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Deformed Hartree-Fock solutions for atoms. III. Convergent iterative process
and results for 0
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%'e present a systematic study of self-consistent symmetries (SCS) for the ten-electron atom 0 in an
s+ p basis. The investigation of each SCS required a detailed study of the character of the iterative process.
Convergency is ensured by a minimum-energy selection principle. Six deformed Hartree-Fock solutions for
6 have been obtained.

I. INTRODUCTION

The quantum theory of atomic structure gives
the quantum chemist either central-field Hartree-
Fock-Hoothaan functions (e.g., the '8 state in the
ls'2s'2P' configuration), where, at most, N radi-
al functions are associated with N electrons; or
sophisticated atomic wave functions, such as the
multicont'igurational self-consistent-field (SCF)
function, or perturbation expansions based on the
central-field approximation, and in these two
cases more than N spin orbitals are associated
to N electrons. The latter cannot be used in the
quantum theory of molecular structure, and on
the other hand, the "simple"' central-field picture
needs to be either distorted or, in hopeless cases,
considered as merely giving some privileged ba-
sis (in a mathematical meaning) for molecular
calculations. For instance, in semiempirical
calculations, valence states of atoms are built in
at the beginning of the molecular electronic struc-
ture calculation, while in molecular ab initio
calculations, atomic orbitals provide no more
than a mathematical basis for vectorial spaces.
Clearly, there is a gap between the theory of
isolated atoms and the theory of electronic struc-
ture of molecules: A knowledge of the isolated
atom spectroscopic states does not provide an
understanding of the valence properties of the
same atom.

On the other hand, atomic spectroscopists like
to see atoms as "spherical"; indeed, the electron-
ic density in any spectroscopic state is spherically
symmetric. This is a trivial statement. ' "Atoms
are spherical" is a more meaningful statement.
By it, it is meant that both the independent-particle
model and the central-field approximation work
weQ, thatis, spectroscopic states calculated in
the model and under this approximation have en-
ergy accurate enough to compare with experi-
ment. If some failure, for instance, in transi-
tion probabilities calculations, or in frequency
ratios occurs, one has to introduce "correla-

tion, " that is a correction to the independent-
particle model, generally not to the central-field
approximation.

We are not convinced that the building up of
some isotropic Hartree-Fock field gives a satis-
factory picture of the physical atom. We prefer
to think that the one-particle field is a central
one, p$gg anisotropies necessary to understand
the bonding properties of the atom. With de-
formed Hartree-Fock wave functions, N spin
orbitals are associated with N electrons, and
furthermore, each deformed state is "sophisticat-
ed" because it is a superposition of stationary
states each of them being described by a multi-
determinantal wave function. Our present hope is
that some deformed Hartree-Fock solutions will
emerge giving, first, representations of spectro-
scopic states equivalent to the correlated central
field one, and second, a better understanding of
the valence properties of atoms.

The determination of atomic deformed Hartree-
Fock solutions is not easy anyway. Here we pre-
sent results about the system 0 (doubly negative
oxygen ion) more complete than those previously
given. ' In future work results about carbon in
ground-state configuration will be given. The
present paper will deal in Sec. II with the self-
consistent symmetries in a ten-electron atom,
especially in an s+P basis; in Sec. III a study
of the iterative process is presented, and in
Secs. IV and V a description will be found togeth-
er with some comments about six Hartree-Fock
solutions obtained for 0 in an s +P basis.

II. SUMMARY OF RELEVANT HARTREE-FOCK THEORY
AND SELF-CONSISTENT SYMMETRIES FOR 0

The Hamiltonian of our system is

Bkp+g
fl = 1 py t P V

where h(p) = ——,'V'(p) —Z/r„. The spin orbitals
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Q, in the Slater determinant

are assumed to be orthonormal without any loss
of generality, and no variational constraint' is
needed to keep them so, when used in the varia-
tional principle

The iterative method has been used here. Let us
remember that, having at the iteration number n
an orthonormalized set of N spin orbitals

(e) ~

, i=i, . . .,N,

one buildsup a Hamiltonian

The last e(luation associates to H and to Q a Fock
8amiltonian

E(p)=h(p, )+ Q yf (v), lp, (v)(fr„,

where P„„permutes space and spin coordinates
of particles p. and v. Let

~(V) = p & p( I ~& I 0& & -=&()()—&(y )

be the antisymmetrized Hartree-Pock potential.
The variational principle is satisfied at Q = Qo
when the spin-orbitals Q«are solutions of the
nonlinear equations

