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Inelastic light scattering from density fluctuations in dilute gases. The
kinetic-hydrodynamic transition in a monatomic gas*

Noel A. Clark

(Received 18 February 1975)

The number-density fluctuation spectrum, S„(K,co), of xenon has been studied in the dilute-gas limit.
Spectra of He-Ne laser light scattered through an angle of 10.58' at room temperature were measured
for pressures ranging from 0.02 to 0.6 atm. Over this range S„(K,co) evolves from the Gaussian kinetic
form to three peaked hydrodynamic form. Measured spectra were used to evaluate various kinetic and
hydrodynamic calculations of S„(K,co) through this transition. Spectra obtained from the Boltzmann
equation using the Gross-Jackson kinetic modeling procedure, for both Maxwell and hard-sphere
intermolecular potentials, are in excellent agreement with the measurements. Among the hydrodynamic
theories tested only the generalized hydrodynamics of Selwyn and Oppenheim satisfactorily provides the
initial nonhydrodynamic corrections to the Navier-Stokes equations.

I. INTRODUCTION

In recent years the use of time-dependent corre-
lation functions to characterize the dynamical
properties of condensed systems has developed
extensively. Previous work has been concerned
primarily with the analysis of neutron scattering
experiments and molecular dynamics calculations
in liquids. This focus on the liquid state may be
contrasted to the earlier developments of statisti-
cal physics which were directed primarily at
understanding the dilute-gas limit. However, the
use of neutron scattering to probe liquid dynamics
has also generated some interest in time depen-
dent correlation functions in dilute systems. Al-
though neutron scattering is not feasible in the
dilute limit, the calculation of correlation func-
tions is simpler than at finite densities and in

. some cases exact. This was the motivation for the
theoretical study of density fluctuations in a dilute
gas and their relation to neutron scattering in

liquids. ' The inapplicability of neutron scattering
to dilute systems led to the consideration of al-
ternative experimental techniques. In 1966, Nelkin
and Yip pointed out that in a typical gas at STP
a light scattering experiment could probe density
fluctuations of a wavelength, ~, comparable to l,
the mean free path between collisions, and that
by changing scattering angle or gas density either
the long-wavelength (hydrodynamic, l «A) or
short-wavelength (kinetic, l » &) limit could be
conveniently reached. ' The utility of inelastic
light scattering in probing the kinetic-hydrody-
namic transition in the dilute gas limit was demon-
strated shortly thereafter by Greytak and Bene-
dek. ' However, thorough quantitative interpreta-
tion of these and other light scattering data" in
dilute gases was limited by experimental diffi-
culties.

In this paper' we report the first systematic
light-scattering study of the kinetic-hydrodynamic
transition in a monatomic gas. We use our results
to evaluate various microseopie and hydrodynamic
calculations of density fluctuation spectra. We
begin by relating the density fluctuation and scat-
tered light spectra. This is followed by a qualita-
tive description of the evolution of the density
fluctuation spectrum through the kinetic-hydro-
dynamic transition, and a discussion of the various
calculations. The details, results, and discussion
of the present experiments complete the paper.

II. THEORY

A. Basics

The essential geometry is typical of Brillouin
scattering experiments. Collimated monochromat-
ic light of wave vector k; is incident on the sample.
Light scattered through an angle 0 of wave vector
k, is collected and frequency analyzed. The power
spectrum of the scattered electric field, about the
incident frequency ~;, S(K, ~ —~;), is proportional
to the power spectrum of those fluctuations in
number density which have wave vector K =k, —k,
That is, '

s(K,~- ~,.) ~s„(K,~)

where &n(r, t) is the fluctuation from the average
number density, no, at the point (r, &), and () de-
notes an ensemble average. The scattered light
spectrum then provides a direct measurement of
the density fluctuation spectrum at a wavelength
& =2m/K. Since a dilute gas is isotropic S„(K,&)
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depends only on K = ~K~ where K = 2&, sin26.
The density fluctuation spectrum of a dilute gas

undergoes a dramatic change through the kinetic-
hydrodynamic transition. The evolution of S„(K,&),
calculated for a gas of Maxwell molecules, is
shown in Fig. 1. We have plotted S(x, y), using a
dimensionless frequency parameter x = &/&~,
where

/(g —2&~&Kg = 2&~&K(/p T/m)~2 (2)

B. Hydrodynamic theories

Atoms in a gas travel a finite distance in space
(l) and time (v,) between interatomic collisions.
As a result, collisions are not perfectly efficient

Here &~ is the Boltzmann constant, T the absolute
temperature, and m the particle mass. The gen-
eral form of the spectrum is determined by the
uniformity parameter y -1/Kl, which increases in

the direction of the hydrodynamic regime. Since
a gas of point particles has the single character-
istic length, l, the wave vector K appears in the
spectrum only as Kl. Furthermore the spectrum
S„(K,&} is a function of x and y only [S(x,y)]. This
scaling property of the density fluctuation spec-
trum was first discussed by Nelkin. '

In the kinetic limit, particles undergo few colli-
sions over the length 1/K so the spectrum may be
calculated assuming that the scattered light is
Doppler shifted by molecules moving along straight
lines with the equilibrium Gaussian Maxwell veloc-
ity distribution. The resulting S„(K,&) is Gaus-
sian, falling to 1/e at ~ = v2 ku, (x =1). For xenon
gas at room temperature with incident light of
wavelength ~, =6328 A and scattering angle 0
=10.6', one finds &&/2v =&2KUO/2m= 56 MHz.

As y increases S(x, y) develops three distinct
peaks, one located at x =0 and a pair symmetric
about x =0 located at x= aW. Thesepeaks indicate
the prevalence of two well-defined kinds of fluctua-
tions (modes) in S(x, y) at large y. The widths
bx, of the peaks are comparable and vary as 1/p
(b,x, -1/y). Since the width of a peak is the decay
rate for the fluctuations producing it, the decay
rates for the two kinds of fluctuations contributing
to S(x, y) approach zero in the y-~ limit. This
kind of behavior has been termed hydrodynamic
and is a direct consequence of the Euler conserva-
tion laws for particle number density, momentum
density, and energy density. The two hydrody-
namic modes of a simple fluid may be charac-
terized as entropy fluctuations at constant pres-
sure (heat flow), giving rise to the central peak,
and pressure fluctuations at constant entropy
(adiabatic sound propagation), giving rise to the
shifted peaks. '

at maintaining local thermodynamic equilibrium
in a fluctuation having finite wave vector (K) and

