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A realistic model for resonant two-photon ionization of an atom is developed which can be solved exactly to
give the ionization probability as a function of time, photon intensity, and a few atomic parameters. The exact
solutions are compared to various commonly used perturbation results in order to ascertain the regions of
validity of the perturbation calculations. It is shown that there are combinations of the parameters for which
ionization rates cannot accurately describe the correct results, and that one commonly used perturbation
development is not generally applicable to resonant two-photon ionization. Extension of the model to (n + m)-
photon ionization having an m-photon resonance is discussed. The model is applied to two- and three-photon
ionization in Cs.

I. INTRODUCI'ION

Resonant multiphoton ionization of atoms has re-
ceived a great deal of attention of late, both theo-
retically' and experimentally. ' Many formulations
have appeared which attempt to explain the experi-
mental results, usually by using some form of
perturbation theory to calculate a multiphoton ion-
ization rate in a manner which incorporates inten-
sity-induced shifts and widths of the resonant in-
termediate states. While in many cases this seems
very sensible, it is nonetheless not a Priori clear
that it is even possible to fit the experimental
data with a single ionization rate, no matter how
the rate is calculated.

It is the purpose of this article to explore the
question: "When is it possible to describe a reso-
nant multiphoton ionization experiment by a single
ionization rate; what are the parameters which
determine this region of applicability; and what
does one do if a single rate model is not suffi-
cientP" In order to resolve this question, we
choose a particularly simple (although not un-
realistic) model. Generalizations of this simple
model can be made in a very straightforward
manner. We assume that a single monochromatic
beam of light of frequency co is incident on a single
atom; this light is approximately resonant with the
energy separation between the ground state ~g) and
a single excited state ~a), with no other nearby
resonances. The frequency ~ is sufficiently large
that a two-photon ionization of the atom is possible.
It is assumed that the interaction is turned on at
t=0, and proceeds for a time T. We then compute
the probability P(T) that the atom has been ionized
as of time T. [The quantity which a pulsed-laser
ionization experiment measures is N=NOP(T),
where N is the number of ions formed, No is the
number of atoms in the interaction region, and T
is the length of the pulse. ]

The sudden switching on and off of the photon

field certainly does not correspond to the physical
situation present in most, if not all, experiments.
However, this field behavior is assumed for al-
most all of the perturbation-type calculations
which have been made, and thus must be kept
here if we are to ascertain the regions of appli-
cability of these perturbation calculations within
the model problem which they seek to solve. Fur-
ther, if the region of transients which are intro-
duced by this sudden switching can be identified
from the calculation, and the interaction time is
sufficiently large compared to this region, little
error is expected as compared to a smoother
switching procedure.

In Sec. II, we discuss the formalism used to
solve the model problem, and the results obtained.
In Sec. III, these results are considered in detail.
Section IV contains an application of these results
to two- and three-photon ionization of Cs. A brief
resume of the results is given and conclusions are
drawn in Sec. V.

II. FORMALISM

The Hamiltonian H for the problem is taken in
the usual form'

A F AF

where H„ is the atomic Hamiltonian, HF is the
field Hamiltonian, and H« is the usual atom-
fieM interaction in the position-space form of
the dipole approximation (use of the dipole ap-
proximation is not essential to this calculation).
The Hamiltonian H„ is assumed to have discrete
eigenstates ~i) of energy Z, and a continuum of
ionized eigenstates

~
nZ) of energy Z, where n

is a label which removes all degeneracies for the
continuum states. The continuum states are nor-
malized such that (n&

~
nZ') = 6(E E'). The Hamil-—

tonian H„has eigenstates ~n, m„n, &u„. . . ) corre-
sponding to n, photons of frequency ~„etc. The
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eigenstates of H„+HF, Ii, nv), etc. , are assumed
to be known.

We use the usual resolvent method' to evaluate
P(t), the probability that the atom, originally in
the ground state Ig) at time f =0, is in some con-
tinuum eigenstate at a later time t, with two pho-
tons having been absorbed from the beam. As the
use of resolvents in the calculation of the time
evolution operator is straightforward and well
known, ' we shall not give the details of the calcu-
lation. However, in setting up the problem and ob-

taining our solutions, we make several simplifying
assumptions which should be explicitly stated:

(a) The applied photon field is of the type In&a},
i.e., n photons of frequency co in a single mode.

