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The exact elastic optical potential is compared with an analogous potential in the adiabatic happ«ximatio&,
which is shown to give a lower bound on the scattering length. A variational-bound procedure is formulated
to estimate the scattering length and also the scattering phase shift near the elastic threshold.

For low-energy slow scattering by composite
targets, the adiabatic approximation can often pro-
vide a useful estimate of the scattering parame-
ters. ' We present here an improved derivation of
the lower bound on the scattering length at zero
energy, based on a new representation of the
scattering wave function in the adiabatic approxi-
mation. Extensions of the bound principle to a
variational procedure and to energies above the
threshold are also given.

(a) Consider the low energy scattering by a com-
posite target, as described by the Hamiltonian

H =K(R)+Hr(r) + V(r, R),

where K denotes the relative kinetic energy of the
projectile, Hr(r) describes the target system, and
V is the projectile-target interaction. As usual,
the undistorted target states g„(r) are generated by
Hz, , as Hrg„=e„f„, while the adiabatic states
Q„(r, R) are obtained from (Hz, + V)Q„=g„(R) P„,
in which the variable R appears as a parameter.
AsR-~, we have

and 8,(R) -=8„+'U„-e„.

The elastic scattering is conveniently described in
terms of the optical potential Up in the equation

(K +Uo -Ec)uc(R) =0,

&o=Vo+(4c VG. Vko)

where

Ge = [q(So -Hr —V)Q] '& 0,

which is local in the R variable. Evidently, it is

(5)

where Ep=E -ep and

Uc=Vo+(gc, VG Vgo). (3)

In (3) we have used Go = [q(E -H)Q] ', with Q =1-P
where P is the elastic channel projection operator
P = gcPo. Obviously, po(r)uc(R) is the P projection
of the total wave function 4', and Vo = (g„Vg,). The
standing-wave boundary conditions are assumed
for Np It wRS shown eRrlier thRt the RdiRbatic
potential'0, can be written as

clear from Etls. (3) and (5) that only those parts
of the G and G~ which are within the range of V
are relevant in the optical potentials and thus can
affect the elastic amplitude.

(b) The potentials U, and 'Uo may be compared by
examining the Green's functions G and G, . For
the zero-energy scattering with Ep 0 Up may not
support any bound states, in which case we have

tp=-K+&p -Ep=K+'Up~ 0,

which in turn gives the inequalities

0&G'o-G,' and U, -'0, .

Therefore we have the desired bound on the exact
scattering length A, as

A-A,
(in the same cotanget branch'), where A, is the
scattering length obtained in the adiabatic approxi-
mation using the potential 'Up in place of Up in Eq.
(2). This is the derivation given earlier in Appen-
dix A of Ref. 1, and is somewhat different from
the result obtained with tpu, =0: The contents of
the theory become quite different when their wave
functions are compared and the error terms in the
Kato identity are analyzed in detail. In the simple
derivation presented above, we may assign the
corresponding wave function by

4, =PC, +Q+„

where

P4', = po(r)u, (R) and Q+, = GeqVP%, . (10)

The Q4', part did not play any role in the previous
formulation. ' The adiabatic Hamiltonian is there-
fore not simply Pt+, but now

H -E =P(H -E)P +PVQ +QVP

+Q(Hr+V -8,)q
and thus

H -H. =Q(K+8, -Z)q =qt,q.

We especially note that the asymptotic behavior of
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Q%', given in Eq. (10) in terms of G, differs from
that of Qq. That is, Q4 decays rapidly as R -~ in
the elastic energy region, while QC, decays only
as fast as the QVP. However, only those parts of
Q4', which lie inside the range of V are relevant
for the amplitude, so that Q+, should be regarded
here as an auxiliary inelastic function simulating
the Q4'.

(c) A variational procedure to improve the lower
bound on A may be developedby examining the differ-
ence between Up and 'U„or more directly between
G and G, . Using the operator identity for two
Hermitian operators a and b,'

if they are all in the same cotangent branch. ' In
Eq. (19), A, is the scattering length calculated
with U«replacing the exact Uo in Eq. (2). A more
detailed discussion of this result using the Kato
identity for A will be given later in part (f).

