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Low-energy electron scattering from CO
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The scattering of electrons from carbon monoxide has been studied in the framework of a previously proposed
pseudopotential method. It is found that the single-center expansion of the continuum electron orbital about
the center of mass of the molecule is very well converged when the two noncoincident nuclear singularities
and the nonlocal exchange interactions are properly taken into account in the scattering equations. An
analytical proof has been given to show that unlike the total cross section, the momentum-transfer cross
section in the fixed-nuclei approximation is finite even for polar molecules. The calculated results of the
momentum-transfer cross section for e -CO scattering in the energy range between 0.1 and 10.0 eV are in

good accord with the experimental measurements.

I. INTRODUCTION

During the last few years it has been established
very well that because of the presence of a perma-
nent dipole moment, which gives rise to a long-
range x ' interaction potential, the scattering of
electrons from polar molecules in the approxima-
tion in which the frame of reference attached to
the molecule is fixed (fixed-nuclei approximation )

does not give finite total cross section. ' Because
the time-averaged field of a. rotating dipole is
zero, therefore, in order to obtain the finite re-
sults, one has to include the rotational motion of
the nuclei in the scattering equations. (This means
that the adiabatic-nuclei theory' cannot be used as
well. ) Electron-polar-molecule scattering should,
therefore, be studied in a space-fixed frame of
reference using the formulation, for example, of
Arthurs and Dalgarno4 when the diatomic molecu-
lar target is in its 'Z electronic state and the mo-
tion of the nuclei has been taken into account.

As a result of the multicenter nature of molecu-
lar targets it becomes almost impossible, except
for some lighter systems' like 8,' and H„ to in-
clude properly the nuclear singularities and the
exchange effects in the Schrodinger equation if the
electron-molecule problem has been formulated
in a space-fixed frame of reference to include the
vibration and/or rotation of the nuclei. However,
in the molecular core region, the highly anisotrop-
ic short-range interaction potential terms are so
strong that they will completely dominate the ef-
fects of the nuclear vibration/rotation on the inci-
dent electron's motion. But away from the molecu-
lar core, where the short-range potential terms
and the exchange effects vanish, the interaction
between the motions of the nuclei and the incident
electron will be quite important.

On the basis of these physical considerations
Pano' has proposed a frame-transformation theory
for electron-molecule scattering. We think that

e -CQ scattering should be studied' in the frame-
work of frame-transformation theory.

A successful application of the frame-transforma-
tion theory to electron-molecule scattering prob-
lems will very much depend upon the accuracy to
which the nuclear singularities and the exchange ef-
fects have been included in the scattering equations
to be solved in the inner molecular core region in a
fixed-nuclei approximation. Traditiona11y speak-
ing there have been two views of how to overcome
the problems associated with the presence of more
than one nuclei in molecular targets. Whereas the
two nuclear centers in diatomic molecules provide
a natural choice for the use of spheroidal coordi-
nates, the simplifications to be gained from a sin-
gle-center treatment are tempting enough to en-
courage the formulation and the computation of the
problem by using the spherical polar coordinates
with the center of mass of the molecule taken to
be the origin of the coordinate system.

A recent calculation by Darewych et al. ' for posi-
tron scattering from the hydrogen molecule has
shown that the use of these two different coordi-
nate systems gives almost identical results. The
use of the spheroidal coordinates becomes quite
difficult if one is trying to work with systems heav-
ier than H,'. Qn the other hand, by employing the
spherical coordinate system one is essentially
trying to represent the highly anisotropic molecu-
lar field and the nuclear singularities by a series
centered at the center of mass of the molecule. As
regard to the convergence of this expansion, a suc-
cessful application of the modified pseudopotential
method proposed by Burke and the present author'
to 8 -N, scattering has shown that good conver-
gence can be obtained in the single-center expan-
sion of the bound and continuum molecular orbitals
(Mo's) and the multipole expansion of the molecu-