frequency (~). The object of a hydrodynamic theo-
ry is to account for the observable effects of the
resulting deviation from local equilibrium. In the
limits K/«1 and &&,«1 (y» 1 and x «y) the
deviation from local thermodynamic equilibrium
is small and may be dealt with phenomenologically
(Navier-Stokes hydrodynamic and Fourier heat-
conduction equations). This is the "hydrodynamic"
regime. For p & 1 or x ~ p however this approach
fails and one must resort to obtaining a more gen-
eral hydrodynamic description from the Boltzmann
equation (BE), such as in the Chapman-Enskog
procedure (CEP) or the more recent generalized
hydrodynamic theories. These methods attempt
to evaluate systematically small deviations from
hydrodynamics for p ~ 1. In this paper we use
experimental spectra to determine the range of
validity of the hydrodynamics and the success with

which the more general theories supply the first
"nonhydrodynam ic" corr ections. In particular,
the theories which we have tested are (i) the hydro-
dynamic approximation: (a) Exact solution (NS),
(b) Kadanoff-Martin (KdM) approximation, (c}three
Lorentzian (3L) approximation; (ii) the Burnett
(B) approximation; (iii) the Selwyn generalized
hydrodynamic theory: (a) Exact (SE}, (b) approxi-
mate (SA). We now discuss each of these briefly.

The hydrodynamic equations in the Navier-
Stokes approximation are the first nontrivial set
of hierarchy of hydrodynamic equations obtained
from the Boltzmann equation via the CEP or gen-
eralized hydrodynamics. These equations are
local in space and time and involve energy and mo-
mentum fluxes which are proportional to first
spatial derivatives of temperature and velocity.
They have been solved exactly for S„(K,&) by
Mountain. An approximate Wavier-Stokes solu-
tion for S„(K,) has been obtained by Kadanoff
and Martin" and is included in the comparison.
We have also included the three Lorentzian form
of S„(K,&), since all of the hydrodynamic calcula-
tions reduce to this form as p -~: (i) the peaks
in S„(K,&) become Lorentzian, the central peak
having a half-width at half-height (HWHH) in & of
I'c =AK'/n, c~, and the shifted (Brillouin) peaks
having a HWHH of

1 4g 1 AI" =— + 1 —— K2.
3mno y noc„

(ii) the shifted peaks are located at ~c,
=M(ksTy/m)'~, where co is the adiabatic sound
speed; (iii) the ratio of total central intensity Ic
to total shifted intensity Is is Ic/Is=y-1. Here
A is thermal conductivity, c~ the heat capacity per
particle at constant pressure, q the shear vis-
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cosity, and Z = c~/c„.
Carrying the CEP to the next higher order [i.e. ,

retaining deviations from local equilibrium of
order (l 9/Bx)'-1/y'] produces the Burnett equa-
tions, which are also local but involve fluxes
proportional to second as well as first spatial
derivatives. Banganathan and Nelkin have cal-
culated S„(K,&) in the Burnett approximation for
a gas of Maxwell molecules. '

More recently the methods of generalized hydro-
dynamics have been employed by Selwyn and Op-
penheim in the calculation of S„(K,&) for a mon-
atomic gas." Here linear response theory is
applied to the Liouville equation to develop an
expansion in K about K =0 of the dynamical ma-
trix M, , (K, ~) which determines the space-time
evolution of correlation functions of the conserved
variables of the system. With this expansion the
effects of nonhydrodynamic (microscopic) modes
are accounted for to a selected order in K. For
K =0 one finds M;, (K, ~) =0 and the Euler con-
servation equations are obtained. Keeping terms
in M;,. linear in K results in the Navier-Stokes
equations. The next higher order yields spatially
and temporally nonlocal equations which Selwyn
has solved for S„(K,&) of a gas of Maxwell mole-
cules. We include in our comparison Selwyn's
exact S„(K,&) as well as an approximate form
which he obtained by partial-fraction expansion
of the exact form.

C. Kinetic theories

In addition to hydrodynamic calculations a num-
ber of direct solutions of the Boltzmann equation
(BE) for S„(K,&) have been attempted. A rigorous
basis for obtaining S„(K,~) from the BE was de-
veloped from the Liouville equation by Van Leeu-
wen and Yip. '4 Because of approximations in-
volved in the modeling and solution of the BE,
initial efforts were only qualitatively successful
and are not discussed here. " These efforts did,
however, lead to the calculation of Sugawara, Yip,
and Sirovich" who used the Gross-Jackson kinetic
modeling procedure" to solve the BE. Kinetic
modeling, an extension of the methods of Wang
Chang and Uhlenbeck, involves expansion of the
BE distribution function in a complete ortho-
normal set of functions P;(v) which are eigenfunc-
tions of the BE collision operator. With appro-
priate initial conditions an infinite set of linear
equations are obtained which are solved by re-
placing the eigenvalues of the collision operator,
~„by the value ~„ for i &M, where M is an arbi-
trary cutoff. This method, because it preserves
all velocity moments of the distribution function,
allows convergence at finite M in both the kinetic

1.00 5 n,v,c„Maxwell
1.02 hard sphere

(4)

If Eqs. 3 and 4 are to yield a unique value of p
then the measured Eucken ratio must be that pre-
dicted by the KM and CEP for the particular inter-
molecular potential employed. For the Maxwell
and hard-sphere potentials both the KM and the
CEP yield

A 2.50 Maxwell
qcv 2.515 hard sphere

We have compared measured Eucken ratios of
real gases to these values. Eucken ratios were
calculated from the measured viscosity" and
thermal conductivity" of the simple gases xenon,
krypton, argon, and neon at 25'C. The ideal gas
value of c„was used in all cases." The results
are summarized in Table I. Measured values of
E at T =25'C and P =1 atm were found to be E
= 2.50 within experimental error. The determina-
tion of p therefore for either the Maxwell or hard-
sphere potential is unambiguous at T =25 C for

and hydrodynamic limits. Spectra calculated for
successive orders of approximation, M, converge
when M is sufficiently large. " The result is an
apparently exact solution of the BE for the density
fluctuation spectrum S(x, y) for all values of x and
y. This method has been applied to both Maxwell
(1/&') and hard-sphere molecules to evaluate the
effect of intermolecular potential on S(x, y). The
spectra calculated for these two choices of poten-
tial are nearly identical, differing at most by only
a few percent for a given (x, y). Figure 1 shows
S(x, y) for a gas of Maxwell molecules calculated
using the kinetic model with M =21, at which con-
vergence of S(x,iy) to within 1% of its limiting form
is obtained. For a discussion of the convergence
of the kinetic model procedure see Ref. 16.