(d) Extensions of the above formalism to the positive
energy scattering and related bounds on the phase
shift 5, for each partial wave requires g~&0 at
Ep&0. This is difficult to prove in general, but we
have'

(20)

a '-b '=a '(b-a)b '

= —[b + b(a —b) 'b] ',
we have

g -=Go -Gc=d ',

where

d =d, +d,(q/t, )d,

with

d, =q(H, +V -8,)q - 0,

t =K+'U —E .

(12)

(13)

(14)

where Gc(&0) is assumed to be Hermitian. There-
fore, if g ~ 0 at E, =0 and G& 0 for some Eo&0,
we have a finite nonvanishing region of energy E,
above the threshold in which g &0. As Epincreases
further, g will eventually become negative. De-
noting this limit to be Ep=E, , we have

&ka f 0 Ep Ec

where 5„ is the phase shift obtained with U«. Or,
assuming that both 5, and 6„are in the same
cotangent branch, we have

cot5, & cot5„~ cot5„ for 0&EO&E, . (22)

(The question of the spurious solutions in the Q-
space will be discussed later. ) With t, ~ 0 by as-
sumption, at Ep

= 0 we have d & 0 and g & 0, which
gives

Up~'Up (16)

c o Qxc ) (Qxg

(Qx~ dqxg)
(16)

where Qy, is a trial function which is square inte-
grable in both the variables R and r. The use of a
square-integrable function in Eq. (16) is justified
in view of the earlier remark that both 6 and G,
are cut off at large values of R by the factors QVP
and PVQ in the optical potential. A more general
inequality of the form (16) with more than one Qx,
is also possible. Defining the trial optical poten-
tial by

Uo~ =&o+($0, Vg, V/0),

we have, under conditions similar to Eq. (8), the
inequality

U ) U (18)

with the resulting bounds at zero energy (Eo = 0)

A ~A)&A, (19)

as before. Furthermore, g~ may be approximated
variationally as

The precise value for E, depends on the details of
the dynamics, but Eqs. (21) and (22) are expected
to be valid for Ep in the region close to the thres-
hold. Some indication of the magnitude of E, may
be obtained variationally; the lowest zero of d(EO)
may be obtained by the equation

(Qx~ doqxe) = —(Qx~ do(qlt. )d.qx~), (23)

where tp
' involves the principal value integration.

For a fixed E, in t„Eq. (23) should give an upper
bound on E„which can be systematically impro-
ved by including more terms.

(e) The form for gc given by Eqs. (13) and (14)
requires further discussion. Although the effect
of tp is relevant only in the region where V is
large, tp can, for Ep~ 0, still generate a spurious
asymptotic behavior in the Q-space since it is
purely an R-dependent operator. This is obviously
unphysical because, for E below the first excitation
threshold, the Q space is closed. However, we
show below that the appearance of Ip

' in the oper-
ator d is entirely consistent with the asymptotic
boundary condition of the original problem. Unlike
in the earlier formulation of Ref. I, the difficulty
with the spurious solution does not appear in the
present formulation with the operator d '; the

Q -space wave function is always damped out by the
factor QVP at large R.

For a single, elastic channel problem, G~ and
Q+=G QVP+ contain no outgoing waves, since they
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are in the Q space. As noted earlier, Q4, also
goes to zero asymptotically as fast as QVP does,
although 6 does not necessarily vanish at large
A. Therefore, the function

Q4, =-Q4 -Q4, =d 'QVP%

should also vanish faster than R ' at large R. That
is, the asymptotic behavior of d ' is similar to that
of dp and the term dpto dp in d does no t al ter the
asymptotic behavior of d ' in any essential way.
In fact, Q4„can be shown to satisfy a set of coupled
equations

-Qd,Q4, = QVP4--Qd, QP

QtoQ4 = -QdoQ4.

where we have introduced an auxiliary function QQ
which carries the effect of dptp dp Evidently, by
eliminating Q4, from the Q P equation and rear-
ranging terms, we can show that QQ =Q4'. That is,
Q4, and Qgboth vanish asymptotically faster than
R '. (They may go like R ' in atomic problems,
rather than decaying exponentially. )

Therefore the apparent inconsistency between
the asymptotic behavior of t, ' in the operator d
and the over-all boundary condition on QC has been
resolved; the difficulty of the spurious solution is
not present if Q4, is treated correctly. In view of
the above discussion, a slightly more convenient
form for the operator d may be obtained by repeat-
ing the use of Eq. (12) and writing

ing problem in the elastic region can be cast in a
form suitable for the present purpose as a set of
coupled equations; using the operator d given by
(14), for example, we have the exact scattering
equations'

P (K +'0, E,)P—%, = PVQ—4'„
—Q (do +do(Q/to)do)Q4', I = -Q VP4„.