N

olios = g 4o& e) s ~ i = 1, . . . , N

Canonical spin orbitals are defined by

and solves for canonical eigenfunctions Q,""),
y(e) ( +0 &( +9 ( +j.)

so that we have now a complete orthonormalized
set (Q(,""),a =1,2, . . . ). One chooses (cf. Sec.
III) in that set N spin orbitals (eventually) re-
labeled from 1 to N and builds again an equation

N
p(o+1) —g + &

y(n+1)
l y l

y(n+1)&
=1

We have now come back to the beginning of the
cycle. When the process converges (cf. Sec. III),
one obtains either the Q«or the P«.

One can understand how two {or more) deter-
minants go and go may be distinct variational
solutions on considering their symmetry prop-
erties. Let G be the invariance group of the total
Hamiltonian H; then it is sufficient that Qo and
Qo' be unchanged by two distinct subsets E and E'
belonging to 6 such as, for instance,

In both cases, I", is that Fock Hamiltonian which
is built upon N spin orbitals Q«satisfying either
nonlinear equation.

Generally speaking, because of nonlinearity,
there are several solutions Q satisfying&() Q l Hl P& = 0.
Let Po and P be two variational solutions, they
define two occupied subspaces

Q«, i =1,. . . , N and Q«, i =1, . . . , N,

neither orthogonal nor equivalent to each other,
and two virtual subspaces. So, the nonlinear
system

&, t =1, . . . , N,

E'C EC G;

in effect, one is then able to find some symmetry
transformation S leaving Qo unchanged,

Slo=)(I o~

but eventually not Qo'. If we suppose that E and E'
differ by no more than one S, we see that Po might
be formed by varying a determinant belonging to
the family Q' (of which Q is a particular one),
subject to the constraint that Q' would in addition
be invariant by operating with S. So, we conclude
that a variational solution with higher symmetry
Q„also leads to a higher energy'

will have at least two solutions satisfying it. The
first one is

and the other one is

Moreover, if S does not commute with the trans-
formations of the set E', Qo will be distinct from
Qo. In the case when S commutes with every
member of E', Qo either will or will not be dif-
ferent from @,'.

Subsets of mutually commuting symmetry
transformations may be found a Pro~i; to each
subset one may associate an invariant Slater
determinant. We have given more details about
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self-consistent symmetries elsewhere'; here we
shall illustrate the process in the case of the ten-
electron system 0 studied in a Slater-orbital
basis limited to s and P species.

Having the origin of the system of coordinates
at the infinite mass nucleus, the Hamiltonian H
is unchanged by spin and space rotations and in-
variant by time reversal and parity.

Here we might mention that our spin-independent
Hamiltonian allows a distinction between time
reversal on spins only and time reversal on space
functions only. However, as a result of the Pauli
principle, which couples spin and space functions,
we have to operate simultaneously on spin and
space coordinates by time reversal; so that, for
instance, we have

T[QR(p)Y, „(Q)] =(—1)' "PR*(p) r, „(0),
where p and 0 (= 8, q&) are spherical coordinates.

Coming back to the system 0, we shall not
include parity-mixed determinants in our table of
self-consistent symmetries. The reason for this
is that any attempt to obtain a parity-mixed
Hartree-Fock solution has in fact given a parity-
defined solution. Table I is arranged first with
respect to spin rotation properties of a deter-
minant, giving four species; in each species a
determinant either may or may not have axial
symmetry, thus giving two or more varieties;
and in each variety a determinant either may or
may not be time-reversal invariant, which gives
two or more families (the number of varieties
may be great, according to the value M taken by

the projection L, of the total angular momentum).
However, as presumably Hartree-Pock varieties
having M defined and nonzero will lie high in
energy, we have restricted our investigation on
0 to two varieties, namely, the M nondefined,
and theW =0 one.