Density fluctuation spectra calculated in the
dilute gas limit are functions of two parameters:
the reduced frequency x (see Eq. 2) and the wave
vector K which appears only as the single addi-
tional parameter y =1/Kl. The reduced frequency
x is determined uniquely by experimental condi-
tions. For p to be uniquely specified, however,
the theoretical model used to obtain the transport
coefficients q and A must correctly provide the
Eucken ratio E =mA/qc„of the gas under study.
Since both p and A are measurable, either may be
used to specify p.

From either the kinetic model (KM)" or CEP"
we find

y -=(v 2 /3) (mn, v, /qK)

or
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IG. 1. Exact solution
« the Boltzmann equation
for the density fluctuation
spectrum of a dilute gas of
Ma well molecules Effect
of the convolution of g(~ y)
with the instrumental pro-
file I(x) is indicated for
several values of y.

0.5 1.0 1.5

S(x,y) —Maxwell Molecules——I(x)—Instrumental Profile

———S(x,y) (3( I(x) = Se(x,y)

these gases. Sig . Since in xenon measurements of q
are more accurate we shall use Eq. 3 to deter-
mine y. Once x and y are determined there are no
adjustable parameters in th the eoretical spectra.

D. Calculated spectra

To facilitate thehe comparison of experimental
and theoretical' al spectra we have calculated and
tabulated the ve various hydrodynamic and kinetic
spectra S(x, y) in terms of th d' ' s vari-e imensionless vari-
ables x and y with S&x

f
wi &p, y~& normalized to unity in x:

„dx S&x y&=1&,y& =1. Analytic expressions for the
hydrod namic sy ic spectra are given in Appendix A.
The hydrodynamic spectra S S
and S were c

NS KdM S3L ~ B SsE

sA were calculated for lxl ~3.2 and g =O.V6V

1.312, 3.00 4.65
n — . 7,

lated from the
, and 6.00. Spectra were c 1ca cu-

the KM approximation" for M =21,
Ixl-3.2, and&=0, 0.1, 0.328, 0.5 0.V6V

a,nd for hard-
. 5, and 6.00 for Maxwell molecules

ard-sphere molecules at y = 0.328
1.312, 1.968 3.00

, 0.767,
, and 6.00. Point spacings re-

quired for accurateate numerical convolution with the
instrumental profile were &x =0.025 for y&3 and
x= . 0625 for y&3. In Appendix 8 then ix, the hydro-
ynamic and KM spectra are tabulated for a

selected set of &x(,y) values. In addition, Table III

for
gives the location and height of the B '1e ri louin peaks
or the various calculations.

TA8LE I. Thermal. conductivity h
Eucken ratio of simple ga t 2

ivy , s ear viscosi and
ses a 25'C and 1 atm.

7

A (kcal/sec cm 'C)
(Ref. 20)

g (p Poise)
(Ref. 19)

thee Boltzmann equation would be expected to work,
i.e., where imperfect gas corrections are ne

'choice of xenon
i is Rs the primary consideration th

non at a scattering angle 0 =10 6'
ion e

arrived at.
was

at. This choice presents the following
disadvantages and advantages.

Disadvantages (i) In the f.orward d
(8-0' the

rwar ir ection
e scattered light spectrum is r 1 t'is re atively

, p acing more stringent requirements on
the fre uency stability and spectral width of th
incident i hight than at larger angles. (")S

i o e

distortio due to the finite range of K vectors par-
u pectral

ticipating n the scatterint ing process is most serious
in t e forw rd direction. This p blro em was over-
come by the use of conical collection optics. '

terin an les'
g g es. These experimental problems will

be discussed in the next section.
Advantages. (i). As the scatterin ang gle nears the

from whi
r - - direction the illuminated 1

which one can collect scattered light into a

E.' Experimental conditions

Our goal in these experiments was to study
S„g,&) in a simple gas under c d t'con i ions where

Xe
Kr
Ar
Ne

1.316+1%
2.265+ 1%
4.22 + 0.5%

11.60+ 0.5%

231.02 + 0.06%
253.22 + 0.06%
226.38 + 0.04%
317-.30 + 0.05%%uo

2.509 + 0.025
2.515+ 0.025
2.498+ 0.012
2.503+ 0.012
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spectrometer increases. (ii} The spectrum is
sufficiently narrow that a spherical Fabry-Perot
interferometer (FPS) may be used. The FPS has
very stable instrumental transmission charac-
teristics, obviating the need for frequent measure-
ment of the instrumental profile. (iii) The kinetic-
hydrodynamic transition occurs over the density
range from n, -0.16 amagat (P -0.014 atm, y -0.1)
to n, -0.7 amagat (p-0.6 atm, y-5). At these
densities the following conditions are satisfied in
our experiments: (a) time intervals which are
probed (a 10 ' sec} are long compared to the
duration of interatomic collisions (-10 "sec if
we include the formation of dimers). (b) Lengths
probed (-6&&10~ A) are long compared to the range
of molecular interaction (-4 A). (c) The atomic
volume, v*, is small compared to the volume
available per atom in the gas, 1/n„(n, v*& 5x10

Van Leeuwen and Yip have shown" that the
linearized BE should correctly provide the density
fluctuation spectrum when conditions (a) and (b}
are in force. Condition (c) indicates the validity
of the assumptions, implicit in the BE, that there
are no static positional correlations in the gas
and that only binary collisions occur. That is,
static correlations and three-particle collisions
lead to (imperfect gas) corrections of the thermo-
dynamic and transport parameters respectively
which are on the order of np . For the BE to be
applicable then, n,v* must be smaIl enough so that
modifications of the spectra due to imperfect gas
corrections are too small to be observed. The
most serious correction is that to the adiabatic
sound speed c„which determines the Brillouin
peak location and for which we have the following
virial expansion"

c, = (5ksT/3w) '(1 —0.0043[n (amagat)]), (6)

where (5ksT/3m)'' is the BE (ideal gas) value.
For our experiments (n, &0.7 amagat) the correc-
tion to c is ~ —0.4% and is not observable. Simi-
lar results are found for the other spectral correc-
tions. Thus at the highest density studied, where
the corrections are most serious, condition (c)
is satisfied to such an extent that deviations of the
parameters which determine the spectrum
(q, A, c„c~,c„,y} from their ideal gas —BE values
are not observable. In satisfying conditions (a)-
(c), then, obvious reasons for the failure of the
BE are eliminated.