. lar charge distribution.
In a recent communication' we have reported an

application of this pseudopotential method to e -CO
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scattering. The results of that calculation indi-
cated that the single-center expansion of the con-
tinuum electron orbital does not converge, at least
for scattering in the 'Z state of the e + CO system.
Since CO is a heteronuclear molecule, therefore,
not having a center of symmetry, we felt this was
the reason for the lack of convergence. Specifi-
cally, since the ground-electronic-state configura-
tion of CO is

(1o'2c'3 o'4c'5o'1 w'} ' Z

containing five bound orbitals of o symmetry to
which the continuum orbital is to be orthogonalized
for scattering in the 'Z state, we thought at that
time that these two effects —two noncoincident nu-
clear singularities and the orthogonalization to
five bound orbitals —cause severe distortion of the
continuum wave function. And this nonphysical
distortion of the wave function was basically re-
sponsible for the nonconvergence of the single-
center expansion.

In the course of our subsequent studies we have
found an error in a paper published by Faisal, "
who derived an expression for the multipole ex-
pansion of the electron-molecule static potential.
After making this correction in the program writ-
ten by Faisal and Tench" the multipole expansion
of the static potential for e -CO scattering was
calculated again. As the new corrected potential
is very much different than the old one, we there-
fore also redid our whole calculation of e -CO
scattering using a program of mine. " This time
we found that the eigenphase sum and hence the
single-center expansion did converge also for scat-
tering in the 'Z state when the continuum orbital
is orthogonalized to the five bound orbitals of CO.
Therefore, in Sec. II me point out this mistake in
Faisal's paper" and present the new calculated
correct static potential.

Garrett' ' has shown that the divergence in the
total cross section for scattering of electrons
from polar molecules in the fixed-nuclei approxi-
mation is due to the large contributions coming
from distant collisions in the forward direction.
Since the definition of the momentum-transfer
cross section involves a weighting factor (1 —cos6),
which will remove the contributions from forward
scattering, it mas expected that the momentum-
transfer cross section is finite even for polar mol-
ecules in a molecule-fixed frame of reference.
However, this finiteness will depend upon the
asymptotic behavior (l- ™}of the angular distri-
bution. In Sec. III we shall show, making use of
the expression for angular distribution derived in
BC in the fixed-nuclei approximation, that only a
finite number of partial maves contribute to the
momentum-transfer cross section averaged over

all molecular orientations. Therefore, the mo-
mentum-transfer cross section is finite even for
polar molecules in the fixed-nuclei approximation.
The various results to demonstrate the conver-
gence of the single-center expansion in e -CO
scattering and the calculated momentum-transfer
cross section are presented in Sec. IV. The use-
fulness of the single-center expansion for studying
the electron-molecule scattering in general is
briefly discussed in the concluding section.

II. STATIC POTENTIAL FOR e -CO SCATTERING

Harris and Michels" have developed the formu-
las for the linear displacement of a Slater-type
atomic orbital (STAO}. Faisal" has used these
formulas to expand a normalized MO, which is a
linear combination of STAG's centered at the two

nuclei of the molecule, about the center of mass
of the molecule. These single-center expansions
of the MO's are then used to obtain an expression
for the multipole expansion of the static potential
for a closed-shell diatomic molecule. There is
an error in Eq. (17) of Ref. 10, in which the con-
tribution to the static potential coming from the
tmo nuclei is given. The corrected form of this
equation, in Faisal's notation, should read as fol-
lows:

A B

~g, N+ +B,N+

(-1)'Z„~+, +Z»+, P& (cos 8) .
), =p A + B-

(2.1)

(Here the internuclear axis is the polar axis with
the center of mass of the molecule its origin. The
angle 0 is defined mith respect to this axis in a
counterclockwise direction from end 8 to A of the
molecule. ") A comparison of this relation with
that given by Faisal" mill show that the phase fac-
tor (-1)" multiplies the second term on the right-
hand side in curly brackets in Eq. (17) of his paper.
Although it will not make any difference in case of
even A. values, this correction will be very impor-
tant for odd A. values. The method described by
Faisal" has been programmed by Faisal and
Tench" to calculate the single-center expansion
of MO's and the multipole expansion of the electro-
static potential for a closed-shell diatomic sys-
tem. We have made this correction in their pro-
gram.