III. CHARACTER QF ITERATIVE PROCESS

In principle, to each of the self-consistent sym-
metries there corresponds a Fock Hamiltonian.
In practice, one does not obtain all of them, first
because of lower-energy solution, say, our pre-
vious Po does not exist when it collapses with Po
(accidental degeneracy is disregarded as highly
unprobable); second, because the iterative process
does not always converge. Previous studies of the
iterative process~ "have shown that the direct
minimization of the energy functional E(P) gen-
erally leads to more solutions than by using the
iterative process. Kouteckg and Bonaeid found
that the solutions in excess cannot be reached by
the usual iterative process."Harvey and
Jensen' showed that in a two-electron problem,
the position of the (noninteracting) triplet state
influences the iterative solution for the closed-
shell singlet, so that in some cases the process
diverges. Stanton, ' on the other hand, has been
able to give an upper limit to the number of
Hartree-Fock solutions in Sorbital basis func-
tions. However, the previous studies do not take
into account the effect of the imposed symmetry
restrictions on the character of convergency; in
addition, they do not consider other roads leading

TABLE I. Self-consistent synunetries for the ground state of 0 in an s-p basis. The sign - indicates undefined
values of observables.

Species S Sg LI Lz Hadial part of atomic orbital s T

Species 1: complete shell determinant 1s 2s 2p 0 0 0 0 always real

Species 2: closed shells 1s22s 2po{2p~) gp', )o

Species 3: unrestricted Hartree-Fock determinant
~
1sn 1s'P 2sn 2s'PP on p o~ q+ic' q+P r in-

~
lsn ls'p 2sn 2 ppsn p'p qn q'pm r'pl

Species 4: general Hartree-Fock
I 4&4'24'o444o4'SP y4'ofof&ol with

Q& (i =1 to 4) =s&a+s';P
~i {1=5 to 10) =p2++p';p

0
0 g

0 0
0 s

0 p

real and R (p+&) =R (p"
&)

complex but R*(p+~) =R (p"&)

and R*(p()) =R (p())
complex
any

real or complex but 1s' =1s*,
2s' =2s* p' =p * Y =q*
and q =t'*

any
any
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to convergency.
Two ingredients influence the issue of the iter-

ative process. The first one is the choice one
makes for the ten first spin-orbitals (Q(&o,
i =1,. . . , 10) at zeroth iteration. One can choose
them with definite symmetry species according
to Table I. But apart from a subtle feeling of
these things, one cannot assert that the P(, ') 's
are chosen according to an aufbau principle. "
The second ingredient is related to the building
of &, the Fock operator at iteration number
n+1. One has to choose ten spin orbitals, and
therefore label them from 1 to 10. One may think
that the principle of the choice may be once and
for all adopted, leading to eventually different
choices for iteration step n and iteration step
n+ 1. Suppose the canonical spin-orbitals
obtained at step n are arranged by order of in-
creasing energy; let (P„P„.. . , P») be ten ones
selected according to some principle, at step
n+1; the same principle applied to the selection
of ten spin orbitals at step n+2 may lead to a
different set ()(),', P,', . . . , P,',), or to the same
set (P„P„.. . , P»); for instance, the standard
choice (1, 2, . . . , 10) stems from an aufbau
principle, and is a constant choice along the
iterative process. One knows that the aufbau
principle may lead to oscillation or to divergency.
One knows techniques such as a mixing of Fock
potentials

(y~)(n) gy(n) ~~y(n-z)

or a mixing of spin-orbitals

(p t ) ( n ) )„p(n ) ~~ y( n -X)

where Q&" " is thatspin-orbital at step n- l, which
together has the same symmetry as Q,

" and
satisfies the aufbau principle. Even then the pro-
cess may diverge; in fact, oscillations are slowed
down, and disappear for some (X, p), but the speed
of the process is slowed too.

The aufbau principle is based on two approxima-
tions. First, the neglect of the interaction terms
in the expression for the energy of a determinantal
solution. At convergency, one has

ao

E=Q ' -'2 (~'~. )-~~.~')

where e «+ ~ ~ ~ &c1 2 10 P

so that 8 -Do-, c„justifying the aufbau principle.
However, at iteration step n-1, the total energy
is not expressed in terms of the spin-orbital

energies 6& at convergency, so that one may see
that far from convergency, the aufbau principle
may not be convenient. Second, the usefulness
of the aufbau principle comes from the expression
of the second variation of a Hartree-Fock solution
(cf. Adams" ), which has to be positive if the
solution is stable. " Apart from interaction
terms, here too the second variation is

0d' - g (e„-c, ) ( C„, )',
4 =1 m&yp

where the C, are complex coefficients. One sees
that the approximate value of E ') will be positive
if & & &&, in their respective labeling range, that
is when all occupied spin orbitals have lower
energy than any empty one. The aufbau principle
will presumably lead to a more stable or minimum
energy solution.