(b) The direct two-photon ionization of Ig) via
nonresonant intermediate states is treated by us-
ing an effective Hamiltonian Il~,',~ which directly
connects Ig) to the continuum of states I nE). We
assume for simplicity that the matrix elements of
H ff are those given by second-order perturbation
theory:

~ (g, nor IHA„Ii, (n —'-1)~)(i, (n —1)~ IH„,-,
I aE, g-2)~)

g 6 f —(d

although a more accurate form, containing higher-
order corrections to this expression, could easily
be used. (Throughout this article, we take k= 1.}
Near resonance, the weak u dependence of these
matrix elements can be safely neglected.

(c) Free-free transitions are ignored. It is
safe to assume (and model calculations verify
this) that free-free transitions will only contribute
significantly to the form of the energy distribution
of the photoelectrons, and not to the probability
that the atom will be ionized.

(d) In evaluating the Fourier transform of the
resolvent by the method of residues, the usual
approximation of spontaneous decay theory' is
made; i.e. , integrations over continuum states
are evaluated at roughly the resonance energy,
in this case E, +su. This approximation is quite
good if the matrix elements involved are only weak
functions of the photon energy over the range being
considered, which is certainly the case here.

(e) The spontaneous decay of the intermediate
resonant state Ia) has been ignored. For laser
intensities customarily used, the probability that
Ia} will be ionized is far greater than the sponta-
neous decay probability, so that this is an excel-
lent approximation. In any event, it is not diffi-
cult to include this effect in any specific numer-
ical treatment using the methods described here.

(f) Only a single continuum I nE) is considered.
The generalization to several uncoupled continua
is trivial.

(g) The usual rotating-wave approximation~ is
made.

With the above assumptions, the calculations of
P(t) is straightforward, and involves no further
approximations. Using (1), the equation for the
resolvent 6 takes the form

(z -H„-HF)G(z} =1 +(H„r. +HA~~p~}G(z) . (2)

The states Ig, n&v), Ia, (n —l)w), and I uE, (n —2)&u)

G, =—(g, nuIG Ig, nu)

is given by

z — 'E+ t 2,y
(z -z+)(z -z-) '

where

z*=-.(E.'+E,'--.II"+ [(& —Qp)'+y. y, (e —I)'] "'},
(4)

y =2x
I {g,nu&IH~ff~

I &E, (n —2)&d) I

y, =2m l(a, (n —1)&u IH&v I nE, (n —2)&u)I2 (8)

are the ionization decay widths of the Ig) snd Ig).
In these expressions, E=E +2u=E +(d. For
compactness of notation, we also introduce the
related quantities I'=y, +y, and p=y, -y, . E,' and
E' are the bound-state energies shifted by the in-
teraction with the continuum,

E' =E, +nm+hE, E,'=E, +(n —1)w+~, ,

where

I (g, n(u IH„'", I oE, (n -2)(u)I'dE
z —E —(n —2) &u

" l(s, (n -1)~IH,F InE, (n-2)~)l'«
z -E —(n —2)&u

(8)

the principal-part integral being evaluated at
z =- E +n~. The quantity q is a measure of the
interference between the resonant and nonreso-
nant processes, and is given by

(all E) are connected to one another by this rela-
tion, and all other states are uncoupled from them.
Taking matrix elements with respect to these
states yields a set of algebraic equations which
are easily solved. One finds, for instance, that
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28
r )D2

+p AH'. ,'f' I «, (& —2)&N«, (& -2)&IH, F
[ (n I)(g)

w( g, n co IH', fmf' I «, (n —2)&u)(«, (s -2)e IH AF la, (n —1)~&

where the principal-value integral is again evalu-
ated at resonance. The quantity q is similar to
Fano's q value, ' introduced in studies of autoioniz-
ing states, and has previously been shown to be
of importance in understanding the shape of reso-
nant multiphoton ionization profiles. ' Note q must
be real, and that by its definition H„contains the
sign of q. The energy difference 6 is defined by

In terms of the same variables, G,~ is given by

1 (r.r, )'"(q - t)
2(z —z, )(z —z )

'

P(t)=1- IU„(t) I'-IU. ,(t) I' . (12)