When the molecular axis is taken as the polar
axis with the center of mass of the molecule as
the origin, the single-center expansion of a bound
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Mo can be written as

Q (r) =r ' g UP~(r)Y, (r"),
t ~Im/

(2.2)
4.0

V(r) = g V„(r}P„(cos8),
)+0

(2.3)

and the multipole expansion of the molecular static
potential is given by

2.0

0.0

-2.0

r (a.u.)-
2.5375

where 8 is the polar angle of the point r(r, 8, Q}
measured from the molecular axis. In Eqs. (2.2)
and (2.3) the summation indices I and A, will have
both even and odd positive integral values for
heteronuclear molecules. [But for homonuclear
molecules, while ~ will have only even values, l
will be even for g-symmetry orbitals and odd for
u-symmetry orbitals. ] These two expansions for
the CO molecule were obtained, as in BCQ, from
the two-center wave function of McLean and Yosh-
imine" for an equilibrium internuclear separation
A, =2.132 a.u. In order to give an idea of the be-
havior of the multipole terms V~ in Eq. (2.3) we
had shown them in BCQ for a few even and odd ~
values in two different figures. Since the correc-
tion given in Eq. (2.1) will effect only the odd
multipole terms, therefore, in Fig. 1 we show
only the A. =1,3, 15 terms to compare them with
those given in BCG (Fig. 2). We see that these
terms are now attractive at the position of the
oxygen nucleus and repulsive at the carbon nu-
cleus. While in the previous case these terms
went from repulsive to attractive in going from
the oxygen to the carbon nucleus.

Gianturco and Tait" in their paper on e —.CO
scattering have given tables of the multipole terms
V& based on the old program of Faisal and Tench. "

-40
+0.1015

-6.0—

FIG. 1. Multipole coefficients V'~ from expansion
(2.3) of the e -CO static potential.

III. MOMENTUM- TRANSFER CROSS SECTION

The expression for the angular distribution of
electrons scattered from a diatomic molecule in
the fixed-nuclei approximation and averaged over
all molecular orientations was derived in (BC-
28)." In order to simplify this expression further
we here write it first in 3-j and 6-j symbols,

do 1
, = —,Q A~(k)P~(cos 8'),

L= 0

(3.1)

For the sake of completeness, we tabulate the cor-
rect values of these terms in Table I.

TABLE l. Coefficients V~ (a.u.) from the multipole expansion (2.3) of the static potential.
For typographical simplicity the exponents of ten have been written as superscripts.

r (a.u. ) V2 V~o

0.203
0.406
0.609
0.9135
1.218
2.03
2.842
4.872
6.902

10.15

-1.945
-2.130
-2.422
-3.105
-2.066
-3 033 '
-4.787 2

-5.933 4

-1.0O5-'
2.254-8

-5.ee4-'
-1.180
-1.882
-3.400

8.455
2.946
7.314
5.483
2.227 s

1020 s

-3.e83-'
-1.492
-3.424
-8.434
-5.723
-5.V14-'
-4 371

1.197 2

4.678
1.479 s

-5.550 2

-4.463 ~

-1.526
-5.826

1.938
1.814 '
2.466

-6.798
-1.911 s

-4.127

-1.874"~

-3.004
-1.535
-8 ~ 625
-5.540
-2.483
-2.386

3.470
V.O48-4

1.041 4

-2.047"8

-2.125"s

-1.273
-8.526
-4.895
-1.256
-1.2V3-'

