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II. Smectic and crystalline phases*

Sudip Chakravarty
Department of Physics, Northwestern University, Evanston, I/linois 60201

Chia-Wei Woo
Department of Physics, Northwestern University, Evanston, I/linois 60201

and SoBd State Science Division, A@gonne National Laboratory, Axgonne, Illinois 60489
(Received 10 February 1975)

A molecular theory of two-dimensional liquid crystals is developed. Taking short-range correlations
explicitly into account, we show that in addition to isotropic and nematic phases, solutions representing
smectic and crystalline phases can also be constructed as the number density increases beyond certain
critical values. Relevant order parameters defined in a canonical ensemble are obtained as functions of
density at fixed temperature.

I. INTRODUCTION

In an earlier paper, ' based on work due to Kirk-
wood and Monroe' and more recently due to Brout'
and Jancovici, ' we developed a formalism which
can be used to study the nature of short-range
correlations and long-range order in liquid-crys-
tal-like systems. In order to preserve a certain
degree of simplicity, calculations were carried
out in two dimensions and the isotropic-to-nematic
phase transition was investigated. As a continua-
tion of this effort we discuss in this paper transi-
tions to smectic and crystalline phases.

From x-ray diffraction it is known that ordered
phases of liquid crystals are characterized by
density distributions appropriate to the symmetry
of the phases, and are such that the order persists
over macroscopic dimensions. On the other hand,
the disordered phase shows only a rapidly damped
local order about each molecule. We shall there-
fore identify the appearance of long-range order
and each nonuniform density distribution of a defi-
nite symmetry with a phase transition. In different
words, this means that order parameters suitably
defined in a canonical ensemble will assume finite
values with the onset of ordered phases; the de-
tails of which depend on the interaction potential
and the particular transition under consideration.

Similar to well known methods in classical liq-
uid' we formulate integral equations for the dis-
tribution function p(r, qr) which specifies the aver-
age density of molecules at r with orientation y.
The kernels of the integral equations will involve,
apart from the interaction potential, a pair corre-
lation function g(r„y„r„y,). This pair correla-
tion function, which is set equal to unity in the
usual mean field approximation, determines the
local order in the density at r, and along y, rela-
tive to a molecule situated at r, with orientation

We go beyond the mean field theory and obtain
the required correlation function from approxi-
mate integral equations proven successful in the
theory of classical liquids.

The major task begins with expanding p(r, y) in
a complete orthonormal set of functions appro-
priate to the symmetry of the problem. The in-
tegral equations for the density function can then
be shown to reduce to a set of coupled transcen-
dental equations which can be solved to obtain the
coefficients of expansion. These coefficients are
related to the relevant order parameters. It is
found that for a given potential and a chosen tem-
perature, the coefficients of expansion of p(r, y)
assume nontrivial values beyond a density which
we can identify with the critical density for the
phase transition. Each transition is characterized
both by the critical density at which it appears and
by the type of density distribution it takes up.
Obviously the disordered, or isotropic, phase is
represented by a constant p(r, y) having complete
translational and rotational symmetry.

There exist in the literature a number of pa-
perse on two-dimensional liquid-crystal-like
systems. There are certain similarities between
the results reported and ours, but it is difficult
to make meaningful comparisons. For one thing,
all of those calculations are on models featuring
hard cores and no attraction. And also, the meth-
ods used were vastly different from ours —cluster
expansion, scaled particle theory, Monte Carlo,
etc.

II. THE MODEL

We consider a system @f N molecules lying flat
on a plane of area A and interacting through a
pairwise potential V(1, 2):
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V(l, 2) = V(r„y„.r„y,)

=vo(r„) +v, (r„)cos29

where r; =- (x;, y;) denotes the position of the center
of mass of the ith molecule, and (I(); gives its
orientation. The angle y,. is measured from the
x axis r. ,, =[r, —.r,.[ and cp„ —= ~cp,. —cp,[. The ther-
modynamic limit

/ /

I sotropic Nematic

lim —= n

is assumed, and the average density n is taken to
be an input parameter. To give a feeling of the
order of magnitudes involved, we choose our pa-
rameters as follows':
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v, (r) =4e[(o/r)" —(~/r)'],

v, (r) =-qe " '0'
0 0

0' = 5 A, ro = 20' = 10 A,

e =1.5532&&10 c4 ergs, e/ke =112.5 K,

q =3.1644&&10 "ergs, cl/ks =229.2 K,

r =300 K,

(2)

(3)

(4)

(5)

(6)

(7)

Smectic Crystalline

FIG. 1. Possible phases of the system.

where &~ is the Boltzmann constant and the fixed
temperature T is taken to be roughly room tem-
perature.

