit 27 >>hv.

VI. IMPLICATIONS OF A MODIFICATION
OF PLANCK’S RADIATION LAW

A. Theoretical inconsistencies

Our final alternative is to retain E; and B, and
gauge the change in P demanded by (3.24) for ra-
diative equilibrium. This is perhaps the most
natural approach for an assault on QED because
it was with Debye’s'® derivation of (2.4) that sec-
ond quantization (quantizing the state of excitation
of the radiation modes; the quantizing of the modes
themselves had previously been done by Rayleigh
and Jeans) was introduced. Second quantization is
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the heart of QED and is a procedure which the NCT

.circumvents. However, it is well to note that P is
theoretically well established within a quantum
framework, i.e., in addition to the derivations by
Debye,'® Einstein,® and several different formula-
tions by Planck,?? there are a great many others.?+2?

Proceeding as before, we find that equilibrium
for a two-level system requires

p’'=pN,/Ng, (8.1)
or
, 8m? hy
P &,[1 — exp(-hv/kT)]+g,[exp(hv/ET) -1]°
(6.2)

where p is given by (2.4). An interesting feature
of (6.2) is its dependence upon the degeneracy
factors g, and g,, which are peculiar to some par-
ticular two-level atomic system. This dependence
conflicts with the laws of thermodynamics. To
see this we imagine a two-level system (e.g., a
paramagnetic gas) in equilibrium with the radia-
tion field in some large highly multimode cavity.
Equation (6.2) is the equilibrium energy density
corresponding to the gas. The walls, however,
will favor a different energy density p”, which is
a function of T and the degeneracy factors for the
manifold of energy levels associated with the at-
oms in the walls. Thus, the spin system cannot
be in equilibrium with the walls. This is incon-
sistent with the definition of temperature and vi-
olates the zeroth law of thermodynamics. If, for
example, p”>p’, the spin system would be pumped
by the radiation field associated with the walls,
and its temperature will be increased. The sub-
sequent flow of energy from the colder body
(walls) to the hotter body (gas) constitutes a per-
petual motion machine of the second kind, which
violates the second law of thermodynamics. (One
violation is just a corollary of the other, since it
has recently been shown that the zeroth and sec-
ond laws of thermodynamics are equivalent,?®)
The conclusion to which we are forced is that the
equilibrium radiation field depends neither upon
the nature of the system to which it is coupled nor
to the strength of that coupling, so that (6.2) must
be incorrect.

B. Experimental results

In the two decades following its introduction, P
(2.4) has been painstakingly confirmed by many
experiments.?* By using the thermodynamic rea-
soning of Sec. VIA, one concludes that (2.4) istrue
for all systems (classical or quantum) which are
in equilibrium with a radiation field. However,
for convenience and interest, we shall now dis-

cuss several somewhat more recent experiments.

In the realm of radio engineering, Nyquist®®
established an expression for the noise power, for
a single transverse mode within a bandwidth Av,
emitted from a resistance maintained at a tem-
perature T into a matched transmission line, to
be

Rxoise szAV: (6-3)

which is just the high-temperature limit of the
more general form based upon P,

hvAvy

Proise =e—xpW .

(6.9
Equation (6.3) was accurately verified by the ex-
perimental work of Johnson,2® who used (6.3) to
determine a value for Boltzmann’s constant 2
which was within 8% of the accepted value. The
modified noise expression based upon (3.24) is

hvAv

=gz[ 1 —exp(~hv/kT)] +g,lexp(hv/RT) - 1]’
(6.5)

U
R noise

whose limit for 2T>>hv,
Proise™ kTAV/ (g, +83), (6.6)

is in serious disagreement with (6.3) and the
classical equipartition limit. When g,=g,=1, the
discrepancy is least and equals the factor of
which we encountered earlier.

It is also instructive to consider noise measure-
ments performed on manifestly quantum systems
(laser amplifiers). Equation (6.4) represents the
noise power emitted by a lumped-circuit loss. We
may convert?? this for the case of distributed gain,
G>>1, by multiplying (6.4) by — G and allowing
T - - T, where T; is the temperature of the invert-
ed levels. Thus

GhvAv
1 - exp(-hv/kT})’ (6.7

which by B, (2.6) becomes

P, noise =

N,
P, ..=GhAv( ——2——), 6.8)
noise <N2 -2, /g.1 N1> . ( )

Paananen et al.?® measured the noise power from
the high-gain, 3.39-um transition in a He-Ne dis-
charge tube, and found agreement, to within 4%,
with (6.8). In the NCT framework,