Evaluating the Fourier transforms by the usual
method of residues gives

The time translation operator U(t) is the Fourier
transform of G(z).' Denoting matrix elements of
U(t) in the obvious fashion, it is easy to see that
the probability of ionization P(t) is given by

P(t) = I - ((-,'W '++I"'+ a'+ —,'ha cosy —4 pa siny)e "+ (4 W'+ rsl'+ —,'a' ——,'5a cosy + —,'pa siny)e "2'

—2[(~W~ + T61'2 —~a') cos(ta cosy) + (&5a siny + —,'ap cosy) sin(ta cosy)] e '~') /a', (13)

where

W = (~'+ q'r )'"= (&'+ 4 I H,.I

')"'
a'= [(W' —k I')' +(& p+2qr. r,)']"',
tan2y = —(5p+ 2qr, r~)/(W' ——,'I'),
1",=-'I'-a sing, I', = —,'I'+asin(It) .

(14)

It should be remarked that P(t) can also be evalu-
ated by computing Uz~(t), squaring, and integrat-
ing over all final. states. Although the resulting
expression appears remarkably different from
Eq. (13), tedious algebraic manipulations show
that the two expressions are identical. .

The expression obtained above for P(t) is ob-
viously a very complicated function of time and
the parameters y„y~, 6, and q. In Sec. III, we
discuss the properties of this function at some
length.

III. DISCUSSION

The expression for P(t) given above [Eq. (13)]
has been obtained without assumptions concerning
either the photon intensities involved or the rela-
tive magnitudes of the atomic matrix elements.
Thus, P(t) is exact within the model space used
and provides a fixed standard to which perturba-
tion calculations can be compared in order to eval-
uate their validity. As such, Eq. (13) is the key
result of this paper.

As has already been noted, P(t) is a function of
y„y~, q, and 6, as well as of the time t. Three
of these parameters depend on the particular

atomic species under investigation —q, y„and
y, . These three parameters are also intensity de-
pendent: y~=aI', y, =bI, and q=c+dI ', with the
coefficients of proportionality depending on the
atomic species. Equation (13) then explicitly in-
dicates that the atomic parameters which must be
calculated in order to understand a resonant two-
photon process are r, , r~, and q (or a, b, e, and
d). We should also remark that the generalization
of these results to an (m+&)-photon ionization
having an m-photon resonant intermediate state
is immediate; one need only replace HAF by the
appropriate m- and n-photon effective Hamilto-
nians.

For a fixed detuning 4 and experimental time
t = 7, P(T) has a very complicated intensity de-
pendence, and no simple approximation is gener-
ally valid. For fixed intensity and time, the same
may be said for the dispersion curve near reso-
nance. In fact, for a general intensity, atomic
system, detuning, and experimental time T, there
is no simpler expression than Eq. (13) that can
properly account for the ionization, nor is it gen-
erally possible to define an ionization probability
per unit time (rate of ionization). This is not to
say that for particular experiments simpler ex-
pressions are not possible. Regions of applicabil-
ity of these simpler expressions will. be discussed
below.

The most convenient way in which to discuss the
properties of P(T) is to explore its 5 and T depen-
dence with the relative values of y„y~, and 0„
(or equivalently, q) held fixed. This corresponds
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to fixing the atomic species and the photon inten-
sity. This we do below, splitting the discussion
into six regions depending on the relative values
of y, , y~, and H~, . Note that, because these
three parameters depend differently on I, a
change in I couM change an experiment from
one of these six regions to another, all other
experimental parameters being held fixed.

Several comments are in order before discuss-
ing the individual regions explicitly. First, the
shape of the dispersion curve is most strongly
controlled by the value of q. As the other vari-
ables are changed, keeping q fixed, the dispersion
shape is relatively constant, with only the scale
of th'e & variation changing. Second, each of the
simplified expressions derived below occurs when
two of the three parameters y„y, , and H„are
small compared to the third. This circumstance
allows a Taylor expansion of the radical in Eq.
(4), thus providing the simplification. When any
two parameters are comparable, and greater than
or comparable to the third, the Taylor expansion
is no longer justified, and the entire radical must
be retained. Finally, an estimate of the decay
time of the species using ordinary perturbation
theory very often does not provide a reasonable
estimate of either transient or saturation times
for experiments. Rathe r, it is often necessary
to use the complete information developed bel.ow.

from the Fourier integral. of the resolvent when
the poles are found using perturbation theory,
with only the first nonvanishing shifts of the poles
away from E,' and E~ being retained. Because this
is the usual low-intensity approximation used in
obtaining U(t), y, is the equivalent of most of the
ionization rates obtained using perturbation theory,
simplified somewhat because of our approxima-
tion of a single fieM mode and our treatment of
nonresonant processes.

