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The method of numerical differentiation is applied to solve the coupled set of ordinary difFerential equations

for a three-body system derived in the previous paper. This is done for the ground state of the He atom. The
matching of the forward and backward numerical solutions of the coupled system of differential equations is
achieved by repeated applications of Newton's correction method. The matching of up to 16 coupled curves is

carried out successfully, but the results obtained show that a very large number of coupled terms are required

to obtain a good convergence of the ground-state energy.

INTRODUCTION

In the previous paper' (to be referred to as I),
a coupled set of ordinary differential equations for ~

the calculation of the energy of a three-body sys-
tem was derived. This coupled self-adjoint set
is given by

(
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K'I VI

where C„"„"/8 are the matrix elements for the
Coulomb interaction derived in Appendix A. In
this paper, we apply Egs. (1) to the calculation
of the atomic ground-state energy of He by using
the method of numerical differentiation. The pur-
pose of the study is (i) to study the number of
coupled equations required to make the energy con-
verge. Few numerical results are available to give
a full appreciation of the method of hyperspherical
harmonics (h.h. }. Simonov' has done a study of the
problem of the triton, and Brayshaw and Buck'
have done similar calculations of the nuclear
binding energy of 'H and 'He. Both works state
that only four h.h. or less are sufficient to give
a good approximation of the wave function, and
Hef. 3 indicates a surprisingly good agreement
between theory and experiment. Erens 81 al'. ,

'
on the contrary, and Bruinsma and Van %'agen-
ingen, ' have made some extensive calculations
on the triton, and they report that the low-order
h.h. might seem to approximate the wave func-
tion, while indeed a very large number of these
h.h. is required to give a good convergence of
the energy value. All these previous studies use
the variational principle, which is not the method
used in this article.

(ii) The second purpose of the present study is
to investigate the possiblity of using the method
of numerical differentiation to calculate the ground-
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FIG. 1. Different regions along a radial curve corre-
spond to different mesh sizes used to carry out the nu-
merical differentiation process.

state energy of He. A previous attempt was made
by Winter ~ a~. ,

' who derived a coupled set of
partial differential equations in the two variables
r, and &, (&, and &, are the respective distances
of the two electrons to the nucleus). Because of
this two dimensionality, the number of pivotal
points needed to achieve the required accuracy
was prohibitive, and the energy value was cal-
culated by using numerical extrapolation. The
coupled set of ordinary differential equations (1}
suggests the possiblity of trying once more the
method of numerical differentiation. The low cycle
time and high storage capacity. of modern com-
puters make such an effort tempting. This method
not only computes the energy but also produces
the numerical values of the radial coupled solu-
tions, provided only that proper boundary condi-
tions are assumed. This avoids the approximative
trial methods used until now in the literature to
try to determine some analytic expression for the
wave function of the He problem.
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NUMERICAL PROCEDURE

The transformation of a coupled set of differential equations into a coupled set of difference equations
has been discussed by several authors. ' ' The method of Noumerov' is used, and one obtains

1 1 /P KK ( +2}( +2) u/R g$ 2+ 5 /g2 KK ( +2}( +&) ugR)(R-h)' " ' R R

C,"," (x+ a)(x+ 2}
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R —h K, V & K, V
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+ra
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(2)

The boundary conditions are

X"„(R)-n„„R""~'+'as R-0

R =+A is the pivot point, and & =2E; h is the mesh
size, and n is an integer.

The procedure used to solve Eqs. (2) is to deter-
mine the value of the coupled functions at the pivot
point n+1 from a knowledge of the values of these
functions at the pivots & and n —1. The dimension
of the matrix to be solved at each pivot is equal to
the number of coupled equations. This method
allows the increase of the number of pivots more
easily than the method of Winter 81 al. ,

' where the
matrix corresponding to the total number of pivots
is diagonalized (the dimension of the matrix, which
is the number of pivots times the number of coupled
equations, can give rise to difficult storage prob-
lems in the computer memory). We distinguish
four regions in the radial solutions (see Fig. 1}:

(i) The first region, with R, -0.5, necessitates
a fine mesh size (h-0.05).

(ii} The second and third region necessitate an
intermediate mesh size (h -0.1}.

(iii) The fourth region, where the coupled curves
are very smooth, only requires a relatively large
mesh size (h-0.4}.