1.664-'
5.VO3-8

9.995

-1.135-'
-3.801 5

-1.743 2

-8.524
4.727
9.879 4

3.48O-'
22-10

-1.298 "
796 i4
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where

A~(k) = (-1)~(2L+1) Q i'& 'b '2"2(-1)"&'~2'"(2n+l)[(2l, +l)(2l', +1)(2l, +l)(2l', +1)]' ~

l1l2/1/2
m1m

l , l, L Pl', l,'I, (l, l', &) l,
0 0 0 ~0 0 0 ~-, , 0~, , 0&'i i; l; . (3.2}

and 0'(O', Q') defines the direction of scattering in a space-fixed frame of reference. By making use of
the relation'7

Q ( 1) s+bb+ l+ 8y(2b +1)(
o'a ) b &ni ~2 -~3) bi b2 bbI ~b (o'i o'2 o'b) (&, &2 -o',

one will readily find that Eq. (3.2) becomes

A~(k) =(2L+1) Q i '& '& '~"&[(2l, +l)(2l', +l)(2l, +1)(2l', +1)]'~
l1/2l 1/2

m 1m 2

„t'l, l, L (l,' l,' L'}(l, l, L i(l,' l,' L,

p 0 ~0 p pf j,m, —m m, —m, f(m, mm -mJ
The total cross section in the fixed-nuclei approximation is given by (BC-29)

(3.3)

i
m l1l »m1 2

(3.4)

and the momentum-transfer cross section

do'
o„= d, (1 —cos 6') dQ'

becomes

o„= k2(A, —bA, },

where, from Eq. (3.3},

(3.5)

bA, = Q Q i" '& 'I"2[(2l, +1)(2l', +l)(2l, +l}(2lm+1)]'~'
mlm2 /1l 2l ll 2

xt'li lm 1)1'll ib 1 & (l l,
(0 0 )(0 0 0 / (m m m-mJ

(3.6)

The divergence in the total cross section for po-
lar molecules in the fixed-nuclei approximation
comes from the fact that the values of the matrix
elements T... fall off so slowly even for higher
values of l, and l, that the sum over l„l, in Eq.
(3.4) does not converge. (We will show in the Ap-
pendix that this series indeed has a logarithmic
divergence. ) But for the higher values of the angu-
lar momenta it is only the long-range dipole inter-
action potential which will essentially determine
the scattering. For such high values of l, and l,
one can adequately use the Born approximation to

l
A(t)~ g g ~Z ~2

m /1/2» m

(3.6a)

calculate the T matrix. ' '
Let us assume that for values of l„l„l'„l,' higher

than, say, l one can replace the close-coupling T-
matrix elements in Eqs. (3.4) and (3.6) by their
Born-approximation values. Then Eq. (3.5) can be
decomposed as

(k'/~) o' = (A ' ——'A '
) + ( A " ——,

' A "
) (3.7)

where
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and

sA( I g g ]a+ ~a

m l ll2& l

Similarly

~ A(i)

mlm2 l1l 2l ll 2

and

(3.8b)

(3.9a)

Hence, in the fixed-nuclei approximation of elec-
tron-molecule scattering only a finite number of
the lower angular momentum values contribute to
the momentum-transfer cross section averaged
over all molecular orientations. Therefore the
momentum-transfer cross section in a molecule-
fixed frame of reference is finite even for polar
molecule s.

IV. RESULTS

~aA( )

mlm2 lll2l ll2 ' l

(3.9b)

(3.10)

Therefore Eq. (3.7) now becomes

„=(~/ka)(A(') —-'A(' ) (3.11)

The curly brackets in Eqs. (3.9) represent the
terms which are enclosed in the curly brackets in
Eq. (3.6). A left superscript 8 in Eqs. (3.8b) and
(3.9b) means that the T-matrix elements obtained
from the Born approximation have been used. We
have given a proof in the Appendix to show that

a~( ) 1a~( )
0 3 1

The first thing to consider is the convergence of
the single-center expansion (BC-9) of the continu-
um orbital and the multipole expansion (2.3) of the
static potential. Note that in these two equations
l and X will have both even and odd positive inte-
gral values. As usual we look at the behavior of
the eigenphase sum, Eq. (BC-39), as a function of
energy, which is obtained by diagonalizing the K
matrix computed by solving the coupled Eqs. (BC-
10).