(26)

P4, = P4P+ PGPP VQ4'„,

where

P(K +'U, —E,)P4P=0,

P (K +'00 —Eo)P GP = P. -

(27)

(28)

Substitution of Eq. (28) into the right hand side of
the Q4' equation gives

—QDQ4'„= -Q(d, +do(Q/to)d, —VG, V)Q4„
= -QVP4~.

Thus we have

X =A., +(P4r, PVQ4, )

(29)

Note especially the negative sign on the left-hand
side of the Q4'„equation. In Eq. (26), we could of
course have used the form (25) for d with the im-
proved asymptotic behavior in tp'. However, the
main point of the discussion below will not be af-
fected by this change.

To derive a useful Kato identity, we first solve
formally for P4, as

where

b+b.—b —b, bc c+ce 'c (24)

where

(30)

a -b=—c+e.
The identity (24) gives'

g =d =[do+doto do -ufo(to+toe ) do], (25)

where we identified

b =—do = Q (Hr + V —80)Q,

c =—7~ =Q(K +'Uo —E, + e)Q = Qt, +Qe,

8=8+ eg —8p.

The positivity of d is less clear in the form of Eq.
(25), since we have the additional negative term
involving 7~. However, Tp' may be easier to use
in practice than t, ', since Tp

' now decays asymp~
totically.

(f) Now we discuss the bound property using the
Kato identity for the scattering parameter X defined
by (depending on the normalization of u)

X—=k cot5.

From Eq. (13) it is clear that the original scatter-

Xl,, = A., + 2(P%~, PVQ4't) —(Q4), QDQ4', ),

7 = (QQ, QDQQ),

QDQ ~0, (31)

then the error term v, which is quadratic in QQ,
is also positive,

7- &0,

and thus

(32)

This inequality (32) for the parameter X should be
completely equivalent to the earlier result [Eq.
(22)t obtained with go, except that a slightly dif-
ferent operator QDQ is now involved, which con-
tains the adiabatic shift operator QVPG~PVQ.

It is of interest to compare Eq. (32) with the
earlier result on the upper variational-bound

and where Q4, is a square-integrable trial function
and QQ =Q4, -Q4„ is the error function. There-
fore, if we assume that
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formulation for A. , as given by'

with

Xc, = %+2(P+~,PVQ+, ) +(Q+„[K Z]Q+,),

provided

Q (X -Z)Q = Q(H-Z+ V—G~V)Q ~ 0.

(33)

(34}

and X~ is the parameter obtained from the static
solution P% . As in Eq. (33) which requires Eq.
(34}, our variational lower bound Eq. (34) requires
Eq. (31) for its validity.

(g) Our main result is contained in inequalities
(19), (22), and (32). In the course of the derivation
of these inequalities, we have neglected several
important effe cts:

(i) When t, supports one or more bound states,
then the inequalities such as (15) may be violated,
and a certain number of "subtractions" are re-
quired. This is also connected with the question of
5f and 6„being in the same branch of the cotan-
gent function. With the use of the variational-
bound formulation, such as in (18), this problem
may be avoided in practice for most cases.

(ii) We have not included the exchange effect in
the case when the projectile is identical to the
target particles. This effect seems to be difficult
to incorporate simply because of the very nature
of the adiabatic approximation in which the pro-
jectile particle is singled out. An exception to this
may be in the heavy-particle collisions where the
adiabatic picture is often very appropriate.

(iii) The formalism may be trivially extended to
obtain a lower bound on the binding energy of the
composite system of the projectile and the target.
The resulting equation is similar to Eq. (23), with-
out the Q operator and with Zo replaced by the
estimated binding energy.