We wish to establish through this model the
existence of the phases shown in Fig. 1.

III. INTEGRAL EQUATIONS FOR ONE-PARTICLE DISTRIBUTION FUNCTION

We define the v-particle distribution function in the conventional manner':

f, f& exp[-(1/ksT) Q«J V(i,j )]dcp„,
(&-v). f"f exp[ (1/keT)Q, &, V(i .j)]dy, ~ ~ ~ dcp„dr ...dr„

In particular we have the one- and two-particle distribution functions:

c, )(,)
f,

'
f~exp[ (1/keT)g -&&V(i,j)]dy. , ~ ~ dy„dr, ~ dr„f"f exp[-(1/keT)g, &&V(i, j)]dcp, .dcp„dr, dr„ (9)

and

) fo f~exp[ (1/keT)Q, &-& V(i, j)]dye,. ~ ~ ~ dcp„dr, . dr„
f '"f exp[ (1/kBT)g—, && V(i, j)]d.p, cdcp„dr, dr„

(10)

where for convenience (1, 2, . . .) is written to denote (r„y„r„p,;c. . .). The functions
2 'tr

P'"'(r„. . . , r, ) = (,„P'"'(1,2, . . . , v) dy, dy,

and

P'"(cp„.. . , cp, ) = „P'"(1,2, . . . , v)dr, dr,
A

are v-particle distribution functions defined respectively in the coordinate and the orientation space.
From Eq. (9) we obtain by taking derivatives two integrodifferential equations known as BGKY (Born-

Green-Kirkwood- Yvon) equations for the one-particle distribution function. They are
2'

-keT lnp(r„y, ) = dcp, dr, p(r„y, ) g(r„q&„r„y,)v, (r„) cos2cp„ (13)
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2 '7r

-ksTV, inp(r„rp, ) = dy, dr, p(r„rp, )g(r„rp„r„rp, )Vi[v, (&»)+v, (/»}cos2yi2],
tl p

(14)

where we have made use of Eq. (1), and V„—= (S/Bx„B/By )i. We recognize that the above equations are
nothing but equations for forces. The first of these expresses the torque due to the orientation-dependent
part of the potential and the second the force due to the spatial parts. From Eqs. (13) and (14) we may de-
duce two equations for forces separately in the orientation and the coordinate space:

1 ~ 8 ~ n 3
dr, Inp(r„rp, ) =

2 & dp, dr, dr, p(r„rp, )g(r„y„r„qr,)v2(r„) cos2y„(15)

2r 2' 2 ft'

-&sT
2 dpiVi lnp(r„rpi) =, „dy, dpi dr, p(r2, y, )g(r„y„r„rp,)

x Vi[v, (ri2)+v2(r») cos2&»]. (16)

This procedure has the immediate advantage that
it leads to a decoupling of Eqs. (13) and (14), re-
taining at the same time a simple physical inter-
pretation. Equation (15) determines the orienta-
tional dependence of p(r, cp) due to the orientation
part of the potential and an average spatial effect.
On the other hand, Eq. (16) determines the spatial
dependence of p(r, rp} due to the spatial part of
the potential and an average orientational effect.
From now on we shall consider Eqs. (15) and (16)
instead of the pair (13) and (14) while fully recog-
nizing that the decoupling represents an approxi-
mation which omits position-orientation corre-

lations.
The kernels of the integral equations (15) and (16)

contain the yet unknown pair correlation function
g(r„rp„. r2, y, ). In the next section we shall out-
line a method to determine g(r„p„r„y,).