The eigenphase sums from the solution of the
homogeneous Eqs. (BC-10) (with right-hand side
equal to zero) for scattering in 'Z and II states
of the e +CO system are shown in Figs. 2 and 3,

8.0 ) I ] / ) I I I I

d= 12~ 2x

7.0

4.0 I

2=8

6.0
3.0

5.0

~ 4.0

3.0

Cfl

~ 2.0

CL,

W
C9
LIJ

1.0

2.0

0 1.0
ELECTRON ENERGY (Ryd.)

2.0 0
0 1.0

ELECTRON ENERGY {Ryd.}
2.0

FIG. 2. Convergence of the eigenphase sum with the
number of E values retained in the single-center expan-
sion (BC-9) of the continuum electron orbital for scatter-
ing in Z state. The value of A, m» -—15 was kept fixed in
Eq. (2.3) and the orthogonalization to the bound orbitals
has not been included.

FIG. 3. Convergence of the eigenphase sum with the
number of I values retained in the single-center expan-
sion (BC-9) of the continuum electron orbital for scatter-
ing in the 20 state. The value of A,~„=15was kept Qxed
in Eq. (2.3) and the orthogonalization to the bound orbi-
tals has not been included.
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respectively. These figures show the results as
the number of partial waves in Eq. (BC-9) is in-
creased but keeping A. ,„=15, i.e. , 16 terms (A.

=0, 1, . . . , 15}, in expansion (2.3). We notice that
the eigenphase sum is beginning to converge after
solving 15 coupled homogeneous equations (l,„=14
for '2 and l,„=15 for 'll). We also find that these
results are quite different than those given in BCG
(Figs. 3 and 4). To consider the convergence in
~ ... we plot in Fig. 4 the eigenphase sums for ~,„
=15, 20, and 24 obtained by solving 15 coupled
homogeneous equations. These results indicate
that without orthogonalization while only 16 values
(a =0, . . . , 15; A. ,„=15)are sufficient for the 'll
state, 21 values (1,„=20) are required for the 'Z
state.

Now we consider the convergence when the ortho-
gonalization of the continuum orbital to the bound
orbitals of the appropriate symmetry has been
carried out and thus solve the coupled inhomoge-
neous equations (BC-10). From our previous ex-
perience of e -N, scattering, we expect that the
orthogonalization should increase the rate of con-

vergence. In Figs. 5 and 6 we present, respective-
ly, the eigenphase sums for scattering in 'Z and
'll states. Here, as in Figs. 2 and 3, the maxi-
mum value of A. in Eq. (2.3) is 15 but the values of
l are progressively increasing. We notice that the
rate of convergence has now certainly improved
and in no case is it required to keep more than 15
values of l in the single-center expansion (BC-9).
To emphasize it again, unlike in BCG (Fig. 7), the
'Z eigenphase sum does converge when the ortho-
gonalization of the continuum orbital to the five
bound orbitals of c symmetry is included. [Actu-
ally in BCG we found that the eigenphase sum in
this case was diverging with the inclusion of higher
values of l in expansion (BC-9).] As regards the

I I I I ) I I I I

90-

niax
=~5

8.0

9.0 4.0
7.0

6.0

8.0

Clb

g 7.0

C9
UJ

3.0

2.0

m 5.0

g 4.0

3.0

6.0— —1.0
2.0

1.0

5.0
0.0

I I I I I

1.0
ELECTRON ENERGY {Ryd.)

0.0
2.0 I I I I

0 I I I I

0 1.0
El EGTRON ENERGY (Ryd. )

2.0

FIG. 4. Convergence of the eigenphase sum with the
number of terms retained in the multipole expansion
(2.3) of the static potential for scattering in Z and 0
states without orthogonalization to the bound orbitals.
First 15 values of E were included in the single-center
expansion (BC-9) for both states. The left- and right-
hand scales are, respectively, for Z and II states.