However, the two approximate properties of
Hartree-Fock solutions are properties at conver-
gency, and indicate only that one has good reasons
to think that Hartree-Fock solutions satisfy the
aufbau principle. They say nothing about the
character of convergence of the iterative process.

Here we have based the selection of occupied
orbitals to occur in I" ", the Pock Hamiltonian
at iteration step n+1, on the following principle:
Select two or more [ up to Col (10, N)] sets of
10 spin-orbitals Q,"), then compute the total
energy associated with each of the Slater deter-
minants built on the successive sets. One then
obtains values E[ Q(,")],g Q(,")], . . . . Compare
these values and take for an occupied set at step
n+1 that set which is associated with the lowest
value E[Q(";)]. This applies to the computation
of the ground Hartree-Fock state belonging to
each self-consistent symmetry. The choice so
operated is not uniform, although the principle of
the choice is the same at each iteration step.

The operation of such a minimum energy selec-
tion principle resulted in elimination of diver-
gencies or oscillations of the iterative process in
all cases investigated here, that is the process
always converged.

It is interesting to note that at convergency all
our Pock operators have satisfied the aufbau
principle. Having this result in mind, one can say
that the minimum energy selection principle is
a method used to find a starting point convenient
to apply the aufbau principle. Let C(0) be the
standard choice (1, 2, . . . , 10) and C (P w0) a
nonstandard one; the minimum energy selection
principle gives the following choices:

Iteration 0 1 2 ~ n n+1 ~ ~ Convergency

Choice C&» C"' C&'"~ ~ ~ C" C«~ C(o)
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TABLE II. Exponents for Slater-type orbitals (Ref.
14). In the third column is found a more convenient
notation for s and p basis functions.

1s' 12.757 721 s'
1s" 7.093 308 2 s2

3s 8.970 814 1 s3
2s 2.753 601 9 s
2sI' 1.526 654 9 ss

2pl
2p II

2p III

2p IV

4.995 795 4 P
2.449 378 2 P2

1.042 1145 P
0.3.6520 p

so that, if one had known in advance the occupied
spin orbitals at iteration step n+ I, the aufbau
principle would have lead to convergency.

In practice the requirements concerning the
symmetry properties of occupied spin orbitals
complicate the programming of convergence pro-
cedure. The over-all symmetry of the Slater
determinant has to be conserved from one itera-
tion to the following one. For instance, let us
suppose that we are seeking for a solution with
8, =0 and I; =1 for some ten-electron atomic
system. The ten occupied spin-orbital sets, the
energies of which are compared, will have to be
made up of five spin orbitals with spin —„ five
with spin -~, and values m „m2» . . .

»
m „of L,

such that

m 1 0

Our program is written in such a manner that,
in pathological cases, one can choose the occu-
pied set according to the minimum energy selec-
tion principle, until some constant choice (us-
ually the standard one) emerges, and then one
flips to the simpler convergency road (usually
the aufbau principle).

IV. RESULTS

We have studied the ten-electron atomic system
O for which we know' that a spherical Hartree-
Fock solution exists in the space of the ground-
state configuration. The Fock Hamiltonian can
then have many self-consistent symmetries up

su -20.426 80 -0.996 745

0.077 937
0.954 696

-0.033 446
0.002 955

-0.000 300

0.003181
-0.267406
-0.033 356

0.741 076
0.363 784

p0. - -0.310 151 +0.077 022

0.092 340
0.637 117
0.397 492

-0.013316

0.027 983
0.180934
0.180 692
0.906 882

to the spherical one. We are given a basis of five
s-type and four P-type Slater orbitals, here they
are optimized with respect to the spherical solu-
tion set obtained by S. Huzinaga'~ (see Table II).
Three angular functions and two spin functions
are associated with each 2P radial Slater orbital,
so that our basis is a 34-dimensional basis

s"a
10 t s ™» P, =1» 5

us P, p = 1, . . . , 5,

24P type ~
' m= —1, 0, 1; @=1, . . . , 4Pm&»

'I, p.p,

The general form of a spin orbital is

Q) ——a)o. +b) p.
The a, and b, are given by the expansions

a; =
ui

u Q p„"a„, ,
&=1 m=-].
4

b,. = s"b„, +

TABLE 1V. Closed-shell solution (a slightly different
solution, owing to slightly different STO basis, has been
given in Ref. 2), ilsls2s2s2p02p02p 2p 2p', 2p',

i with
intrinsic axial symmetry. Top entries are orbital ener-
gies. All coefficients real. Total energy is -74.601246
a.u.