As explained by Fox,' we consider the forward
and the backward curves, and instead of matching
the solutions and their derivatives at a point R„
we have chosen to match the solutions at two points
R„andR~ =R„+mk (m is an integer and h the
mesh size of the intermediate region). There is
an evident difficulty' in the choice of the matching
point R„andwe believe that the best way is to
choose R, in the region where the derivatives of
the coupled functions with respect to & are of the
same order of magnitude ((&/&&)~X„"(=[(&/&&),X„"(
[see Egs. (6); the left-hand subscript f refers to

the forward solutions, and the left-hand subscript
5 refers to the backward solutions]. Figure (2)
shows the drawback of matching too far to the
right. Instead of getting curves like a and & which
match together, one can get curves like c and &

or d and b. Similar considerations apply when
the matching point is too far to the left, where the
backward solutions can behave like 1/R"" ' in-
stead of R""i'"as R-O.

We start the step-by-step iterations by assuming
arbitrary but reasonable values to the different func=
tions z X„"(R),

yx,"(0)=0, yx,"(&) J.", (4)

where the f„"are the numerical values of the
&

X„"
functions at the first pivot point. By repeated use
of Eqs. (2), the values of the coupled functions

X( ~R) and
& X(RK~) are calculated. These values

depend on the starting parameters (e, fo, f2, f~~,

f,', . . . ) . Similarly, we start the backward solu-

FIG. 2. Mismatch resulting vrhen the matching point
is too far to the right along the radial curve. Curves a
and b shower the normal behavior of a radial solution.
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(K, v)

(1O, 3) 16
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(K, v) (K~ V)
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7 (84) 12
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of the tritonon problem, con

y large numbe
ve function

er of these ave partial wavaves

NUMF RI&A L- DI F FEREN TIA

Table I.

TION AAPPROA

ord
urves sh

OR THE

200- 200-

180— 180-

160-

140— 140-

120- 120 "

100-

80— 80-

60- 60-

40-

20-

I

R

20-

(a)
I

6 R 7

0, 6 R

I

7

(b)

-20-

6 R 7
I

(b)

-60-

R1/Opivots ~ 0.5/10

R /3 e pivots ~ 6/60

R /e4 epivots * 8/20

-40

"6.0-

La R

O11 xiOO O14

1/Opivots ~ 0.S/10

Q16 s 10

pivots * 6/60

5 10 Q4 R4/+pivots * 8/20

FIG. 4. aves for K,„=S.Partial w =8. (a) Curves 1s, 2, 5 FIG. 5. Partial wavesves for K,„=12.()
3, 14, and 16.

2



22V6 RASHAD M. SHOUt RI AND BYRON T. DARLING 12

TABLE II. Variation of the characteristic value e/2 with z,„.NI, is the number of pivots;
h is the mesh size.

~ max 8 g/N~ R3/Np R4/Ãp R ci =Np~ Rc2 =Np e/2 (a.u. )

1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17

6
8
8
8
8
8
8
8
8
8

1Q

12
12
16
16
20

0.5/10
O.5/1O
0.5/10
0.5/10
0.5/10
0.5/10
O. 5/10
0.8/20
0.8/20
0.8/20
0.7/20
O. 5/1O
O.5/1O
0.8/20
0.5/10
O. S/2O
0.5/10

6/6o
6/6o

10/200
2/4O
6/6o
6/6o
6/eo

6.4/so
6.4/so
6.4/so
5.e/so

6/eo
6/eo

6.4/80
6/eo

6.4/so
6/eo

S/2O
S/2O

24/60
10/200
1O/25

8/20
8/20
S/25
8/25
8/25

8;4/30
8&0
S/2O
8/25
8/20
8/25
8/20

9x 0.1
9x 0.1

25x 0.05
25x 0.05
10x 0.1
9x 0.1

20x 0.1
24x 0.08
11x0.08
10x 0.08
13x 0.07
9x p.1
8x 0.1

11x0.08
8x 0.1

11x0.08
Sx 0.1

1Qx Q.1
10x0,1
26x p.05
26x 0.05
15x0.1
10x0.1
25x 0.1
26 x 0.08
12x 0.08
12 x 0.08
14x 0.07
10x0.1
10x0.1
12 x 0.08
9x p.l

12x 0.08
10x0.1

-2.783 975 5
-2.784 607 6
-2.849 821 6
-2.849 821 6
—2.849 812 9
-2.849 812 9
-2.849 812 9
-2.849 805 4
—2.849 8054
-2.849 805 4
-2.849 804 4
-2.849 975 1
-2.875 603 3
—2.875 595 5
-2.887 1376
—2.887 130 5
-2.892 xxx x

is needed to get a good convergence of the energy
value.