IV. PAIR CORRELATION FUNCTION

As explained in Ref. 1, it is possible to obtain
the following generalized Ornstein-Zernike equa-
tion relating the pair correlation function
g(r„qr„r„rp, ) to the direct correlation function
c(rir Ar' r2r %2)i

2r
g(r„q„r„y,) —1 =c(r„y„r„rp,)+ dry, dr, p(r„rp, )[g(r„rp„r„y,) —1]c(r„ p„ir„y,).

p A

We can then use a generalized PY (Percus-Yevick)
approximation to further connect g(r„p„rr„p,}r
to c(r„y„r„rp):

X [1 e(Vr rijrri, 2&)V/rrSr]
J ~

Equations (15)-(18)form a closed set and can be
solved self-consistently. This is a prohibitively
difficult task and further approximations are nec-
essary in order to render the problem numerical-
ly tractable.

We choose to neglect the difference between the
short-range correlations in the disordered and
ordered phases. This ansatz has been used before
with a certain amount of success" and leads to a
tremendous amount of simplification. It implies
that the information regarding long-range order
can be lumped into the one-particle distribution
function so that the pair correlation function re-
tains only information regarding short-range, or
local, order. Clearly such an approximation is

( i 'pi' 2 &2) = r(»' &») (20)

where the subscript I stands for the isotropic
phase (of a system made up of anisotropic mole-
cules). Equations (17) and (18) then reduce to

&I( 2 Vii i)21= l 1(2&r12)

xc (x„;y„) (21)

(22)

implied in the mean field theory where

g(r„p, ; r„rp, ) is set equal to unity identically.
Even then it works quite well. " Thus for the pur-
pose of our paper we write

(19)

and
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Thus for any input density n we solve the corre-
sponding isotropic phase equation to obtain the
pair correlation function.

Symmetry considerations, explained in Bef. 1,
lead us to the following expansions

gz(r„;(p, }=G, (r„)+2+G,„(r„)cos2m(p„(23)
m=].

G, (r») —1 = co(r»)+n dr, [G,(r„)—1]c,(r„),
A

(25)

ct(r„;(p») =c,(r„)+2gc, (r») cos2my». (24)
m=J

Substitution of Eqs. (23) and (24) in Eq. (21) yields

G,„(r»)=c, (r»)+n dr, G, (r„)c, (r, ), mx0.
A

(26)

We can then use Eqs. (23), (24), and (22) to ob-
tain relationships between the coefficients G, (r»)
and c,„(r») and rewrite Eqs. (25) and (26) in terms
of G, (r») alone. This procedure gives rise to an
infinite set of coupled nonlinear integral equations.
As in Bef. 1, we retain only the first two terms
of the expansions of gz(r», p») and cz(r», (p»).
This reduces the infinite set to a set containing
only two coupled nonlinear integral equations given
below:

y( r)8(0p v( r)} +2y( r)8(pv, (r))=1+2n s[y, (s)f, (s) —2y, (s)8(pv, (s)}]X(r,s)ds,
0

(27)

y (r}8)(pv, (r))+y, (r)[80{pv,(r}}+8,(pv, (r)}]=2n s[y, (s)f,(s)- yo(s)8, (pv, (s)}]Y(r,s)
0

(28)

where P denotes I/&sT, and

x(r, s) = I.y.(lr- sl)[i+f, (lr-sl)J- I] de, (»)
0

)

should be of the form

p(r, q ) =pr(r)p&(W). (37)

Y(r, s) = y, (l r - sl)[1 +f, (l r - sl}]d 8,
0

y, (r) = G, (r)e8 "0'"', y, (r) = G, (r)e "o'"',

f, (r) =e '"""'-1,
f (r) =e-'"""'-8.(Pv.(r}},

f,(r) =e 8"o'"'-8,(pv, (r))-8,(pv, (r)},

8 ((t) ~
e(a/2)(t+1/t) dt

m 2 ~
m+g ~

(30)

(31)

(32)

(33)

(34)

(35)