TABLE III. The Huzinaga central field solution g =
i ls 1s 2s 2s 2p 2p 2p02p&2p, 2p

all coefficients a„; and b„; are real. Entries on the top line are the energies of the two 1s,
two 2s, and six 2p occupied spin orbitals in Q. Total energy is -74.507127 a.u.

-20.126 278 a.u. -0.704 458 59 a.u. +0.065 692 242

0.077 91
0.954 34

-0.033 57
0.002 81

-0.000 11

0.00417
-0263 50
—0.026 51

0.69343
0.409 04

0.084 75
0.48127
0.467 02
0.341 92
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TABLE V. Closed-shell solution [stability condi-
tions and properties of closed-shell solutions will
appear in a paper by J. Paldus, H. F. Prat, and
J. Cizek (to be published), paper II of the series],
(1s 1s 2s 2s 2p+ 2p+ 2p'02p02p"i 2p "&( . Top entries are
orbital energies for 1s, 2s, 2p+, 2po, and 2p" spin-
orbital pairs. All coefficients are real but the solution
is not T invariant. Total energy is —74.635119 a.u.

orbital set of Clementi}. In Table V a low-energy
solution is presented, and additional calculations
related to the solution of Table V are presented
in Table VI. In addition, Tables VII-IX are three
other low-energy solutions.

V. DISCUSSION

-20.486 31 -1.057 46

0.077 95
0.954 64

-0.033 40
0.003 01

-0.000 35

0.002 96
-0.268 06
-0.034 76

0.75017
0.355 09

p," -0.415 72 p 0 -0.373 33 p" +0.073 63

0.090 70
0.672 91
0.356 75

-0.014 56

0.091 56
0.650 67
0.382 38

-0.014 29

0.016 00
0.11497
0.098 77
0.960 94

with complex expansion coefficients a„;,b„, , a„,,
and b„, . As previously stated, any attempt to
obtain a parity-mixed (s- and p-mixed) solution
has failed, so that our results may be reproduced
by assuming that either a&, and b„;, or a„& and

b„, vanishes.
We have finally obtained six Hartree-Fock

solutions. This means that (as far as our inves-
tigation is concerned) the atomic system 0
possesses six ground-state self-consistent sym-
metries. In Table III, the Huzinaga central-
field solution appears, which is both highest in
symmetry and highest in energy. We have re-
produced here (Tabl~ IV) the intrinsic axially
symmetrical solution which appeared in a
previous paper' (using the slightly different

In Tables III-IX we have given six ground-state
Hartree-Fock solutions for the system 0 studied
in a limited s-P basis. We note that the calcula-
tions have been restricted to the ground-state
configuration; in less pathological systems this
restriction would certainly be not too serious,
but for 0 one can think that d, f, . . . , basis
functions would be relevant too. However, if our
task is the best calculation for 0, this will con-
sume too much computer time and memory. In
the framework of an s-P calculation, one might
improve the quantitative result by optimization of
the basis set for each solution, again we do not
claim the best quantitative results. Our problem
was to obtain the largest possible number of
ground-state Hartree-Fock solutions as predicted
in Table I of self-consistent symmetries.

For instance (cf. Table IX), when one seeks
for a determinantal solution with mixed spin, com-
plex radial functions, and neither definite parity
nor specified l, -value orbitals, one is led by the
iterative procedure with minimum energy selec-
tion principle to the solution in Table IX, where
spins are no longer mixed and parity is conserved.
In this respect, we note that we do not repeat any
previous solution (Tables III-VIII), although we
might. In fact, each self-consistent symmetry is
unstable unless the lowest energy one is reached.
As the Fock potential corresponding to the last
case in Table I is not constrained to have a spec-
ified symmetry, one sees that if, near the Table V
solution, the Fock Hamiltonian is only nearly a

TABLE VI. Evolution of the Table V solution on lowering of f(p ). (a) Total energy, and (b) 2p+ and 2po orbital
energies. In addition, the 2p" orbital energy goes to zero, while the weight of p increases from 0.96094 to 1.