(iv) A more systematic formulation' of the lower
variational bound can be given in terms of the
adiabatic energy gaps from the beginning of the
theory, at the stage where the total Hamilonian is
split into an adiabatic form and the correction.
However, from a calculational point of view, the
present treatment using the operator d, given by
(14) or (25), is much simpler and straight-forward.
The main drawback of d is of course the uncer-
tainty in the estimate of E, below which the bound

property is valid. For E0 not too far from the

In Eq. (33), we have used the functions in the static
approximation,

P(H Z)P4-=P(K+V, Z, )P4—=0,

P (H Z)PG~-P = P, -

A ~ Ag+ (4'g, [H Z, ]%'g)—-

»„(»».), (»».)»,).1

0 0
(35)

(Another possibility, C, =H, +V —So, is excluded
because C~ cannot be inverted exactly. ) Aside
from the arbitrariness in C&, the formulation of
Ref. 10 emphasizes the role of the trial function

Alternatively, one may place more emphasis
on the trial nature of the operator C, itself, rather
than on the trial wave function 4, as with Eq. (35}.
From the Kato identity we may then obtain, with

a, =a-c„
A, (H, ) =A+(4', [H, -Zo]%') —(Q, [Hg -Zo]A) ~A,

(36)

where A, is obtained from the exact solution of an
approximate problem

(H~ —Z,)q, =0 ~

and where

II) =K+ 80 —E0+d,

with

&.= (&.x)(x,&.x) '(x&.)

do ——Ht + V —$0.

Such d, corresponds to the choice C, =d0-d, ~ 0,

threshold, however, this causes less serious prob-
lem.

(h) The problem of formulating a variational low-
er bound has been considered previously, which
invariably involves the complicated operators B
and (QHQ)' Th. e main distinguishing feature of the
present formulation is the use of the adiabatic pic-
ture, which makes it possible to avoid such a com-
plicated operator. In both Eqs. (18) and (30) only
operators linear in d0 appear.

Recently, a different formulation of the varia-
tional lower bound on the scattering length was
given by Rosenberg and Spruch, "which also adopts
the adiabatic approximation as a basis. It is not
clear at present whether these two formulations
are in any way related; this should be examined
more closel. y. However, we simply make a few
remarks here on their formulation of the zero-
energy scattering. A bound on the error term in
the Kato identity for the scattering length A, was
expressed there in terms of an operator C, which
satisfies the inequalities II -F0 -C, & 0 and C, & 0.
We suggest a choice for this operator,

C g
——K + ~o -Zo, (Zo = 0),

which can be inverted exactly and gives
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and thus 8 -Ep -C~~ 0 if 8 -Ep& 0;andK+Sp Ep
~ 0. Note that the role of do in Eqs. (35) and (36)
is interchanged. The solution 4, with the above
Jf, may involve the difficulty of the spurious Q-

space solutions discussed in Ref. 1., and a more
consistent treatment may eventually require the
formulation with the adiabatic energy gap opera-
tors. '

~Y. Hahn and L. Spruch, Phys. Bev. A 9, 226 (1974).
Many earlier references to works on the lower-bound
and variational-lower-bound formulations may be found
in this paper.

2The same cotangent branch here implies that both A and
A, are associated with the corresponding zero-energy
wave functions with the same number of nodes.

3This is in fact the choice (3) for the adiabatic Hamilton-
ian discussed in Ref. 1. [See Kq. (3.9) of that paper. l

%e have studied the Kato identity using the Hamiltonian
(11) and the error function Q=C, -C from (10), but a
similar result can also be obtained more directly from
{26}.

4%e assume that the inverse of a and 5, as well as the
inverse of their difference, exists.

5Because e is chosen to be a constant, the unfamiliar
operator (et&+ tp ) ~ is introduced in (25). However,
t& is assumed to be Hermitian so that we do not expect
any difficulty in evaluating it. The evaluation of g, of

(16) using the form (25) for d can be carried out in any
number of ways; for example, we can construct an
auxiliary function Q~, from the equation Q{to+ &)Qp
=to 'doQg&. Then (Qg„dQg~) = (Qg&, Q~&) for the de-
nominator of g~.

6The Q-space wave function Q@„defined here may not
be directly related to the exact QC, but, when put into
(26), generates the right effect needed to have the exact
P4. In fact, the new scattering function 4'„differs
from the exact 4 by QC, given in (10).
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