FIG. 5. Convergence of the eigenphase sum with the
number of l values retained in the single-center expan-
sion (BC-9) of the continuum electron orbital for scatter-
ing in the Z state. The value of ~m,„=15was kept fixed.
in Eq. (2.3) and the orthogonalization to the bound orbitals
has been included.
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convergence in the multipole expansion (2.3) when
the orthogonalization to the bound orbitals is in-
cluded, good convergence is obtained even for A, ~«
=15 both in 'Z and '0 states, keeping only 15
terms in the single-center expansion (BC-9).

It is well known that the CO molecule, being iso-
electronic to N„exhibits a Il resonance" at about
1.75 eV. Therefore another interesting feature of
these new results is that the orthogonalization has
removed (Fig. 5) the unphysical resonance from
the 'Z state which was present in Fig. 2. At the
same time '0 eigenphase sum showers a resonance
behavior, although at a higher energy. All these
results are obtained simply by using the static po-
tential and the orthogonalization of the continuum
orbital to the occupied bound orbitals of the same
symmetry. These calculations do not involve any
free parameter.

To calculate the momentum-transfer cross sec-
tion in a molecule-fixed frame of reference in the
fixed-nuclei approximation, averaged over all mo-
lecular orientations, which was shown in Sec. III
to be finite for polar molecules, we first augment
our static potential with the polarization potential
exactly in the same form as was done in BC, i.e. ,

V~„(r) = -(1/2r4)[ao+ u, P,(cos 8)](1 —e ~"~"0~ ),
(4.1)

where a.,= 13 .3 a.u. and n, = 2 .4 a.u. are, respec-
tively, the spherical and nonspherical components

of the polarizability of the CO molecule. " The
value of the free parameter r, =1.605 a.u. was de-
termined so that the resonance in the 'II state oc-
curred at about 1.75 eV. The final results for the
Z-, '0-, and 4-state eigenphase sums are shown

in Fig. 7. In each case we have solved 15 coupled
equations, i.e. , l,„=14, 15, and 16, respectively,
in Eq. (BC-9), and the 25 terms (A,„=24) were
kept in the multipole expansion (2.3). The ground-
electronic-state configuration of the CO molecule
has only the bound orbital of 0 and m symmetry,
therefore the continuum orbitals were orthogonal-
ized to the bound orbitals only for scattering in
Z and 2D states of the e +CO system.
Our results for the momentum-transfer cross

section, which was calculated using Eq. (3.5), are
shown in Fig. 8 (curve A). The contributions from
21 states (~ =0, 1, . . . , 20) of the e +CO system
were included. Although the maximum value of /

9.0

8.0

6.0—

4.0
5.0—

CO

CO

4.0—
C5

3.0

0.20

0.10

1.0 '

0

)

1.0
ELECTRON ENERGY (Rad. )

2.0 0
0 1 .0 2.0

ELECTRON ENERGY (eV)
3.0

FIG. 6. Convergence of the eigenphase sum with the
number of E values retained in the single-center expan-
sion (BC-9) of the continuum orbital for scattering in the
II state. The value of A, ,„=15was kept fixed in Eq.
(2.3) and the orthogonalization to the bound ortibals has
been included.

FIG. 7. Eigenphase sum for scattering in Z, II, and
24 states of the e + CO system calculated using the
static-plus-polarization potential and including the
orthogonalization to the bound orbitals of appropriate
symmetry.
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a~

C)
)= 10-15

CO

Ch
Ch
C)
5
CI)

I—

~ 10 'e
P—

C)
X

I I i I I I I I I I I I I I I I II potential at these large distances may be smaller
than the rotational terms in the Hamiltonian which
are neglected in a molecule-fixed frame of refer-
ence. The value of l, say l,„, beyond which the
nuclear rotation will seriously affect the fixed-
nuclei results will depend upon the impact energy
of the incident electron and the rotational level
spacing of the molecule, and a rough estimate for
it is given by" l,„~k'/8, where B is the rotation-
al constant (2.38 X10 ~ eV for CO) of the target
molecule. For the present investigation this gives
l~,„& (0.1 eV)/(2. 38 &10' 4 eV) —400, which is far
greater than the value of l at which the momentum-
transfer cross section is actually converged.