0
o('D)
g4

Total energy

-74.635 119 -74.663 080 -74.688 621 -74.710 737 -74.714 642 -74.716 149 -74.716449
-74.717 009 0.716 707 0.716 605 0.716 594 0.716 594 0.716 594 0.716 594

0.16520 0.11520 0.065 20 0.015 20 0.005 20 0.001 20 0.000 40

2p+ and 2p'0 orbital energies

2p, (O )
2p (0, D)
2pp(O )
2p, (o, 'D)
g4

-0.415 719
-0.631 759
-0.373 329
-0.586 481

0.16520

-0.485 309
-0.631 913
-0.441 591
-0.586 617

0.11520

-0.555 122
-0.631 968
-0.510361
-0.586 665

0.065 20

-0.616 637
-0.631 974
-0.571 340
-0.586 670

0.01520

-0.626 776
-0.631 974
-0.581 473
-0.586 670

0.005 20

-0.630 778
-0.631 974
-0.585 474
-0.586 670

0.001 20

-0.631 578
-0.631 974
-0.586 274
-0.586 670

0.00040
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TABLE VII. UHF solution ~lsls'2s2s'2p |2p &2po 2pa 2p+" 2p""(. Top entries are
orbital energies. Expansion coefficients are real but the solution is not time-reversal in-
variant. Spin orbitals are arranged by order of increasing energy both in the UHF deter-
minant and in the Table. Total energy is —74.698322 a.u.

-20.144 12 —20.104 69 -0.826 015 -0.653 063

0.078 18
0.953 43

-0.032 60
0.004 29

-0.000 51

0.077 78
0.955 60

-0.034 09
0.00194
0.000 01

0.003 49
-0.265 79
—0.030 14

0 ~ 71436
0.38943

0.004 30
—0.257 78
-0.023 57

0.658 59
0.44223

-0.106 39 -0.10639 —0.066 36 —0.003 08 —0.000 74 + 0.092 55

0.091 51
0.590 02
0.450 75

-0.003 78

0.091 51
0.590 02
0.450 75

-0.003 81

0.092 74
0.565 73
0.475 54
0.006 11

0.093 19
0.503 05
0.534 78
0.054 77

0.093 09
0.500 51
0.536 80
0.058 62

-0.00764
0.036 19

-0.08046
1.00946

closed-shell one, the "open shell part" will make
the process to slip toward the lower UHF Table
VII solution, which is again unstable with respect
to spin mixing, for example.

Another point to be made is about the ordering
of Hartree-Fock total energies. One may under-

stand why the solution in Table VII is higher in
energy than the one in Table IX (additional reality
constraint for radial functions), but one has to
accept that the solution given in Table IX is below
that in Table VIII, in other words, that here some
hierarchy operates between self-consistent sym-

TABLE VIII. General Hartree-Fook solution P =
~ P&P2 ~ ~ ~

Q &0j . Top entries are spin-orbital
energies. Expansion coefficients a«and b„; are real. Not T invariant. Total energy is
-74.722098 a.u. (a) s symmetry, and (b)P symmetry.

s symmetry

su -20.544 17 -20.463 54 -1.259 97 —0.91518

1P
2P
3P
4p
5p

0.078 40
0.952 25

-0.031 75
0.005 57

-0.00101

-0.000 01
-0.000 16

0.000 01
0.0
0.0

0.000 01
0.000 16

-0.000 01
0.0
0.0
0.077 56
0.956 74

-0.034 87
0.000 76
-0.000 15

0.002 21
-0.275 29
-0.040 70
0.799 64
0.306 92

0.0
0.000 03
0.000 01

-0.000 10
-0.000 02

0.0
-0.000 03
0.0
0.00006
0.000 06

0.003 50
-0.25946
-0.029 09
0.69517
0.40800

p symmetry

P" -0.546 66 -0.503 23 —0.503 23 -0.344 76 + 0.066 49 +0.066 81

0.088 32
0.723 77
0.296 50

—0.01440

—0.0
—0.000 08

0.000 02
0.000 09

0.089 20
0.70643
0.31730

—0.01466

-0.000 01
—0.000 11
-0.00004
0.0

0.089 20
0.706 43
0.31730

—0.014 66

0.0
-0.000 08

0.000 02
0.000 11

0.000 01
0.00007
0.00008
0.00001

0.090 82
Q.60895
0.430 95

-0.01355

—O.QQQ 09
-0.000 12
—0.000 75

0.013 22

0.002 50
0.045 08
0.000 70
0.99744

—0.000 10
—0.000 12
-0.000 79

0.01311

0.002 35
0.045 72

-0.000 67
0.99765
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metrics (remember that the solution in Table
VIG has been reached although complex radial
functions were allowed). Let us now review each
solution separately.