In order to evaluate the effects of the fast-decay-
ing exponentials on the short-time behavior of P(t),
we compared curves of P, (t) vs 5 with curves of
P(t) vs & for various values of f, and for various
values of H „y~, and y, consistent with the lim-
itations of this section. We find that, as might be
expected, for times f& 3/y, , P, (t) and P(t) are
quite different, in both magnitude and over-all
shape. For times t& 3/Z, , the curves have very
nearly the same shape but may differ somewhat
in magnitude near 6 =0 for fairly long periods of
time.

The differences in the short-time region are,
of course, due to the fast-decaying exponentials
in P(t). The differences in the longer-time region
are due to the fact that, for given y, , y„and H~„
the coefficient of the first exponential in P(t) is not
exactly 1, but is a function of 5 given approximate-
ly by

A. y ((y,
For photon intensities currently used, this will

generally be the case.

l. 2@g,(((2y,

In this region, essentially all the atoms which
reach the intermediate state j a) will be ionized
immediately. Investigation of P(t) in this limit
shows that the coefficient of the first exponential.
term is very large (close to 1), and the quantity
(&I —a sincp) appearing in the exponent is relative-
ly small compared to y, . The remaining three ex-
ponential terms have very smal. l coefficients, and
decay rapidly with a lifetime of the order of I/y, .
Thus, P(t) can be approximated by the expression

where

(2&+ e r.)'
4a'+ '+ya

is the first nonvanishing term in (&I" —a sing).
The quantity y, is identical. to the probability per
unit time of ionization that we have previously ob-
tained' using a simple perturbation argument,
This expression can also be obtained directly

I+4(ll2 y 2)2
=-I+Q

Comparison of P,(t) and the more correct value

P'(t) = 1 —(1+n)e "i'

shows that P, (t) and P'(I) differ by more than 10%%uq

for times t& to=o. /(0. 1+m)y, . Thus, if n =0.04,
P'(t) would be less than 90%%uo of P, (f) for times less
than to=0.3(1/y, ). For times t&fo, P, (t) provides
a very good approximation to P(t).

2. 2IHg, l)) gp„2)H~J Z 5

In this region, the strong driving field H„can
roughly equilibrate the populations of ja) and jg);
the decay into the continuum is only a perturba-
tion of this process. In this limit, we can also
obtain an approximate expression for P(t). One
finds that acosy=R'; thus, the last two terms in
Eq. (13) contain cosWt and sinWt, where W» y, .
These two terms can therefore be expected to
average to zero during an experiment, and can,
to a good approximation, be dropped. In addition,
asinp =—(y, y~)' '« I', therefore, the first two ex-
ponential terms in Eq. (13) have very nearly the
same exponent. The coefficients of these two
terms are also approximately the same magnitude.
W'e can therefore approximate these two remaining
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terms by a single exponential if we set the oscillat-
ing terms in P(t) equal to zero, and define

dP(t) dP. (t)
dt , dt

where

P (t) =1 —e "'' .
We obtain in this manner by keeping the lowest
nonvanishing contribution to [&P(t)/dt], 0,

I.O—
/

0.8—

0.6—

(18)

which had previously been obtained' using a
straightforward perturbation approach.

We have compared curves of P, (t) vs 5 and P(t)
vs 6 for various values of t. Once again, we find
great differences between the two for very short
times, with the long-time behavior being essen-
tially identical. In this ease, the differences are
caused primarily by the sin%'t and cosset terms
which have been dropped in determining P2(t);
the differences exist, therefore, only for a time
t-I/W. As 5 increases in value, the situation de-
scribed above no longer exists, and P, (t}ceases to be
a good approximation to P(t) over the entire range of t
It can be shown, however, that for 5» 2 i H~, i, P, (t)
and P(t) agree extremely well for times f (1/2r, .