V. CONCLUSION

1O '7
10 10 10

ELECTRON ENERGY (eV)

10

in Eq. (BC-9) was kept to 20, for any state of the
e +CO system we keep only up to the maximum
of 15 terms in this expansion. The experimental
measurements of momentum-transfer cross sec-
tion of Hake and Phelps' in the energy range from
0.01 to 1.0 eV are also shown in Fig. 8 (curve B).
(The results shown by Hake and Phelps" in their
paper above 1 eV were not obtained directly from
the measurements. ) In view of the fact that the
theoretical results are obtained by using a single
free parameter in the polarization potential, the
over-all agreement between the theory and experi-
ment is satisfactory.

We have discussed in the Introduction the fact
that a complete and exact solution to theproblem
of e -polar-molecule scattering will require an
application of the frame-transformation theory.
However, the present discussion of the conver-
gence of the eigenphase sum in the molecule-fixed
frame of reference has shown that to represent
properly the nuclear singularities and other highly
anisotropic short-range terms in the scattering
equations, one has to consider at least 16 or 17
values of l in this (fixed-nuclei) approximation.
Therefore the long-range electron-dipole inter-
action will dominate the scattering for values of
l higher than 20. The contribution of these higher
partial waves, for which one can use the Born ap-
proximation, to the momentum-transfer cross
section is zero, Eq. (3.10). Nevertheless, one
may argue that even for values of l lower than 20
the impact parameter may be so large that the

FIG. 8. Momentum-transfer cross section: theoretical
results (curve A) and the experimental measurements
(curve 3) of Hake and Phelps (Ref. 21).

The present calculations have proved two very
important points. Firstly, the modified pseudo-po-
tential method, which was proposed in BC, works
very well to describe the scattering of electrons
from closed-shell molecular systems in the fixed-
nuclei approximation. Therefore this method can
be easily used to solve the scattering equations in
the inner molecular core region, where one is try-
ing to study the e -molecule scattering in the con-
text of the frame-transformation theory. The sim-
plicity with which the exchange effects are included
makes it feasible to apply this method to the scat-
tering of electrons from nonlinear molecules. '2

The second point, which we think is quite impor-
tant and has never been tested before, is that the
single-center expansion of the molecular orbitals,
whether bound or continuum, converges very well
even for heavier systems. However, for molecu-
lar systems which are highly symmetric, e.g. ,
homonuclear diatomic molecules, the number of
terms to be contained to achieve this convergence
in expansions (2.2) and (BC-9) will usually be
smaller than that used for molecular systems
which are not so symmetric, e.g. , hetronuclear
diatomic molecules. Therefore the rate of con-
vergence of the single-center expansion will very
much depend upon the symmetry properties of the
molecular system under consideration.

Finally, we would like to point out that the con-
clusions of this paper will also affect the results
of Ref. 6, which contains a preliminary report on
an attempt to apply the frame-transformation
theory to e -CO scattering. We hope to complete
this study in the future.
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APPENDIX

The T-matrix elements in the Born-approxima-
tion are given by

~T~. =i4k
EE j,( br)( /ml V I/'m) j, (br)r~ dr, (Al)

(lml V ll'm) = (-1)"—[(2l+1)(2l'+1)] '/2

where j, (x) is a spherical Bessel function of order
/. For a dipole potential

V(r) = (D/r')P, (cos 8)

we have"

trix elements of Eq. (A4) are independent of the
incident-electron energy although they have a
more complicated dependence on the quantum num-

bers I,, l', and ~.
Now we substitute Eq. (A4) into (S.Bb) and sim-

plify it to the following form by using an orthogon-
ality relation" of 3-j symbols.