Table III is the complete shell '$ solution; the
Fock Hamiltonian has spherical symmetry, that
is the symmetry properties of the total Hamiltonian.
The solution coincides with the standard radial
Hartree-Fock solution for 0 . Convergence of
the iterative procedure on this state is difficult.
The singlet stability matrix" has two negative

eigenvalues, indicating that two closed-shell deter-
minants exist with total energy below -74.507 a.u.
One then finds solutions for Tables IV and V.

The solution given in Table IV has already been
described. We just emphasize that first, it is an
axially symmetric solution in the sense commonly
used in nuclear physics. That is, it is invariant
under rotation about the s-quantization axis, but
on the other hand, it is an intrinsic axially sym-
metric solution because the Fock Hamiltonian is
invariant under the real orthogonal transforma-

TABLE IX. Lowest general Hartree-Fock solution, really an UHF one. Top entries are
orbital energies. Expansion coefficients are complex and presented in the form "real part
( ) imaginary part. " Not T invariant. Total energy is -74.722 770 a.u. (a) s symmetry,
(b) pp symmetry, (c)pn symmetry.

-20.544 15
s symmetry

-20.463 70 -1.259 77 -0.91540

Spin

0.078 40 0.0
0.952 26 0.0

-0.031 76 O.O

0.005 56 O.O

-0.00101 0.0

0.077 56 0.0
0.95674 0.0

-0.034 86 0.0
0.000 77 0.0
0.000 15 0.0

0.002 21 0.0
-0.27527 0.0
—0.040 69 0.0
0.79949 0.0
0.3070V 0.0

0.003 50 0.0
-0.259 50 0.0
-0.029 12 0.0
0.695 43 0.0
0.40775 0.0

m p" -0.546 62
pp symmetry

-0.546 41 —0.459 77

0.020 52
0.16812
0.068 89

-0.003 35

0.070 16
0.574 91
0.235 57

-0.01144

-O.Q20 52
-0.16813
-0.068 89
0.003 35

0.03191
0.261 47
0.107 14

-0.005 20

0.0
0.0
0.0
O.Q

0.031 91
0.261 47
0.10714

-0.005 20

0.02760
0.226 15
0.092 7Q

-0.004 50

-0.01021
-0.083 68
-0.034 30

0.00167

0.059 32
0.485 99
0.19922

-0.009 67

0.053 59
0,439 08
0.17999

-0.008 74

0.020 72
0.169 74
0.069 58

-0.003 38

-0.010 74
-0.088 00
-0.036 07
0.001 75

0.053 29
0.406 61
0.200 82

-0.008 71

-0.044 31
—0.338 12
-0.166 99

0.007 24

-0.032 43
-0.24742
-0.122 20
0.005 30

0.000 03
0.000 23
0.000 11
0.0
0.021 85
0.166 69
0.082 33

-0.003 57

0.042 29
0.322 66
0.15936

-0.006 91

-0.346 35
pe symmetry

+0.066 50 +0.066 50

0.056 67
0.380 52
0.267 80

-0.008 54

-0.043 89
-0.294 67
-0.207 34

O.P06 62

—0.000 01
-0.000 09
-0.000 06

0.0
0.023 50
0.157 82
0.11107

-0.003 54

0.000 58
0.01048
0.000 16
0.23193

0.00198
0.035 82
0.000 53
O.792 40

0.000 90
0.016 29
0.000 24
0.360 27

0.0
-0.000 02
0.0

-0.000 45

0.000 68
0.01303

-0.000 20
0.294 89

-0.000 17
-0.004 15

0.000 45
-0.100 62

0.00140
0.026 33

—0.000 14
P.59145

0.000 64
—0.01110

0.000 41
0.241 22

-0.030 86
—0.207 24
-0.145 80
0.004 66

0.040 22
0.270 07
0.19000

-0.006 07

-0,000 58
-0.01047
-0.000 15
-0.231 57

0.000 90
0.01630
0.006 24
0.360 51

0.001 81 -O.ppp 29
0.031 67 -0.005 23
0.001 04 -0.000 07
0.690 34 -0,11589
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tions (in the five-dimensional space spanned by
the occupied orbitals), which are induced in that
space by rotations in configuration space about
the axis defined by the positive energy last
occupied orbital.