3. 2jH, I-,. 2y,

This is the most interesting of the three regions
considered thus far. In this region, an atom ex-
cited into state j a} is equally likely to be ionized
with lifetime 1/r, or to undergo a stimulated
emission, returning to the ground state ig). Un-

der these conditions, there are no approximations
to Eq. (13) which are satisfactory on any time
scale. For short times, the damped transients
dominate the process: for longer times, the oscil-
lating terms become important. The latter occurs
because +cosy =y, in this case; thus the oscil-
lating terms in (13) have periods of the order of
the decay times, and are therefore quite important
(see Fig. 1}'. Il is obvious that, in this region, no

transition rate can be defined either.
It is interesting that, in this case, both pertur-

bation expressions, P„(t) and P, (t), quite signifi-
cantly overestimate the rate of ionization near
5 = 0 for times almost up to saturation (see Fig. 2).

The wings of P(t) are predicted well by P,(t) for
most times, as might be expected, since a large
& is in many ways equivalent to a smal. l II, . Near
saturation, the center of the I.ine is fitted very
well by P,(t). This equality between P, (t) and P(t)
occurs at approximately t =2/lH~, i. However,
this equality is at best very rough, since the value

0.2—

T
FIG. 1. Graph of the transition probability P(t) [Eq.

13)] vs time T. T is measured in units of y, . This
curve was generated for the parameters y~=10 y„q
=24, and 6 =0. The single-rate model of normal per-
turbation theory P&(T) [Eq, (15)] is plotted for compari-
son.

of P(t} then oscillated above and below P2(t) be-
cause of the last two terms in Eq. (13}.

B. 7, =yg

One very interesting aspect of Eq. (13}arises
because there are values of H, ~, y„y, , and &

I,O- P(T)—
P(T)--

I

0-8 —
p (T)——

2 J

l(i (

04

0.2

I l

-2 —I 0

FIG. 2. Dispersion curves for P(t) [Eq. (13)], Pi(T)
[Eq. (15)], and P2(T) [Eq. (17)] vs the energy difference
6. 6 is measured in units of y,. These curves were
generated for the parameters T =2y, i, y~=10 4y„and
q= 100.
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for which )a sing) = —,I'. In this case, one of the
first two exponentials simply becomes unity. If
the coefficient of this term is not equal to zero,
one obtains the rather surprising result that under
these circumstances P(t =~) will be less than unity.
One can easily show that

(asinyl = 'I'

ground state via absorption of a photon. An ab-
sorption experiment to detect the autoionizing
state under conditions such that y, =y, would then
produce no measurable results unless the atoms
interacted with the photon beam for a time long
compared to I/y, . This could be particularly
difficult in the case of metastable autoionizing
states, where 1/y, =10 ' sec.

is equivalent to the condition

(5p+ 2'.r, )' =(lI'I')' .

This equation is satisfied for

(19)

(20)

C. yg))y,
When ~H„~«y~, the complete expression for

P(t) can, to a very good approximation, be re-
placed by

and corresponds to a value of

P(t =~) =
yg+yg

(21)

P, (t) =1 —e-" ',
where

45e-~,(q'-1) '

y, =y~ 1+y, „~2 2 =yg .

(22)

(23)
The equations of Sec. IIIA are clearly consistent
with this general result.

For y, =y, , condition (20) is satisfied at 5 =0 for
all values of B~„and

P(~) =-,' for 5=0, all H„.
Thus, for very long times, there will always be a
"hole" in the ionization curve at 6 =0 when y, =y, .
Away from 5 =0, the decay is dominated by y~;
that is, the atom ionizes with lifetime I/y, for 5

fairly large, and the dispersion curve is very flat
away from 4 =0 for all values of H„.

As might be expected, in this region, neither
perturbation expression given above is particular-
ly useful, and the entire expression for P(t) must
be used. One finds that the effect of increasing
)H„( (i.e., increasing (q(') is, in this case, sim-
ply to make the hole in P(t) wider and somewhat
asymmetric in 6. Of course, as t increases, the
hole gets narrower, since only at & =0 does the
probability of ionization not go to 1 as t

One very interesting aspect of the time develop-
ment of P(t) is that for t & 1/y, the entire dispersion
curve is very flat, showing almost no effect of the
resonant process. For longer times, however,
the region near ~ =0 reaches its saturation value
of &, and the "hole" is then formed as its sides
rise toward their saturation value of 1. Thus,
the effect of the resonant process would be unob-
servable in an experiment which did not run al. —

most to complete saturation, i.e., until T-2
—3(1/x, )