III. EXPERIMENTAL DETAILS

laser producing 10-15 mW of optical power in a
single frequency-stabilized TEM«mode. Light
from the laser is pinhole spatial filtered and weak-
ly focused into the scattering cell containing the
gas under study. The incident beam passes out
of the scattering cell through holes in the conical
lens and mirror. A conical lens refracts light
scattered at some particular angle into a parallel
beam which is directed by a mirror to the spec-
trometer, a stable spherical Fabry-Perot inter-
ferometer that acts as a tunable optical filter.
The transmission frequencies of the FPS are
swept across the scattered light spectrum by den-
sity scanning, and the transmitted light is detected
by an ITT FW 130 photomultiplier (PMT) and pho-
ton counting electronics. The resulting record
is the spectrum of the scattered light convolved
with the profile of a single transmission peak of
the FPS, repeated periodically along the chart
as adjacent FPS resonances pass through the scat-
tered light spectrum. The repetition period on the
chart serves to calibrate its frequency axis, the
period length corresponding to a frequency interval
equal to the free spectral range of the FPS.

LASER

ATTERING CELL '

'I
I

I
I

/
I

'i

0:4
SPHER ICAL

I FABRY-PEROT
INTERFEROMETER

I I

PINHOLE
SPATIAL SC

FILTER

FILTER
STRIP-CHART

RECORDER

B. Laser and analyzing interferometer

The light source for these experiments is dia-
grammed in Fig. 3. Single-mode operation was
achieved by means of the Fox-Smith scheme. "
Initial frequency stabilization was achieved by
mounting the apparatus on a vibration isolation
table (resonant frequency -1 Hz). Three servo
loops were employed to further stabilize the laser
frequency and are indicated in Fig. 3. The fast
loop (bandwidth =100 Hz), first proposed by
Smith. ' piezoelectrically varies the main cavity
length to lock the laser oscillation frequency to a
resonance of the Fox-Smith interferometer, elimi-
nating rapid fluctuations in frequency. An inte-
grating thermal loop adjusts the length of the
aluminum structural element of the laser cavity
in order to keep the fast loop operating about the

A. Introduction
AMPLIFIER SINGLE CHANNEL

ANALYZER
FW I50

P HOTO MULTI PL I ER

A block diagram of the experimental apparatus
is shown in Fig. 2. The light source is a He-Ne FIG. 2. Experimental apparatus.
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SOLAR CELL (HEATER

C I i 1 1 I t.

[ j

PZT

SOLAR C
OUTPUT

~REFERENCE FPS

400 Hz

ferometer orders on the strip chart of -0.3~/0.

Frequency drifts therefore contribute an error of
-0.3% to the frequency scale factor of the mea-
sured spectra.

DC
BI AS 2ERO

0 CROSSING
DETECTOR

PAR JB4

OUT REF IN

FAST
LOOP

THERMAL
LOOP

REFERENCE
LOOP

FIG. 3. Laser and associated servo loops.

middle of its dynamic range. Finally a reference
loop (bandwidth =10 Hz) piezoelectrically varies
the Fox-Smith cavity length to lock the oscilla-
tion frequency to a resonance of an evacuated,
thermally stabilized, spherical Fabry-Perot inter-
ferometer. This loop employs electronic integra-
tion in the feedback circuit to maintain operation
at the center of the servo dynamic range in the
presence of long-term drift in the length of the
Fox-Smith cavity. " With the servo loops operating
the spectral width of the laser (i.e., the extent of
rapid frequency excursions) is &800 KHz.

The interferometer used to frequency-analyze
the scattered light was an FPS with the following
properties: confocal spacing, 12.997 cm; mirror
ref lectivity, 96.5/o; free spectral range, 576.5
MHz; aperture radius, 2.5 mm; full width at half-
height (FWHH), 24 MHz. The FPS mirrors were
mounted on an inver tube inside a sealed can. The
FPS resonant frequencies were svrept in time by
varying the gas density and therefore the refrac-
tive index of the gas in the can. To reduce fre-
quency drifts of this interferometer the can and
scanning device were insulated and temperature
controlled to drift less than 0.01'C/h. With these
precautions random drifts between the laser and
measuring FPS frequencies were reduced to
&3 MHz/h. This drift rate produced fractional
fluctuations in the spacing between adjacent inter-

C. Scattering cell and geometry

Efficient light collection and the elimination of
stray light are the prime experimental considera-
tions in the measurement of the spectra of dilute
gases. The scattering geometry employed is de-
tailed in Fig. 4. The conical lens was used be-
cause of its superior light collection ability when
the scattering angle has to be well defined (bH/II
&10 ' in this case). A number of steps have been
taken to reduce stray light. (i) the conical lens
was drilled and fitted with a tube terminated by a
Brewster's angle window. (ii)Specialcare is taken
to eliminate stray illumination of surfaces directly
viewed by the spectrometer. For instance, stop
B shadows the crosshatched region of the cell
wall: (iii) The incident laser beam was pinhole
spatial filtered to the diffraction limit. (iv) Stray
scattering at the surfaces of the focusing lens was
eliminated by stops A, B, and C. (v) Dust was
millipore filtered out of the cell and did not con-
tribute to the stray light.

With these steps stray light was reduced to an
insignif icant level. Typical stray-light contribu-
tions to observed spectra are shown in Fig, 5.
Quantitatively the contribution of stray light to the
total observed intensity was &0.05% of that of
xenon at STP. The residual stray. light entering
the spectrometer was probably due to the rather
poor condition of the conical lens surface, en-
hancing. the probability for scattering stray light
into collected rays. Considerable reduction of the
stray-light level reported here should be possible
with .his design with the employment of micro-
polished (0/0) surfaces on the key optical ele-
ments.

The scattering angle 0 =10.58'+0.018' was de-
termined by measuring the deflection of He-Ne

FOCUSING LENS

~STOP A ~INCIDENT BEAM STOP B SCATTERED RAYS

ri/SPP&P~IPP8/V//Z/gÃy/gZjjjÃZZS/X/PPP/lSPj. ~~~

I

STOPS
DBE

BREWSTERS y
WINDOW

CELL BODY-ALUMINUM
I

I inch

FILLING PORT
4 VÃ/XXX

STOP C CONICAL )
LENS

I
I

TO FPS

M I RROR
I
I

I
I
I

FIG. 4. Scattering cell geometry
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laser light by the conical lens. Optical alignment
was achieved by maximizing the intensity of the
laser beam exiting the scattering cell and the in-
tensity of the collected scattered light. Samples
were Matheson research-grade xenon.