N,
T 2 1
Phaise Gthu(gI N.-z, N1> <N1 " Nz>’ (6.9)
which by (2.6) may be expressed as

GhvAv
&,[1 —exp(-hv/kT)]+g,lexp(hv/RT) - 1] *

(6.10)

’
Proise =
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Knowing the experimentally deduced value? for the
bracketed factor in (6.8) and the degeneracies, g,
=5 and g,=3, one calculates that N,/(N, +N,)g; =5,
which would predict a value for P that was a
factor of 13 times smaller than the measured val-
ue. Strictly speaking, this discrepancy cannot be
used to demonstrate that (3.16) is incorrect, in-
stead, only that the results® actually obtained are
consistent with (2.1). This occurs because of the
experimental determination of the bracketed factor
in (6.8). The factor was deduced from measure-
ments of the separate spontaneous-emission inten-
sities from the two levels involved, in light emit-
ted from the side of the laser tube. The intensities
were assumed to be proportional only to the popu-
lations of the emitting levels, in accord with (2.1).
If instead one assumed (3.16) to be correct, then
the intensity data recorded by Paananen et al.*®
would be insufficient to determine the factor in
(6.8), since the populations of the receiving levels,
those to which levels 1 and 2 decay spontaneously,
remain unknown.

Kliiver® has made detailed noise measurements
using the 3.5-um transition in He-Ne. He found
excellent agreement between his measurements of
gain and saturated noise versus input signal inten-
sity and a detailed theory predicated upon (2.1) and
(2.2). From this work he was able to deduce a val-
ue for the unsaturated population factor in (6.8). He
also calculated this factor by using (6.8) in con-
junction with his low-signal noise measurements.
The two determinations agreed to within 7%.

In the summary of this section we would like to
emphasize several points. The early experiments,*
to which we referred only in passing, and also the
one measuring the Johnson-Nyquist noise,?® were
made on classical systems. Thermodynamic argu-
ments reveal that this work has in fact confirmed
P for all systems in equilibrium with a radiation
field. The confirmation of (2.4) is thus the dis-
proof of (6.2). This conclusion has in no way de-
pended upon E; or B,. The quantum noise mea-
surements?®:2° that we have cited cannot strictly be
used to disprove (3.24), but they make it highly un-
likely that (3.24) is correct. The reason for this
in both cases?®?° is related to a lack of experimen-
tal information about the populations of other atom-
ic levels, which is needed if (3.24) is to be tested
directly. The accurate consistency checks provided
by these experiments®®:?® are of two types. One
derivation of the expression for B, (6.8) starts
with P (which may be derived®'?” from transmis-
sion-line considerations) and then uses B,. Since
B, has been previously shown to be accurate inde-
pendently (Sec. IV), these experiments show P to
be consistent. Another derivation®® of (6.8) starts
with E; and uses E;. Since E; has been shown to
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be accurate independently (Sec. V), the same ex-~
periments thus show E; to be consistent as well.

VII. SUMMARY

We should like to summarize the steps by which
we have been led to conclude that the description
of spontaneous emission offered by the NCT is in-
correct. Our primary purpose has been to show
that the implications of the NCT in radiative equil-
ibrium violate not only existing theory, but stand
opposed, in every instance, to the results of ex-
periments. If equilibrium is to exist upon adoption
of (3.24), then at least one of the following must be
rejected: (a) B,, Boltzmann’s law; this has been
well verified by molecular-beam experiments and
the measurements of paramagnetic susceptibilities,
and its modification conflicts with statistical me-
chanics; (b) E;, the equations of Einstein for in-
duced emission and absorption and the associated
equations for detailed balance and the A/B ratio;
these have been accurately confirmed by laser am-
plifier experiments, and their modification sug-
gests revision either of Schrdodinger’s equation or
time-dependent perturbation theory, which consti-
tute the SCT; (c) P, Planck’s law; this has been
carefully checked by measurements of blackbody
radiation spectra and classical and quantum noise
measurements, and the altered form would violate
the zeroth and second laws of thermodynamics.
Since (a)-(c¢) have been independently and accurate-
ly confirmed, we conclude that the spontaneous-
emission rate of the NCT cannot be correct.