A
" = -"D' (2l, +1)(2/~+1) '

0
(1(2 (0 0 0)

sin(l, —l,)&/2

),(), +)) —t,(), +)))

This expression is nonzero only for l, =le+1.
Therefore one can write

xl
0) ~0 0 0)

(A2)
2/-1 (/ / —1 1)

io o o)

Here D is the dipole moment of the target molecule
in a.u. After substituting (A2) into (Al) and making
use of the relation~4

2l+S /'/+1 l 1)'
+ (" ) ( o o o)-

sin(n- m)~/2j.( )j ( )d =„(„1) ( 1), (AS)
Replacing 3-j symbols by their values, "we finally
get

the expression for T-matrix elements will be-
come

'x'-'= -'D' g(—+ ) (A5)

s1'), = (-1) i4D[(2l+1)(2l'+1)] ')"

(/ /' 1) fl /' 1( sin(/-/')w/2
I l(/+1) —l'(l'+1) '

(A4)

The reader will notice that similar to the scatter-
ing from an inverse-cube-law field, "the T-ma-

Equation (A5) shows that the total cross section,
which is proportional to A„diverges logarithmi-
cally for scattering of electrons from polar mol-
ecules in a molecule-fixed frame of reference.

Now to evaluate the expression (S.gb), we first
replace the T-matrix elements by their Born val-
ues, Eq. (A1). The sum over m, and m, can be
carried out with the help of the relation"

where

a, a, a, )(a, b, b, )(b, a, b, (bb, a, ). , . .Ia, a, a,

I.)(, P, P, )i,-P-, P, (,P, P, ,)-b, b,

S= (b, +b, +b,) + (P, + P, + P ),
to give

sA,"=16D' Q i'& (~ '~" (22/+1)(2l,'+1)(2l, +1)(2l,'+1)
lying l yl2

/'/, l, 1) (/,' l2 1) t'/, l,' 1) (/2 /,' 1 /, /, 1 f sin(l, /,')&/2 ) f sin(/, -/,')&/2

(0 0 0)l(0 0 0)l(0 0 0)l(0 0 0

(A6)

Because of the selection rules imposed upon the values of the angular momenta by the 3-j symbols, only
one sum out of the four sums present in Eq. (A6) is independent. After doing some careful, but straight-
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forward, algebra Eq. (A6) can be written in the following form:

32~2"~ = 4D~ Q (X,(l) +X~(l) —[X (l) +X4(l)]), (A7)

where

(2l-1)(2t+1)(t l-1 3) (21-3)(2t-1) (t-1 1-2 1)
2

o o o) ' ' !~o o o)

l l-1 1 2l+1 2E+3 l+1 l 1 2 l l+1 1
l+1l-2 l-1 1 (000) l l-11

(2l+1)(2l +3) l +1 l 1 )2 (2l -1)(2l+1) l l 11-)'

o o o) '
o o o)

l l-1 1 (2l+3)(2l+5) (l+2 l+1 1)2 l l+1 1
!l+2 7

l i+11 I O O O) 1+2 i+11

X,(l) = (2l-1)2(2l+1)'(«-»)' l l »-
I0 0 0) l /-1 1

and

(2l+1) (21+3)' (1+3 l 1) ' 1 l+1 1

j!
0) ll+ 11

On substituting for the values" of the various 3-j and 6-j symbols present in these expressions, we find
that

and

l l-1 1 1
l(2l-l)(2l+1) '

l l-1 1

l l+1 1 1
(l +1) (2l +1) (2l +3)

Therfore, Eq. (A7) becomes

) p 2 1 1 1 1 1 1
2l+1 21-1 2l+3 l(2l-1)(2l+1) (l+1)(2l+1)(2l+3) ~t l l+1 '

Hence, in view of Eqs. (A5) and (AS), we have

a~(~) 1 a~(~)
0 ~ 1

which proves the statement made in Eq. (3.10).

(AS)

(A9)
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