The results of Table II are summarized as fol-
lows:

(i) The effect on the eigenvalue of varying the
mesh size of region 1 (see Fig. 1) from 0.05 to
0.04 and 0.035 is shown for the case &,„=8(lines
6, 9, and 11 of Table II). The effect on the eigen-
value of the variation of the mesh size of region 1
from 0.05 to 0.04 is also shown for the cases &,

„

=12 and &,„=16.The improvement in the accuracy
of the eigenvalue in all three cases is of the order
of 10 ' or less.

(ii} Lines 3 and 4 (compared, for instance, to
line 5) show the effect of round-off errors on the
eigenvalue when the number of pivots becomes
large. The error is of the order of 10 '. One
loses about 3 digits accuracy in the numerical
values of the radial functions for every 50 pivots.

(iii) Comparison of the results for z,„=10with
those for t&,„=8and &,„=12,and &,„=6with
those of &,„=4and &,„=8suggests the idea that
some terms contribute poorly to the improvement
of the eigenvalue. The inclusion of the partial
waves (z, v) = (10, 5), (10, 3), (10, 1) or (&, v) = (6, 3),
(6, 1) gives little improvement in the eigenvalue
(z,„/2is odd).

To explain this, we notice that for a heavy nu-
cleus system as in the case of He, 6 ~ w/4 (see
Appendix 8, Paper I}, and when &»-0 or &»
-0 (collision of an electron with the nucleus), &

=an/2 [see Eqs. (81), Paper I]. Our orthonormal
set of functions developed in Paper I involves the
function cosv&, and cos(vv/2) =0 for v odd, which
corresponds to the case &,„,2 odd. Thus we see

X /2 &-2.8871576

1.0 "

0.8—

0.4-

0.2"

09 1.1

I

a.u.

R1/Opoints ~ 0.5/10

R3/appoints

= 6/60

R4/4 paints ~ 8/20

FIG. 6. A typical example of a mismatch occurring
for the high-order curves for w „=16,v=o. The scale
in this figure is 50 times larger than the scale in Fig. 5.

that the partial waves for odd values of t/ are mini-
ma at points of singularity of the potential, where
the partial waves are expected on physical grounds
to have large amplitude because of the attractive
nature of the potential. The behavior of the eigen-
value as noted above testifies to the correctness of
the numerical solution, since the functions of the
internal angles g, ~ have been eliminated, and the
mentioned physical effect is indirectly reflected
in the radial equations through the influence of
the coupling coefficients. In the case of the triton,
the three masses are equal and 5 = w/3; the results
of Erens et al.' show that in this case the main
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contribution to the convergence of the energy comes
from partial waves for which v is a multiple of 3.

(iv} The matching of the forward and backward
curves has been carried out successfully for all
cases up to and including &,„=12(16 coupled
curves). A slight mismatch occurs for the high-
order curves for the case a,„=16(25 coupled
curves) that we have been unable to overcome
Probably a finer mesh size should be chosen for
regions 2 and 3 (Fig. 1), but this point requires
a little more study. A typical example of the mis-
match which occurs for these high-order curves
is shown in Fig. 6.

Usually by repeated application of Newton's
formula [Eqs. (6)] the matching of the low-order
curves takes place first, and the matching of the
high-order curves follows. A look at Table III
gives an idea of the relation between the magnitude
of the correction «as calculated by Newton's
formula [Eqs. (6)] and the slight mismatch occur-
ring in the high-order curves (8, 4) and (8, 2). The
magnitude of && gets smaller as the matching im-
proves. It must be noted that the rate of change
of the derivatives (which determines the shape of
the coupled curves) is controlled by the second-
order derivatives, which, from Eqs. (1}, can be
expressed as a sum of a diagonal term and a non-
diagonal term,

{K V )&{K V)

and a slight inaccuracy in the partial waves af-
fects the second-order derivatives, without af-
fecting appreciably the eigenvalue (the effect on
the eigenvalue is of the second order or less for
an error of the first order in the partial waves).

(v) A superposition of the curves of Figs. 3-5
shows visually little effect on the low-order curves
(small v and v) as higher-order curves are added
(&,

„

increasing). That is to say, our calculations
indicate a lack of sensitivity of the radial functions
to truncation of the series expansion. Although we
have no analytic justification why this is so, we
believe that our low-order functions represent
well those that would result from the actual (non-
truncated) solution of the He problem.