Recalling that p(r, (p) is a probability density, it
seems as if the translational order is achieved
completely independently of the orientation. Strict-
ly speaking this is of course not true: The kernel
of Eq. (16) contains an average effect of the orien-
tational part. Similar arguments can be made for
the orientational order. Based on Eq. (37), we
write

InQp(r, (p) =2 g p, , cos2m()()+ p-„,e'~',

(38)
6 denotes the angle between r and s. Thus, for
any given density n we solve Eqs. (27) and (28)
obtaining y, (r) and y, (r), and from Eq. (31) the
corresponding Go(r) and G2(r). At the end we have
the truncated series

&(ri 9'i ' r2 9'2) = &I (

= G (r„)d-2G, (r„)cos2y)2. (36)

In the next section we shaG use Eq. (36) to solve
Eqs. (15) and (16) for p(r, (()).

V. SOLUTION OF EQUATIONS FOR ONE-PARTICLE
DISTRIBUTION FUNCTION

As mentioned before, Eqs. (15) and (16) f»m a
decoupled set. This suggests that their solution

where the constant term has been absorbed in the
factor 0 which is to be determined from the nor-
malization condition:

27r

dr dip r, y =1.

In Eq. (38), k represents the set of reciprocal-
lattice vectors given by

k—= (2))m/1„, 2))n/&„); m, n=0, zl, +2, . . . , (40)

and the prime on the k summation indicates the
omission of k =0. & represents a unit cell. The
expansion in y is based on certain symmetry con-
siderations explained earlier in Bef. 1. From
Eqs. (38) and (39) we determine 0; thus

217 1a=
I exp 21 d, eeeama da — dee„xe I dt e'"'') =a a
0 ~ OO

(41)
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Then

p(r, y)=p„(y)pr(r)= &
exp 2+P, ,, cos2my exp g p-„,e' ''1 1

m=l
pp

For the sake of convenience we also make use of the expansion

(42)

p(r, y) = o'oo+2 g o', , cos2mqr+ g o(), ,e'"'" +2+ g c(), ,„cos2mye'"' (43)

in intermediate steps of our derivation. Then, from Eqs. (42) and (43), we find

1 2"o,„= cos2mrpexp 2+P, ,„cos2srp),
N p n=l

T ~ 00

Q, P P,2m

(44)

(45)

(46)

Substitution of Eqs. (42), (43), and (36) in Eqs. (15) and (16) finally results in the following transcendental
equations:

d-„, =ts, (2)o-„,=te, (2) J drexp(-42 re g d-„,s'"' drexp Q d-„,s'"'

/' 2 7T

( )
f, dycos29) exp(2P, , cos2y+2P, , cos4y)f"d9) exp(2P, , cos2(p + 2P, , cos4(p)

P 27('

( )
f, dye cos4y exp(2(3, ., cos2(p+ 2P, , cos4qr)

f,
"dy exp(2P, , cos2y+2P, , cos4(p)

and )6, ,, =P, , = =0. In the above,

(d, (k) =2v ' G, (r) v, (r)+G, (r) v, (r) r'dr,n "J(kr) d d

(47)

(48)

(49)

(50)

(d, (0) =-2p- t G, (r)v, (r) rdr,
BT

(51)

(v, (0) = —2)) G, (r) v, (r) r dr,
B p

(52)

where J, (z) is the usual Bessel function of order 1. The solution of Eqs. (47)—(49) gives us complete in-
formation about the distribution function p(r, y). However, it is evident that Eq. (47) forms an infinite set
of coupled transcendental equations, and further truncation is necessary. If we assume that &,(k) =0 for
k & 2))'(I/&„'+1/&', ) ', then it follows that P ), o

——0 for» 2))(1/&'„+ I/&', )' '. As remarked by Kirkwood and
Monroe' the vanishing of the coefficients P-„, for k&2))(1/&„'+1/&', )'' is due to the neglect of ~,(k), and
does not imply the vanishing of the corresponding coefficients &

& p. Numerical work shows that up to the
density considered this assumption is very well justified. This then reduces the infinite set of transcen-
dental equations to a set of only three:

2n f, dx f, 'dy cos(2))'x/&„)f(J3„„P„,„P„.„x,y)

rex ray
2))' f, dx f, dy cos(2'/&p) f (P„„P,„P„,„x,y)

f'*d. f:"dyf(e. ,..~„., S.„.;., y)

1 'i' f, "dx f, 'dy cos(2))x/&„) cos(27)y/&, )f (p„.„p,„)3„,„x,y)

(53)

(54)

(55)

where

27lx 2' 2' 2 wpf( „pdp„„,s)2=ex (p2 „2, cos , ~ 2(l„,cos +sd„,eos cos
x x

(56)
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In these derivations, we have clearly made use of
the reflection symmetries of the lattice, namely,

~r 0
= t 10.0 =

I -10.0~

i r10 ~01 IO ~0-1101

Prr, o ~11,0 ~-1-1,0 ~1-1,0 ~-11,0'

Various order parameters are defined in the
following way:

The corresponding order parameters ~„"' and Tg
'

are obtained from the numerical solution of the
transcendental equations (48) and (49).

Smecti c phase:

p„o&0, p, 0=0, p„, 0=0 and p0, 40, tl, , wO.

(It is easy to see that there is also a similar solu-
tion with p„0=0, p, Of 0.) To see that such a solu-
tion really exists, note that

2 fr

dr dy cos2y p(r, y)
211&

1 (2
dy cos21p p„(y),

27T

]
T~ ——

I dip cos4+ p~(91),-2

(58)

(59)

r
x 27' 27TX

dx dy cos exp 2I3„,0cos =0, (63)
4p 0 x

l
X.~ 27' 27TX

dx dy cos cos
0 0 x

27TXx exp 2 „pcos =0.

(64)

1 " cos(2nx/&„)
P r~91

cos(21'/&, ).

1 cos 27TX ~„

cos (2ny/&, )

The distribution function is now given by

1
p(r, y) = exp(2pO, , cos2y+2pO, , cos4p)

N

1 27TX
exp 246„,0cos

S x
(65)

and

1 27TX 27Ty
7x --— dr cos cos pr(r).

x
(61)

The order parameters T~ ' and 7„"' are obtained
in the same way from Eqs. (48) and (49), and &~

is obtained from Eq. (53) which reduces to

Existence of these parameters implies the exis-
tence of corresponding phases with their charac-
teristic distribution functions.

In summary at any given density we first solve
the coupled integral equations (27) and (28) to ob-
tain GO(r) and G, (r). The values of GO(r) and G, (&)

are next used to evaluate 010(k), &,(0), and &,(0)
from Eqs. (50), (51), and (52). This enables us
to solve the set of Eqs. (48), (49), (53), (54), and

(55), and use the results in Eq. (42) to find the dis-
tribution function p(r, y). Finally, order param-
eters are calculated with the help of Eqs. (58)-
(61), In this way we obtain the order parameters
as function of density. An analysis of Eqs. (48),
(49), (53), (54), and (55) shows that the following
classes of solutions should exist.

Isotopic phase:

P„=P, =P„„=O and ~o,a =~o 4=0

This represents the solution p(r, y) =1.
ternati c phase:

P„=P, =P„, =0 and P, NO, P, NO.

This represents the solution

1
p(r, 1p) = exp(2p, cos2y+2p, cos4y).

2m 8,(2P„,)
'~. ~.(2J3„.) ' (86)

~Jo

cos(21'/&„)
dX

cos(21'/&, )

2 7TX 2 7O)
&exp 4 y ocos cos =0.

The distribution function is then given by

1
p(r, y) = exp(2pO, , cos2y+2pO, , cos491)

N

1 27TX 27'
&& exp 4p„„0cos cos . (68)

and can be solved graphically. Note that the den-
sity n does not determine ~„uniquely. We take
that value of &„which maximizes &0(2w/&„). This
in all cases turns out to be nearly the value for
which the potential is minimum. In our case it is

0
5.6 A within the limitation of numerical errors.

Crystalline phase:

p„=0, p, 0=0, p„, 0&0 and p0„&0, p„,&0.