The result might have important impl. ications
for mathematically similar, or identical. , pro-
cesses, e.g. , autoionization. " For autoioniza-
tion, ~a) is an autoionizing state, I/y, is the de-
cay time of (a) into the continuum via the Coulomb
interaction, and I/y, is the ionization time for the

This result agrees with intuition, which would

say that the strong direct process should almost
completely mask the effect of the weak resonant
process in this case. The present formalism is
perhaps not well suited for calculations in this
region, however, since perturbation theory was
originally used to obtain the value of y~. In any
case, as we show below, this region corresponds
to presently unrealizable laser intensities, and
thus is of little practical interest.

The case ~H„) =y~ also does not occur except in
unusual physical situations, and will not be dis-
cussed further, except to note that the complete
expression for P(t) must be used.

IV. APPLICATION: CESIUM

In order to obtain a better feel for the ranges
of the parameters y, , y~, and H~, which occur
physically, we have explicitly estimated these
parameters for two cases. The first is for a two-
photon ionization of cesium when the 7P state is

0
nearly resonant (A. =4590 A), while the second is
of three-photon ionization of cesium when the 9d

0
state is nearly two-photon resonant (A. =6920 A).
In the latter case, thetwo-photonresonanttransi-
tion is treated by introducing a two-photon effec-
tive Hamil. tonian; the direct transition from the
ground state into the continuum occurs, in this
case, via a three-photon effective Hamiltonian.
The decay parameters of Eqs. (5) and (6) were.
evaluated using effective Hamiltonian operators
which were obtained in all cases from the lowest
nonvanishing perturbation term [e.g. , as shown
by Eq. (I)]. The sums over intermediate states
were truncated to four or five intermediate states,
by which time the sums seemed to have converged
to within roughly 1(Y/0. Experimental energies for
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the intermediate states were used to evaluate the
energy denominators.

Bound-bound matrix elements were obtained
from the oscillator strengths of Stone' and Warn-
er, ' while bound-free matrix elements were taken
from Burgess and Seaton. ' The principal-value
integral occurring in H„was neglected, as it is
expected to be small, and the spin-orbit doublet
was treated as a single quasiresonant intermed-
iate state. The calculation assumes linear polar-
ization of light, and properly takes account of the
presence of two final-state continua.

0

For the two-photon case with A = 4590 A, we find

y~'~ =3x10 I' cm '

y~ ~ =1&&10 9I cm '

2X10 3I /
ga

(24)

where I is measured in W/cm'. For the three-
photon case with ~ = 6920 A, we find

y~'~=3x10 "I' cm '

y~'~=5x10 "I cm ',
H~', ] =2&10 'I cm ' .

Using the parameters of (24), we find that in the
two-photon case, if I«8x10" W/cm', then 2y~~"

«zy~~'l«2~ H~~, ~ ~, so that the approximate ioniza-
tion probability given by Eq. (18) can be used.
(We note again that this is not the result usually
obtained in perturbation calculations. ) For
I»4&&10"W/cm' 2~H "~«-'y "«-'y" so that
the situation discussed in Sec. III C prevails. For
values of I intermediate to these two limits, the
full expression for P(t) [Eq. (13)] must be used.
Thus for all intensities of current experimental
interest, the ionization probability is well repre-
sented by P, (t) [Eq. (18)].

For the three-photon case, we have that 2~H~', ~
~

= 16(-,'yi") for all intensities. For I «1 && 10"
W/cm', —,'y "«y,"=~62~ H,", ~, so that we are
approximately in the region in which Eq. (18) ap-
plies once again. Because —,y~'i and 2~ H~~', ~

~
are

relatively close in value, however, deviations
may be expected. Comparison of P(t) [Eq. (13)]
with the approximation P, (t) [Eq. (18)] for this
case shows that the two equations predict very
similar dispersion curves, with very close agree-
ment near the maxima of the curves. However,
the width of the resonance is overestimated by
P, (t) by almost 30%. This indicates that transi-
tion regions such as this require the more cor-
rect formula if accurate values of the parameters
are to be obtained from experiment. For
I» 4&10"W/cm' -'y ' »~H",

~
= 16(-,'y,') and

we are once again in the situation described in
Sec. IIIC. Intermediate values of I must be treat-

ed using the complete expression for the probabil-
ity.