The particular evaluations of the discrepancies
which appeared in Secs. IV-VI were derived on the
basis of a “maximum” NCT spontaneous-emission
rate. This in turn applies only when every atom is
assumed to have the same level probabilities (as
defined in QED), £2=0. Any more realistic (i.e.,
more random) statistical choice of level probabili-
ties further reduces the spontaneous-emission rate
of the NCT, as indicated in Sec. III, and hence
makes the difficulty that the thermal-equilibrium
condition is even more prohibitive for the NCT.
We shall examine a distribution appropriate for
thermal equilibrium in Sec. VIIL.

VIII. IMPLICATIONS OF A PROBABILITY DISTRIBUTION
FOR THERMAL EQUILIBRIUM (£2+0)

A. Derivation of distribution

In examining the implications of NCT in radiative
equilibrium, we have employed the spontaneous-
emission rate

/a7 \NCT
@

dt 'spont - -Asz,

(8.1)
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where
f=N,/N - (N/N,)£z, (8.2)

in its limiting form for the variance £2=0. Under
these circumstances, the spontaneous-emission
rate in NCT assumes it maximum value, since f is
maximized. For kT >>hv, we saw that f =3, which
factor appeared in implied modifications of Boltz-
mann’s law (4.4) and Planck’s law (6.6).

In an accompanying paper (I), the incorporation
of the spontaneous-emission rate in NCT into suit-
ably derived rate equations is considered. For
thermal equilibrium, a probability distribution is
derived which is actually a composite of the NCT
equivalents of the laws of Boltzmann and Planck.
Equation (3.13) of I gives this distribution for a
multilevel atom in terms of the diagonal compo-
nents of the atomic density matrix o;;. For a two-
level nondegenerate atom, the appropriate proba-
bility distribution, P(0,,, 0,,) may be integrated
over 0,, to give

P(Uzz)z(l/z) exp(_no'zz)y (8-3)

where Z is the normalizing factor (partition func-
tion), and

n=hv/e@), (8.4

with the equipartition energy per mode of the radia-
tion field given by the usual expression

e =(c®/8m2)pW). (8.5)
Since f:P(czz)do22 =1, we may derive Z, and hence

P(0,,)=[n/(1 —e~")] exp(=10,,). (8.9)

The composite nature of P(0,,) derives from its de-
pendence upon both 0,, and 1 [i.e., p(W)].

B. Modifications of the laws of Boltzmann and Planck

Since 0,, =|a,;|?, we find that the expression for
the variance may be rewritten as

€§=<0§2> —<0'22>2, (8.7
where
1
(o5,)= f 05 Plo,,)do,, . (8.8

Integration yields
£3=1/n-e"/[(e" - 17]. (8.9

If 1 is given by Planck’s law we find in the limit
kT >> hv that

E2=5 (8.10)

f=%. (8.11)

Previously, for £2=0, f=3 for kT>>hv. The dis-
crepancy between NCT and QED is now larger.

It is also straightforward to show that this factor
of % carries over into the previously derived mod-
ifications of the laws of Planck and Boltzmann.
From (8.8) we find

(00=1/1-1/("-1), (8.12)

with {0,,)=1-(0,,). If we assume Boltzmann’s law
to be valid, then

0,,)/€05)=N,/N,=expv/kT), (8.13)
whereupon, in the limit 27>>hv, one finds n
=3hv/kT and, with p(v)=(8m?2/c%)e, we find

p’' ) = 3(8mv2/ kT, (8.14)

which is one-third of the conventional Rayleigh-
Jeans expression. Similarly, if one assumes
Planck’s law to be valid, then the limiting case,
BT>>hv (Rayleigh-Jeans law), gives

(0 )/{0g)=(N,/N,) =1 +5hv /RT,

where again the requisite 3 factor appears. We
conclude that a consideration of the specific func-
tion describing the thermal-equilibrium probabili-
ty converts the 3 discrepancy factor of previous
sections into 3.

(8.15)

C. Modification of the Brillouin function .

As a result of the calculations by Gordon,'® we
can also derive the implied modification of the
Brillouin function which makes its appearance in
the quantum theory of paramagnetism. For an N-
level system (in the context of I we are considering
a single atom with N levels; N does not represent
the number of atoms) without degeneracy, Gordon'°
has shown that the mean energy referred to the
lowest level is given by [Eq. (4.9) of I]

W,= (N = Dhw (% -~—1——). (8.16)

e"-1
However, in considering paramagnetic systems
whose levels are split by the application of dc mag-
netic fields, it is convenient to reference energy to
the zero-magnetic-field level, in which case (8.16)
becomes

wev- (3 -1 ).