D. Data analysis

Data analysis in these experiments involved
comparing experimentally measured spectra,
S,(x, y), with the convolutions of theoretical spec-
tra and the instrumental profile. Convolutions
were carried out numerically using discrete fast
Four ier transform techniques. The instrumental
profile of the analyzing interferometer was ob-
tained by scattering light from solutions of poly-
styrene spheres in water contained in a cell having
the same geometry as the gas cell to produce the
same light distribution in the FPS. This latter
constraint is important since the apertures of the
analyzing FPS were chosen large to maximize light
collection. With this choice of apertures spherical
aberration makes the instrumental profile non-
Lorentzian and dependent on the spatial intensity
distribution of the scattered light.

The accuracy of convolutions is limited by the
choice of the spacing between adjacent data points,
~x, and by the range in x, A„, covered by the
arrays to be convolved. These parameters were
selected to yield convolutions accurate to better
than 0.01': 0.025 -bx -0.006 25, R„=6.4.

IV. DATA

We have measured the spectrum of He-Ne laser
light scattered at an angle of 0 =10.58' by pure
xenon gas at a temperature T =22 +1'C at sixteen
pressures, P, in the range 0.022~P ~0.66 atm.
The corresponding range in the uniformity param-
eter p will be 0.11(y ~5.4, over which the entire
kinetic-hydrodynamic transition is mapped out.

Spectra were measured as functions of two pa-
rameters: the reduced frequency x and the uni-
formity parameter p. The reduced frequency x
was determined on the data by the frequency cali-
bration. The frequency interval &f„c roresp odni ng
to a unit change in x is obtained from Eq. (2):

v'2K@„
27

the refractive index over the pressure range is
negligible (&0.01 MHz).

The uniformity parameter y is given by Eq. (3),

42 rnn, v,
v)K

MW ~' P(atm@. (A)
T('K) q(g Poise) sin-,'8 '

(8)

Using the measured viscosity of xenon of 228.85
apoise at T =22'C'9 we find for our experiments:

y = (8.326 +0.012)[P(atm)].

Error in the determination of p was due also to
error in the pressure measurements varying from
-1/0 at p =0.02 atm to -0.1 jo at p =1 atm.

Typical measured spectra obtained in xenon gas
are shown in Fig. 5. The contribution of stray
light is determined by evacuating the cel.l at the
end of a run and subtracted out. For comparison
with the theory experimental spectra are nor-
malized to unit area in x. Both measured spectra
and the instrumental profile are symmetric within
experimental error so that the final data from
each spectrum is the average of the right and left
hand sides. From 4 to 10 measured spectra are
averaged to obtain experimental S,(x, y) for each y.

Kinetic model spectra were numerically con-
volved with the instrumental profile f (x), to obtain
theoretical S,(x, y) =S(x, y) 8 I(x), normalized to
unit area in x. Experimental spectra for xenon
gas have been compared with the results of the
kinetic model calculation for both Maxwell and
hard-sphere molecules. This comparison involves
no adjustable parameters. Since the measurements

- 4000 counts

p= 0.66 at
y= 5.48

-200

2 578)( 106 % I 2 (7) -150

where MW is the molecular weight and ~ is the
wavelength in the gas under study. For our ex-
periments bf, = 56.31 +0.15 MHz, with the error
due almost entirely to the error in frequency cali-
bration. The change in Af„due to the variation of

p=0.022 at
y= 0.184

I

-200 -100

frequency shift {MHz)

100

FIG. 5. Typical spectra observed in xenon gas at
T =22'C, 8=10.58'.

I

200
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were made by changing P at constant K the in-
strumental profile is the same for all values of g.
Figure 1 shows I (x), Maxwell molecules spectra
S(x,y) calculated from the kinetic model, and the
convolved spectra S,(x, y) for several values of y.
The effect of the convolution becomes more ser-
ious as y increases and the features of S(x, y) be-
come sharper.

The experimental data are shown plotted in Fig.
6 along with S,(x, y) from the kinetic model for
both Maxwell molecules and hard spheres. The
results of the exact hydrodynamic calculation
S»(x, y) CR I(x), have also been plotted for selected
values of x. Each column of open circles in Fig. 6
represents the experimentally determined spec-
trum S,(x, y) at the value of y indicated. The
curves presented here show S,(x, y} as a function
of g at various values of frequency shift x. Con-
sidering Fig. 1 to be a plot of S,(x, y) in the x-y
plane, the curves of Fig. 6 are obtained by cutting
the function S,(x, y) in planes of constant x. Spec-
tra increase with increasing y in the vicinity of the
central line (x-0) and Brillouin line (x-0.9), and
decrease at the intermediate points (x-0.5).

The asymptotic limits of the measured spectra
for large y (y =~}and small y(y =0) have been
indicated. The y =0 points are determined from
the convolution of l(x) with the kinetic limit Gaus-
sian distribution. As g increases the widths of
the central and Brillouin lines decrease so the

y -~ limit S,(x, y) is I(x) convolved with three
properly weighted and spaced & functions.

We have shown, in Fig. 6 the variation of S(x,y)
at x =0 from the kinetic model calculation for Max-
well molecules. This is to indicate the compara-
tive variations of S(x, y) and S,(x, y) with y. Gen-
erally, the convolved spectra S,(x, y) change more
slowly with y than do S(x, y), but in much the same
way over the range of p studied.

Random error in the measurement of S,(x,y) is
indicated in Fig. 6 by the fluctuation of the data
about smooth functions of p. rms fluctuation
bS, (x, y) in the measurement of a point of S,(x, y)
was typically DS, (x, y) &0.006, which is the diam-
eter of the open circles. Estimates of net random
error arising from shot noise, temperature varia-
tion, frequency drift, optical misalignment, and
laser linewidth variation are consistent with this
value. The rms fluctuation was largest for values
of S,(x, y) with the largest slope in x, e.g. , x =0.2,
0.3, 0.6, 0.7 for p &1. The primary source of sys-
tematic error S,(x, y) is the finite distribution of
scattering vectors K, arising from the finite di-
mension of the illuminated region and the finite
collection aperture of the analyzing FPS. This
distribution leads to a spurious increase in the
measured width of the Brillouin peak. For our

experimental conditions the Brillouin width of the
measured spectrum would be increased by -0.5'
at y =6, -0.3% at y = 3 and -0.2' at y =2. These
errors are small compared to the random error
in the measurements and do not substantially alter
the data. Since they are difficult to correct for
accurately, they mere neglected.