In Table V is shown a closed-shell axially sym-
metric solution with no intrinsic axis. The Pock
Hamiltonian (that is the electronic-density) is
invariant by inversion at the origin and rotations
of 180' about each (mutually orthogonal) axis
defined by each occupied 2P orbital, that is,
briefly, the symmetry group of the ellipsoid. In
addition, the Pock Hamiltonian is not time-
reversal invariant, so that the state

i le fs 2s2s 2P YP 2PO'XP02P+" ZP+" i

has identical total energy.
The fact that the two positive-energy electrons

are localized on the more diffuse 2p orbital has
been more thoroughly studied. In Table VI the
changes in such quantities as the total energy,
and the 2P+ and 2p,' orbital energies when one
makes the fourth Slater 2P orbital more and more
diffuse are shown. Clearly, limits are reached
for these quantities, and these limits are identical
with those reached in the case of a 'D state for
atomic oxygen. One can then assert that the
intrinsic ellipsoidal Hartree-Fock state repre-
sents the system

(0, 'D) +2e

There are no more closed-shell solutions.
The solution given in Table VII is no longer

82 defined, but it is invariant by spin and space
rotations about the quantization axis; in addition,
the Pock Hamiltonian shows intrinsic symmetry
properties in some respect intermediate between
those of the Table IV and V Hamiltonians. The
space of occupied orbitals splits into five-
dimensional n and P subspaces, Y,' and V„
respectively.

The V," subspace is invariant under the symmetry
group of the ellipsoid. In V5~ subspace, there is
an intrinsic rotation axis. The O. -spin electronic
density is splitted from the P-spin density.

It is interesting to note that now just one electron
has positive energy, suggesting an ionization in
the form

1s, 2s, and inner 2P orbitals in both solutions).
The spin mixed solution is axially symmetric
but although the Fock Hamiltonian has degenerate
eigenvalues suggesting some intrinsic symmetry
we have not been able to describe it in terms of
geometrical symmetry operations. The suggested
ionization is

0.3.

Spherical
1S

Axial
intrinsic

Axial

Axial
intrinsic
Ellipso'fd.

UHF

axial
General
axial UHF

0.0—
+1

1

0+1
r ~Q

+1ii 1

+1
0

-0.5-

i. a. Q'T'T
1 a, 0

i
-1+1

0

(0 HF axial)-0+2e

but more calculations on 0, 0, and 0 would
be needed.

The lowest energy solution, shown in Table IX,
is an UHF one, no longer axially symmetric and
with complex radial parts. Although quasidegen-
erate with the solution given in Table V~, this
is definitely different, as one is convinced on
examination of the evolution of the orbital and
total energies along the iterations. In the case
under examination we indeed know that the
diagonalized Fock Hamiltonian is unchanged by
these 3~ 3 unitary transformations in 2Pu space,
which mix the two spin orbitals Q, and Q„and
leave $8 unchanged; examination of the angular
parts associated with each Slater-type orbital in

Q» Q» and Q» shows that these angular parts
are common to all four radial parts, suggesting
that some changes in the reference system could
account for the observed degeneracy of Q9 and $,0.
When one writes the conditions following the
assumption that some (unitary) change in refer-
ence axis will reproduce the 3&& 3 transformations
in 2' occupied space, one is confronted with a
nontrivial matricial equation, and all that can be
said up to now is that no proper rotation is
convenient.

(0 UHF axial)-0 +e -1,0-

The solution given in Table 'VlII is the only one
with mixed spins. Although the mixing is rela-
tively small, the change with respect to the last
solution is significant as regards both the total
energy and the spin-orbital energies (compare the

cotal
energy ' 74507
a.u.

-74.601 -74 635 -74.698 -74.722 -74.7 23

FIG. l. One-electron enexgies diagram of six ground-
state Hartree-Fock solutions for 0
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We have summarized the results in Fig. 1.
Ordinates are spin-orbital energies, 2P levels
are labeled with their m value when possible,
spin up and down are indicated by arrows and
mixed spin by full point, 1s levels are not shown,
and the dashed level is the first virtual level.
From Fig. 1 one may then have an idea of the
relative gaps.

Figure 1 shows that all closed-shell states have
higher energies than open-shell ones, and that in
each series the gap increases as total energy

slows, indicating a greater stability of the lowest
solutions. The last two Hartree-Pock solutions,
quasidegenerate, are quasiequally stable. Our
lowest Hartree-Pock solution is about 6 eV below
the central-field one.
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