The mean magnetic moment is given by W =-MH,
where H is the magnetic field, and so

M=pzgJB’',

(8.17)

(8.18)
where the modified Brillouin function is given by

B'=1+2/(e"-1)-2/n, n=exp(hv/kT)-1.
(8.19)
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Inderiving (8.18)and (8.19), wehave made use of the
fact that the separation betweenthe equally spaced en-
ergy levels in a magnetic field H is Av =guzH,
where g is the Landé factor and i, is the Bohr
magneton. The total-angular-momentum quantum
number J is related to N by N=2J +1.

If Boltzmann’s law is valid, we have the conven-
tional expression for the mean moment !¢

M:y,BgJB, (8-20)
where the Brillouin function is given by

2J+1 2J+1 hv 1 1 hv
B= 57 coth( 5 k—f>_—2760th<-2_-k?>‘

(8.21)

In the limit Zzv >> kT, B=B’=1 and, as we found in
Sec. IV, the NCT equivalent expression reduces to
the QED dependence. In the other limit (7 >> Av),
however, we find

B'=ghv/kT

(8.22)
and

B =3 /kT)J +1), (8.23)

where for a two-level system, J =%, we find that
B'=3B, which agrees with previous findings in
this section.

The significant feature of this exercise is Eq.
(8.19) which can be compared with Henry’s re-
sults'® which give experimental mean moments
throughout the range 0 <%v/kT<5.4. As we indi-
cated in Sec. IV, this experimental study was con-
ducted for three paramagnetic ion samples where
S=J=3% 3%, and % (L=0). We have also noted that
the agreement between the experimental results
and (8.21) was within 3% throughout the entire range
of variation of kv/kT. To indicate the significance
of the discrepancy between (8.21) and (8.19), we
will only examine the 27 >>Av limit, where we find
for S=3, B’=%B; for S=3, B'=%B; and for S=%,
B'=iB; the disagreement is substantial.

IX. DISCUSSION

Up to this point, we have limited our considera-
tion to a particular extension of semiclassical elec-
trodynamics, which has been labeled “neoclassi-
cal” and have found it incompatible with the estab-
lished properties of the thermal-equilibrium state
of radiation and matter. This is a direct and sim-
ple consequence of the fact that the spontaneous-
emission rate predicted by NCT is different from
that predicted by QED. Nesbet®! has also noted the
apparent violation of Planck’s law implied by NCT.
He suggested a possible remedy involving appeal to
complex material systems; however, his remedy
has untenable thermodynamic implications and does

not survive critical analysis. Clauser® has pointed
to the derivation of the blackbody radiation law as
one of a number of successes of the neoclassical
theory. Among the group of references quoted by
Clauser are two which discuss blackbody radiation,
the above mentioned work by Nesbet®! and that by
Eberly.*® Eberly® did derive Planck’s law, but
only after evaluating the mean-square atomic di-
pole moment using quantum theory. As discussed
in Secs. I and III, such an evaluation includes a
contribution from quantum dipole fluctuations which
NCT purposefully omits. Since the spontaneous-
emission rate is proportional to the square of the
atomic dipole moment, a spontaneous-emission
rate different from the NCT’s rate is implied by
Eberly’s work. In an alternative derivation, which
unlike the one just mentioned was conducted en-
tively within the framework of the NCT, Eberly
derived an expression for the energy density of the
field which is identical with our Eq. (6.2) in the
case g, =g, =1, and which is thus quite different
from Planck’s law (2.4); in Sec. VI we have dem-
onstrated this modified law to be inconsistent with
experimental findings.

Nesbet®* has pointed to another experiment,
namely Raman scattering, which is incorrectly
characterized by NCT. Raman scattering can be
regarded as spontaneous emission from a three-
level system perturbed by an applied off -resonance
classical field. In quantum theory the intensities
of the Stokes and anti-Stokes components of the
scattering are proportional to the population of the
initial level of the transition involved, which is,
respectively, the lowest and next-lowest level.
Hence the intensity ratio (Stokes/anti-Stokes) re-
flects the Boltzmann ratio of those two-level pop-
ulations. This is a common experimental result.
The neoclassical theory, on the other hand, finds
both intensities proportional to the product of the
two-level populations, just as it does for ordinary
spontaneous emission, and hence does 7ot yield
the observed Boltzmann ratio. We believe that
Crisp’s criticism® of this work®® is incorrect, the
mistake occurring in his use of an improper (for
NCT) initial atomic density matrix.