V. RESULTS

In Fig. 6, we compare the spectra obtained from
the exact solution of the BE for both the Maxwell
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I I I I I I lll I I I I'

0.7—

0.6

/
/

/
/

/
/

/
/

/

0.5—

0.4—x
Cl

8:&=-
04
0.5

0.3

0.2—

04
0.7w

n

L
0.3,„—

I I I I I7
0 004 01

I I 7 I I III7
0.4 I 0

PN

I I 7 I I& ~ 7
40

Q4

0.3 ——

X=0.6w .
o.e I.

Q5

OC.

Q4

0.9&
I.ON

0.2— I. I w
1.2&
1.3~
1.4m

"
1.5m

2.0w .
I IIII

0 '6.04 0.1

0.1—

I I

0.4
~~r n

I I I I I

1.0
I I 1&

1

4.0

Data
———S(x, y), Maxwell M olecules

S (x, y), Maxwell Moleculese
S (x, y), Hard Spherese
S (x, y), Exact Navier-Stokes

FIG. 6. Comparison of measured and calculated spectra,
~~ g,y), for xenon gas.
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and hard-sphere molecules with the measured
spectra in xenon gas for 0.1&&&5.4, T =22'C and
K =2~104 cm '. This comparison shows 'very good
agreement for both cases. The measurements do
not allow a clear choice between Maxwell and
hard-sphere intermolecular potentials.

The agreement indicates that the linearized BE
when solved using the converged kinetic model
procedure (M =21) accurately provides the density
fluctuation spectrum of a dilute monatomic gas.
The fact that agreement is obtained for such crude
models is evidence of the insensitivity of the den-
sity fluctuation spectrum to the form of the inter-
molecular potential.

We now discuss the applicability of the various
hydrodynamic calculations. The measurements
presented here establish the exact solution of the
BE as an accurate means of calculating the density
fluctuation spectrum for a dilute monatomic gas.
It would seem appropriate, therefore, to judge the
hydrodynamic calculations for a given intermolec-
ular potential on the basis of the agreement of their
spectra with those calculated from the exact solu-
tion of the BE for the same potential. The various
spectra are tabulated in Appendix B. The compari-
son was made for Maxwell molecules.

As can be seen. the agreement between the hydro-
dynamic and kinetic model calculations improves
as y increases and is excellent for p =6. For
p & 3, however, the breakdwon of hydrodynamics
is evident. The spectra calculated from KdM ap-
proximation agree with the exact Navier-Stokes
spectra to within -1 ~/o for p & 3, that is for all
values of p for which the hydrodynamic approxi-
mation can be considered to be valid. The results
of the 3L approximation, however, differ substan-
tially from the Navier-Stokes spectra even when
the latter agree well with the kinetic model spec-
tra. The deviation is especially noticeable in the
tails (x&1) where the 3L spectra fall off as x '
whereas the KdM and Navier-Stokes spectra have
x ' tails. The failure of the 3L spectrum indicates
the importance at small p of the asymmetric con-
tributions to the Brillouin peaks which are deleted
in going from KdM to the 3L approximation, as
has been noted by Lallemand. '

The best agreement of the hydrodynamic and BE
spectra is provided by the generalized hydro-
dynamic theory of Selwyn and Oppenheim applied
to the Maxwell gas. The agreement for y =6 is
excellent, the two calculations differing by &0.1%,
and is still quite good at p =3. For smaller p,
however, the Selwyn spectrum develops a large
peak near x =0.

Selwyn obtained the approximate form S«(x, y)
for his spectrum by expanding the exact spectrum
of Eg. (AV), SSE(x, y), in partial fractions and de-

leting terms of O(1/y') or smaller. The approxi-
mations are such that S,E(x, y) and S«(x, y) are the
same to order 1/y', the order to which S~E should
approximate KM spectra.

The spectra from the Burnett approximation for
Maxwell molecules show somewhat better agree-
ment with the kinetic model Maxwell molecule
spectra in the vicinity of the sound propagation
peaks than the Navier-Stokes spectra. This is an
agreement with the measurements of the disper-
sion relation for forced sound propagation, "'"and
the light scattering results of Lallemand. ' The
Burnett approximation, however, fails in the cen-
tral portion of the spectrum, consistently falling
low, and thus does not give a clearly better de-
scription of S(x, y) than the Navier-Stokes, in con-
trast with Lallemand's conclusions. '

Because of the close relationship between the
density fluctuation spectrum and the dispersion
relation for forced sound propagation it is of in-
terest to compa. re the results obtained here with
the results of the sound propagation calculations
and experiments. Using the kinetic model, Siro-
vich and Thurber" have calculated the dispersion
relation for sound propagation for both Maxwell
molecules and hard spheres and have compared
their calculations with the measurements of Green-
span" and Meyer and Sessler. " Buckner and
Ferziger" have also calculated dispersion rela-
tions for sound in a Maxwell gas. Their results
have been tested by Schotter. " Over the range p
of interest here, 0.1&&&5.4, the calculated Max-
well molecule and hard-sphere dispersion rela-
tions are somewhat different with the Maxwell cal-
culation showing good agreement with the mea-
surements. However, the calculated dispersion
relations for Maxwell and hard-sphere molecules
show more difference than expected on the basis of
a comparison of the calculated Maxwell and hard-
sphere spectra, probably because the kinetic model
approximation was carried out only to order M =11
in the calculations of Sirovich and Thurber. Suga-
wara, Yip, and Sirovich" show that it is necessary
to carry the kinetic model calculation to M =21 for
the hard-sphere gas to obtain sufficient conver-
gence in the calculation of the spectra. One would
expect the same kind of behavior for the disper-
sion relation. It may be, then, that some of the
difference observed between the mea, sured disper-
sion relation and the hard sphere calculation of the
dispersion relation of Sirovich and Thurber is due
to a lack of convergence.

Of particular interest is the comparison of forced
sound data and hydrodynamic calculations for Max-
well molecules. Using the results of Foch and
Uhlenbeck" and Selwyn and Oppenheim" it is evi-
dent that at large p for Maxwell molecules both
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Burnett hydrodynamics and generalized hydro-
dynamics produce the same dispersive correc-
tions to the forced sound dispersion relations as
does the kinetic model. As w'e have just noted, the
corrections to sound speed and attenuation pre-
dicted by these theories have been shown to work
well. However, because they all predict the same
results, it is not possible to distinguish among
them using forced sound. The density fluctuation
spectra, on the other hand, show generalized
hydrodynamics to be superior to the Burnett in

approximating the kinetic model spectra.
Comparison of Eqs. (A8) and (A4) shows that

the first corrections to the spectral features (peak
amplitudes, locations, and widths) of the asymp-
totic three Lorentzian form calculated from gen-
eralized hydrodynamics are of order 1/y'. lf
these are the proper corrections then differences
between kinetic model and generalized hydro-
dynamic features should be &I/y'. This condition
is in fact satisfied.