V. CONCLUSIONS

In the preceding sections we have considered
the problem of two-photon resonant ionization of
an atom. Under certain simplifying assumptions
(which are not unrealistic), we have derived an
expression for the probability of ionization P(t)
of the atom as a function of time [Eq. (13)]. This
relation for P(t) is a rather complicated function
of the ionization widths y, and y, of the bound

states, an interference parameter q, and the de-
tuning 6, as well a being explicitly time depen-
dent. An arbitrary e perimental setup satisfying
the model assumption requires this general ex-
pression for its description. Simplified expres-
sions have been given whenever any one of the
three parameters q, y~, and y, is large com-
pared to the other two. Finally, explicit esti-
mates of the three parameters y, , y„and q
were given for resonant two- and three-photon
resonant ionization of cesium.

From this investigation we infer the fol. l.owing:
(1) The three parameters y, y„and q are the

intensity-dependent atomic parameters necessary
to describe the resonant multiphoton ionization
process. They are also sufficient within the limits
of our model.

(2) A simple rate model of the ionization pro-
cess does not generally provide an adequate. de-
scription, no matter how the rate is calculated.

(3) In those circumstances where a simple rate
model is inapplicable, the expres .on given by

Eq. (13) should provide an adequate description
of the process. Note that this requires knowledge
of the experimental pulse length T.

(4) In order to decide whether a simple rate
model is applicabl. e, all three of the parameters
y, , y, , and q must be estimated. Such conclusions
will depend on the intensity of the experimental
beam, and may change as the intensity is varied.

(6) Even those circumstances where a single
rate model is applicable are not necessarily best
described by a simple addition of induced widths
to the usual perturbation theory. Rather, an esti-
mate of the three parameters y„y~, and q is re-
quired to decide whether y„y„, or y, is to be used
[Eqs. (16), (18), or (23)]. The values of y„y„
and y, given above are obtained by keeping only
the first nonvanishing terms. As such, they could
be improved upon somewhat by keeping higher-
order terms. However, one cannot go from one
region to another in this fashion (unless, of
course, the expansions are carried out to infinite
order), as there are intermediate regions in
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which no rate equation is possible, i.e. , P(t) is
not of the form 1 —e &'.

(6) The intensity dependence of the ionization
probability is very complicated in general. Be-
cause this intensity dependence can be so compli-
cated depending on the values of the parameters,
we have attempted to make no general statements
concerning it. Rather, it is best to estimate the
parameters, and use Eq. (13) (or one of its sim-
plifications) to obtain this dependence for a partic-
ular species, duration of experiment, etc.

(7) For fixed intensity and atomic species, the
shape of the dispersion curve in 6 is determined
primarily by q. For most values of the parame-
ters, these curves are remarkably similar to
s imp le Fano prof iles. ' However, we mus t empha-
size that it is not correct to simply fit the data to a
Fano profile and then interpret the resulting pa-
rameters in their usual fashion. This will. l.ead to
gross inaccuracies in the derived parameters, and
even, in some cases, to incorrect identification of
the parameters. The more complicated expression
given by Eq. (13) or one of the simplifications is
unfortunately required. Note that this requires
knowledge of the experimental pulse time T for

its application.
(8) Even in cases in which a transition rate can

be defined, care must be taken that the experimen-
tal times are long compared to the transient times.
Those transient times can be estimated by consid-
eration of the complete expression for P(t) [Eq.
(13)], as was done in some detail in Sec. IlIA 1.
For customary experimental pulse times, the con-
dition seems well satisfied.

(9) Finally, any experiment designed to extract
the parameters y, , y„and q will probably re-
quire sweeping in both intensity and wavelength.

As indicated by the sample calculation of Sec.
IV, this formalism can be applied directly to any
(m+n)-photon ionization in which there is a single
m-photon resonant intermediate state. Although
we have found that P, (t) [Eq. (17)] is generally
sufficient to describe two-photon ionization, we
would expect al. l regions discussed above to be
pertinent for some larger value of m+n. In par-
ticular, the region in which 2~ H„~ - —,y, , in which
no rate equation is possible, should be reached
for m +n only slightly larger than 2, with m & n.
The region in which P,(t) is valid should be reached
for m+n» 2, m» n.
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