The broader question of how accurately any ex-
tension of semiclassical theory, which leaves the
radiation field unquantized, can describe the real
world, has also been reexamined recently. For
example, Boyer? has discussed some benefits
gained by taking seriously the zero-point field (en-
ergy zhv per field mode). It is of interest in this
regard that Eberly®® found Planck’s law to contain
the zero-point field energy. Perhaps a short ex-
amination of this idea in our present context will
be instructive. If we denote by § the blackbody en-
ergy density including the zero-point energy, and



by p the same quantity excluding the zero-point en-
ergy, then using (2.9) one finds the relation

B,p=B,p-3A. (9.1

By inserting (9.1) into (2.3) and using (2.8), one
discovers a modified thermal-equilibrium relation,

5A[(g,/8)N, + N,]= B, pl(g,/8,)N, -N,]. (9.2

Equation (9.2) suggests that a “spontaneous” emis-
sion rate proportional to 5[ N, + (g,/g,)N,] would be
consistent with the laws of Boltzmann and Planck.
Such a spontaneous-emission rate is also consis-
tent with Eberly’s evaluation®® of the mean-square
atomic dipole moment. Note that (9.2) suggests
spontaneous emission from gvound-state atoms !
This emission is necessary, however, to balance
those atom’s absorption of the zero-point field.
Note also that the spontaneous-emission rate of
(9.2) is again larger than the NCT’s rate (3.20).
To achieve this increased rate, the semiclassical
atomic dipole must be augmented by a fluctuation
just as the field is augmented by its zero-point
fluctuation. While such dipole fluctuations are a
natural result of the quantum theory, we are not
aware of how they are to be understood in semi-
classical theory, except for the case of the har-
monic oscillator (Boyer?!),

To get back to the broader question, while it may
be possible by further examination of the thermal-
equilibrium state to discard all semiclassical the-
ories, this is most probably-a difficult task. As
discussed by Clauser,? this task is best left to
experiments which probe the essentially quantal
correlations exemplified®® in the “paradox” of
Einstein, Rosen, and Podolski. The present evi-
dence®'34:36-43 a1ready argues in disfavor of any
semiclassical theory based on Maxwell’s field.
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APPENDIX A
From Eq. (2.25) of I we find, for a two-level

system, that the density-matrix rate equation de-
rived from NCT equations? is

d
=7 $02) == AL0501, )+ Bp (V{0 = 0,), (A1)
where A and B are the Einstein coefficients. With

(0,)=N;/N, i=1or 2, (A2)
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we find

dn,

2= AN(9,,0,, )+ Bo (W, - Ny), (A3)

and that the stimulated emission and absorption
rates (second term on the right-hand side) are i-
dentical with (2.2), the Einstein equations. The
spontaneous term may be transformed by

N(oyzzcu): N(0,, (1 = 0,,))
=N, - N{oZ,).
Since
£2=(0,,)? —{03,),
N{0250,,) =Ny [ N, /N = (N/Np)E3] (A9

which gives a rate identical to the earlier-derived
(3.20) and (3.21).

APPENDIX B

In this section, we shall compute the explicit
forms of the gain equations plotted in Fig. 2. For
the system employed, pumping power conveys
atoms from the ground-state level 1 up to level 4.
In an extremely short time, the population of level
4 is transfered downward to the metastable levels
3 and 2. Amplification occurs at the transition
connecting levels 2 and 1. Thus, the population
equations are

N, +N,+N, =N, (B1)
N,=yN,, (B2)
and the pumping equation is

dN,
i

=—fP,N, . (B3)

v is the Boltzmann factor, f is a pumping efficiency
factor, and P, is the pumping power. Note that

(B3) is a rate equation describing induced absorp-
tion, which is the type of equation under examina-
tion in Sec. V. Equation (B3) may be integrated to
give

N, =Ne~'E (B9

where E =fP, dt. The quantity fE is the abscissa
of Fig. 2, and is called the “pumping energy.”
Substitution of (B1)—(B3) in (5.5) yields

Lﬁzm[l —(1 +-§f(1 +y)>e’fE], (BS5)

which is plotted in Fig. 2 as the solid line.

If induced processes are to be modified, then as
we have seen, (5.5) must be used in place of (5.4).
Additionally, (B3) becomes
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ig ==fp 1<NA-]+N> (B6)

where the denominator of the multiplying factor
contains the populations of the two levels in pump-
ing. However, since the lifetime in the pumping
band (level 4) is so short, N,=0, so that (B6) re-

duces to (B4. The modified gain expression be-
comes

G' y+1 G
7" yee® L D

which is plotted in Fig. 2 as a dashed line.
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