On the other hand, although first corrections in.

the Burnett spectra are also of order 1/y', differ-
ences between Burnett and kinetic model features
are of order 1/y'. The lowest-order corrections
to spectral features in the Burnett approximation
are therefore not correct.

VI. SUMMARY

Our main result has been to show that density
fluctuation spectra obtained from the kinetic model
solution of the Boltzmann equation for a gas of

Maxwell or hard-sphere molecules agree well
with measured spectra in dilute xenon. Having
extablished this we compare various hydrody-
namic and kinetic model calculations for a Max-
well gas. This comparison shows the superiority
of generalized hydrodynamics in describing asymp-
totic deviations from Navier-Stokes hydrodynam-
ics.
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APPENDIX A

In this Appendix we collect the formulas used
to calculate the hydrodynamic density fluctuation
spectra, S(x, y) discussed in the main text. Equa-
tions 2-4 were used with the Eucken ratio taken
to have the Maxwell value of 2.50. Spectra are
normalized to unit area in x. Comparison with
kinetic model spectra is made in Appendix B.

%'ith the following notation: Exact Navier-
Stokes, ' SNs(x, y); Kadanoff-Martin, "S«M(x, y);
three Lorentzians, ' S,L(x, y); Burnett, "S~(x, y);
Selwyn exact,"SsE(x, y); Selwyn approximate, "
SsA(x, y); we have

( 1 1

SNs(x, y) = —Re 0 ix+4/Qy 1
2

ix+ 5/6y

ix + 4/9y

0
1
2

ix+5/Sy /

(Al )

1 -x'+ ix(23/18y) +20/54y'+-, '
—ix' —x'(23/18y) + ix[—', + (20/54y')]+ 5/12y '

1 1 -2x
5lry[x'+((/2y)'] (Oiry (x'- —')'+(lx/91)')'

1
5wy[x'+ (1/2y)'] 90))y ' 18y, i ' 18y

(A2)

(A4)

/ 1 .1 0

S,(x, y) = —R. 0 ix+4/9y —,'+4/54y

0 —', +14/54y' ix+ 5/6y

ix 1 0

-- —16/54y' ix +4/9y --,'+ 4/54y'

0 —,'+(4/54y' ix+5/5y

(A5)

1 -x'+ ix(23/18y)+ (I/ya)(73/162-14/729y~)+ g

x —ix' —x (22/15y)+ix( —' 121/152y' —l4/2299 )+5/12y+20/5ly')'

S„(x,y) = (I/n) Re(N/D),

(A6)

(A7)
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where

27Z2 7Z2N=-x'+i@(—",,@+1.5&x)Z, 7, + —', +—', Z, Z, —ix(:. ,', +—', Z, Z, 5Z,' 2Z,'Z

27Z2 7Z2
D = —ix' —x'(—,",y+1.5ix)Z, Z, + ix(—', + 9Z, Z, ) +—,x',', +—', Z, Z', +5Z,'+2Z,'Z, +

5 1 2 7
+ 12Z1, 18Z1. 5Zz + 2Z2 +

(gX+ 4$)

Z, =(ix+y) ', Z, =(ix+1.5y) ';

1 A B —iC B+ iC
ix+y, i(x-x')+y, i(x+ x')+y, (Aa)

where

A =—,'+1/25y', B=—,', —1/50y', C =~[—'„' —(,",,', )(1/y')],

x' =—', [1 + —,",, (1/y')], y, = (1/2y)[1 —1/2y'], y, = (7/18y)[1 —,",—,(1/y')].

APPENDIX B

In Table II, density fluctuation spectra S(x, y), calculated from the kinetic and hydrodynamic theories
discussed in this paper, are tabulated for selected x, p values. Spectra are normalized to unit area in x.
Table III gives the Brillouin peak height and location for the various spectra.

TABLE II. Comparison of kinetic mode1 spectra and hydrodynamic spectra.

Kinetic model
Maxwell Hard spheres Exact

Navier-Stokes
Kadanoff-Martin 3 Lorentzians

y = 0.767

Burnett
Selwyn

Exact Approx.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1,0
1.1
1.2
1.3
1.4
1.5
2.0
2.5
3.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.5151
0.5046
0.4793
0.4517
0.4311
0.4205
0.4168
0.4140
0.3982
0.3499
0.2776
0 ~ 2003
0.1348
0.0881
0.0574
0.0376
0.0059
0.0012
0.0004

0.5700
0.5347
0.4624
0.4007
0.3667
0.3607
0.3802

0.5162
0.5069
0.4837
0.4569
0.4348
0.4207
0.4127
0.4045
0.3850
0.3430
0.2779
0.2041
0.1392
0.0912
0.0591
0.0384
0.0056
0.0012
0.0004

0.5636
0.5342
0.4701
0.4095
0.3730
0.3625
0.3756

0,5642
0.5611
0.5523
0.5390
0.5206
0.4938
0.4527
0.3932
0.3190
0.2424
0.1754
0.1238
0.0869
0.0614
0.0440
0.0321
0.0085
0.0031
0.0014

0.5498
0.5304
0.4869
0.4448
0.4202
0.4180
0.4359

0,5273
0.5247
0.5174
0.5070
0.4935
0.4742
0.4434
0.3961
0.3331
0.2632
0.1980
0.1446
0.1046
0.0758
0.0555
0.0412
0.0116
0.0044
0.0020

y = 1.312

0.5282
0.5097
0.4684
0.4395
0.4082
0.4093
0.4307

0.2841
0.2813
0.2742
0.2657
0.2594
0.2577
0.2612
0.2678
0.2726
0.2691
0.2535
0.2278
0, 1974
0.1676
0.1414
0.1194
0.0580
0,0339
0.0224

0.3956
0.3758
0.3308
0,2855
0.2553
0.2459
0.2603

0.3047,
0.3048
0.3057
0.3083
0.3138
0.3238
0.3388
0.3598
0.3790
0.3918
0.3833
0.3430
0.2803
0.2115
0.1528
0.1088
0.0238
0,0077
0,0032

0.4389
0.4255
0.3945
{}.3628
0.3426
0.3394
0.3578

0.0816
0.0645
0.0518
0.0407
0.0072
0.0013
0.0003

1.8900
0-4994
0,2351
0.1911
0.2017
0,2502
0.3577

0.6507
0.5930
0.4840
0.3983
0.3520
0.3403
0.3611
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Table II (Continued)

Maxwe1. 1 Hard spheres

Kinetic model

Exact

Navier-Stokes

Kadanoff-Martin 3 Lorentzians Burnett

Selwyn

Exact Approx.