To see that this solution really exists, note that

(62) As before we obtain w„"' and v„"' from Eqs. (48)
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and (49), and v» from the solution of Eq. (55) whicl:
reduces to

1 1 '"l e, (2p„,'.)

with the help of the integration formula"
~/2

cos[(p. —v)8j8„,„(2z cos8) =-,'n8„(z)8, (z).
~o

(69)

(70)

In this case the density n determines ~„and
This point will be discussed further in the next
section.

Finally we must mention that there should also
be a solution of the form P„',&0, P„',40, P„',WO

and P, 3 O 0, P~', e 0. Since this gives us no new

physical information, we will omit it from our
present discussion.

VI. NUMERICAL RESULTS

Equations (27) and (28) were solved numerically
on a computer. The method used was iterative.
Starting with the nth-guess functions yo and y,", we

calculated the integrals appearing on the right-
hand sides and then solved the resulting linear
simultaneous equat ions to obtain new functions
yo" and y,'". The (n+1)th-guess functions were then

obtained in the following way:

(71 )

(72 )

The iterations were continued until

(72 )

(74)

were satisfied for every single point. In this way

G, (r) and G, (r) were obtained for 13 different den-
sities between n = 0.5/10' A ' and n = 2.55/10' A '.
The rate of convergence depends of course on how

good the input guess is. At the lowest density we

started off with a guess obtained from cluster ex-
pans ion. m, and m, were chosen to stabilize the
iteration process. At such low densities good
convergence was obtained regardless of the values
of m, and m, chosen. At higher densities, in order
to assure convergence, the initial guess was taken
to be the converged output of the previous, lower
density. Even so, at the highest density n =2.55/
1O' A 'we had to use ~, = , ~ 0.25 in order to keep
the iteration process stable. While it took only
nine iterations for n =0.50/10' A ' to converge, at
n =2.55/10' A ' 50 iterations were needed.

The &-gr id had to be chosen in such a way that
a point fell on the position of the potential mini-

= 30.8 A =6.16o'. (76)

The finer grid took up 12 times more computer
time, while improving the accuracy by less than
1%. Consequently for most of our calculation
grid- size (i i) was employed.

Figures 2-4 show G, (r) and G, (r) at three typical
densities.

Equations (48) and (49) were solved numerically
with the help of another iterative procedure. Sub-
stituting 2P„,=z we see that Eq. (66) can be re-
written as

(77)

2.4

2.0

1.6

1.4

1.2

1.0

0.8

0.6

0.2

10.0 20.0
r (A)

G, (r )
I

30.0

FIG 2 Gp (r) g,nd G2(r) for n = P.7P/1P' A

mum. Since the integrands vanished fairly rapidly
with distance the integrals were truncated at

0

r,„„,= 6.16o = 30,8 A. For &»„,, &r ~ 2r»»„, we took
G, (r) =G, (r...,) and extrapolated G, (r) by curve
fitting at every single iteration. This prec aut ion

was very important, especially at high densities
where the calculation became precociously sensi-
tive.

Two different grid sizes were chosen:

(i) br =0.05a =0.25 A, b, 8 =0.07854,

r„a„=30.8 A = 6.16a';

(ii) b r = 0.18v = 0.90 A, 6 8 =0.07854,
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2.4— And since

(vs)2.2

2.0—

I.S—

l.6—

l.4—

l.2—

I.O

0.8—

0,6—

0.4—

0.2—

b the recurrence properties oof modified Bessel
functions, a solution of Eq. 77 will exist if

(79)

Thus we obtain all the order parameters as func-
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hase transi-h' h redicts liquid-crystal-like pw ic pre
o ic mole-tions for sys emf tems composed of anisotr p'

rotot peWe have shown by examining a pro o ypecules. e
nt orderproblem in wo imt dimensions that the releva

Aseters can be obtained in a natural way. s
stated in our earlier paper, ' we rea ize
transitions in w't '

two dimensions have intriguing im-
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plications" in rigorous statistical-mechanical
theories. Our work is clearly not sufficiently
exact to make any significant statement regarding
those fundamental questions. Further work re-

lating to measurable thermodynamic properties of
liquid crystals must be performed on more realis-
tic three-dimensional models. It is there that the
ultimate test of our theory will be met.
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