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
2.0
2.5
3.0

0.4213
0.4616
0.4443
0.3374
0.2100
0.1221
0.0719
0.0439
0.0278
0.0046
0.0012
0.0004

0.4100
0.4467
0.4369
0.3418
0.2169
0.1264
0.0735
0.0440
0.0288
0.0043
0.0010
0.0003

0.4591
0.44g2
0.3696
0.2525
0.1562
0.0952
0.0596
0.0387
0.0262
0.0057
0.0019
0.0008

y=1 312

0.4591
0.4573
0.3856
0.2698
0.1699
0.1049
0.0662
0.0433
0.0294
0.0065
0.0022
0.0010

0.2995
0.3525
0.3807
0.3465
0.2730
0.2030
0.1512
0.1153
0.0905
0.0373
0.0209
0.0135

0.3934
0.4431
P.46g2
0.4152
0.2953
0.1847
0.1127
0.0703
0.0457
0.0088
0.0028
0.0012

0.5120
0.6364
0.5125
0.3036
0.1718
0.1017
0.0634
0.0410
0.0275
0.0048
0.0012
0.0004

0.4055
0.4626
0.4657
0.3567
0.2154
0.1197
0.0671
0.0390
0.0234
0.0022
0.0004
0.0007

0.0
0.1
0.2
0.3
0.4
0.5
0.6
Q.V

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
2,0
2.5
3.0

0.8895
0.6611
0.3997
0.2736
0.2231
0.2151
0.2454
0.3366
0.5565
0.8087
0.4652
0.1794
0.0789
0.0403
0.0230
0.0142
0.0024
0.0008
0.0003

0.8763
0,6630
0.4070
0.2793
0.2273
0.2173
0.2446
0.3303
0.5415
0.7945
0.4758
0.1816
0.0794
0.0402
0.0226
0.0143
0.0024
0.0008
0.0003

0.8583
0.6560
0.4098
0.2852
0.2345
0.2278
0.2622
0.3636
0.5964
0.7776
0.4089
0.1622
0.0737
0.0386
0.0225
0.0141
0.0027
0.0009
0.0004

y =3.00

0.8488
0.6483
0.4050
0.2823
0.2327
0.2266
Q.2614
0.3629
0.5961
0.7847
0.4178
0.1662
0.0755
0.0396
0.0231
0.0145
0.0027
0.0009
0,0004

0.7931
0.5919
0.3465
0.2220
0.1644
0.1486
0.1680
0.2450
0.4550
0.7585
0.5314
0.2591
0.1419
0.0892
0.0617
0.0457
0.0171
0.0093
0.0060

0.8239
0.6339
0.3982
0.2776
0.2256
0.2162
0.2434
0.3278
0.5309
0.8017
0.5125
0.2024
0.0887
0.0452
0.0258
0.0160
0.0029
0.0009
0.0004

0.9243
0.6679
0.3922
0.2657
0.2164
0.2095
0.2406
0.3335
0.5597
0.8223
0.4639
0.1776
0.0780
0.0399
0.0228
0.0141
0,0025
0.0007
0 ~ 0003

0.8986
0.6649
0.4000
0.2731
0.2223
0&.2142
0.2441
0.3345
0.5526
0.8087
0.4683
0.1806
0.0791
0.0403
0.0229
0.0141
0.0024
0.0007
0.0002

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
2.0
2.5
3.0

1.5978
0.6688
0.2693
0.1589
0.1226
0.1171
0.1374
0.2080
0.4679
1.4827
0.4549
0.1139
0.0440
0.0214
0.0121
0.0074
0.0013
0.0004
0.0002

1.5799
0.6729
0.2730
0.1613
0.1235
0.1180
0.1387
0.2088
0.4638
1.4625
0.4623
0.1143
0.0438
0.0217
0.0120
0.0074
0.0013
0.0004
0.0002

1.5750
0.6719
0.2731
0.1614
0.1247
0.1193
0.1405
0.2140
0.4883
1.4862
0.4303
0.1105
0.0432
0.0213
0.0120
0.0074
0.0014
0 ~ 0004
0.0002

y =6.00

1.5703
0.6695
0.2721
0.1610
0.1245
p.1192
0.1404
0.2138
0.4877
1.4879
0.4336
0.1113
0.0435
0.0214
0.0121
0.0074
0.0014
0.0004
0.0002

1.5427
0.6415
0.2431
0.1299
0.0903
0.0798
0.0922
0.1487
0.3839
1.4323
Q.5371
p.1681
0.0802
0.0477
Q.0322
0.0235
0.0086
0.0047
0.0030

1.5595
0.6681
0.2717
0.1603
0.1236
0.1176
0.1375
0.2064
0.4589
1.4614
0.4752
0.1183
0.0455
0.0222
Q.p124
0.0076
0.0014
0.0005
0.0002

1.5985
0.6685
0.2694
0.1589
0.1226
0.1171
0.1375
0.2078
0.4681
1.4807
0.4544
0.1140
0.0441
0.0215
0.0120
0.0074
0.0013
0.0004
0,0002

1.5956
0.6690
0.2699
0.1592
0.1229
0.1173
0.1376
0.2080
0.4680
1.4787
0.4549
0.1141
0.0441
0.0215
0.0120
0.0074
0.0013
0.0004
0.0002
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TABLE III. Brillouin peak height and location for kinetic model and hydrodynamic spectra.

1.312

3.00

Maxwell
Hard spheres

exact
NS KdM

B
exact
approx.

Maxwell
Hard spheres

exact
NS KdM

3L

exact
approx.

Height

0.463
0.451
0.462
0.465
0.381
0.469
0.637
0.477

0.810
0.800
0.788
0.793
0.765
0.804
0.822
0.809

Location

0.821
0.837
0.735
0.750
0.900
0.894
0.803
0.856

0.900
0.906
0.884
0.885
0.913
0.907
0.897
0,900

4.65

6.00

Maxwell
Hard spheres

exact
NS KdM

3L
B

exact
approx.

MaxweI, l

Hard spheres
exact

NS KdM
3L

B
exact
approx.

Height

1.193

1.174
1.178
1.160
1.186
1,193
1.189

1.503
1.503
1.498
1.501
1.488
1.508
1.505
1.506

Location

0.907

0.902
0,902
0.913
0.910
0.907
0.907

0,909
0.910
0.907
0.906
0.913
0.910
0.909
0,909
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