CONCLUSION

The numerical integration for the forward and
backward solutions of the set of coupled ordinary
differential equations for the He atom has been
successfully carried out for up to 16 coupled
curves, and the method would probably work to
match 18 or 20 radial curves. The ra.dial solu-
tions shown in Figs. 3-5 are not sensitive to the
truncation of the series and consequently are likely
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truly representative of the coefficients of the ex-
pansion of the wave function. However, to obtain
the required accuracy in the eigenvalue is beyond
the possibility of computations. High values of
&,„notonly make the problem of the matching of
the curves difficult, but also introduce problems
of round-off errors, because of the large matrices
involved in the calculation. Besides, the total CPU
time on an IBM/370/158 machine for one iteration
(70 pivots) is of the order of 25.25 sec for ~ .,„

=6, 32 sec for & „=8,40.5 sec for &,„=10,85.5
sec for ~,„=12,185 sec for & ,„=16,394 sec for
&,„=20;the increase in CPU time becomes very
rapid for large &,„.It may be noted that the ap-
proach developed here compares favorably with
the method of Winter et al. ' For all &,„~12, only
around 70 pivots are necessary to get an adequate
convergence of the eigenvalue (a four-decimal ac-
curacy). This is to be compared with the 60&&60

pivots used by Winter et al. ,
' which gave a value

of —2.808 902 a.u. and required diagonalization of
a 3600X 3600 matrix. In contrast, in the method
used here the number of iterations (application of
Newton's corrections} required to get ~

5e~ smaller,
say, than 10 "becomes excessive-for large &,„.
But this number is reasonable for w,„lessthan
or equal to 12 (around 10 iterations or less). It
is important that proper starting values be as-
sumed, and we believe that the best way to do
this is to proceed gradually from K,„=4to &,

„

=6, 8, 10 and higher values.
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APPENDIX A

In this appendix, we give the expression used to
calculate the matrix elements C„",' . The potential
function is given by

g2 g 82 g g2
V=

12 13 23
(Al )

The expression of the interparticle distances in
terms of B has been derived by De Celles and
Darling. " Making use of these relations, one can
easily get
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e2 Ze' Z e'
= —2 u„'(&,y) — — u„",(A. , y)v'pdpd)(, (A2)

2m'

( ~ "I —2ge2 2p)»2 1/2 + u n' d d~[1+cosy cos()( —2&)] '/' [ 1+cosy cos()(+25)]'/'

1 2&
—2e'(m. }'/' u„" s I g pdp6~ .1+cosy cos)(.)' ' (A3)

The right-hand side of expression (A3} has to be divided by e (m, )' '/I' if it is to be expressed in atomic
units [note that in Eq. (A3), 5 =1]. Taking into account the expression of u, (&, y) [Eqs. (24), I], one can
write Eq. (A3) as

(:„'„".=2Ze'(2p, )' '[()(+2)()('i2))' '

v' v', O 2 v 0 2 COSV~COSV + cos~~cosv ~
( /- ')/ ( P )+(/ )/( P )P P-[1 () 2Q)] [I (g 26)]

6,5„,—2e'(m }' '[()(+2)()('+2)]' '

( ~/u~- ') /2 (1 2P }p +( /2- )/2(1 2P )PdP
(1 ~)~/2 (A4)
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The expression of the Jacobi polynomials P,~,~„g, , ~
is given by"

Ev. o
1 2, !"~~2 "I~' &(1+(z/2+v}/2+r)(-1)" p'"

y![(z/2 v)/2 ~]!Z'(1 +v //)

Making use of the relation cosv&cosv'X =-,[cos(v+ v')&+cos~ v —v'~ &],

(A5)

&."". =~&'(2!&)"'[(&+2)(K'+2)]"' " " -'[~KK (L)cos2L&+~."", (L')cos2L'6J

2e2(m )&~2[(K+2)(z'+2)]&~2 " " ~ [J"",(L) p j"",(L')J

where L=v+v', L'=I v-v'I, and

2&

J,"," (L)=,
&),&, p" E~"„,'&', „&y, (1 —2p') p"I'&"„'~, „&~, (1 —2p') z'pdpd& .

o o (1+~cos

(A6)

(AV)

By expanding the quantity (1+p cos&) ' ', it is easy to show that"

lz
~,,~, d&=2(-1)' 2„L!L&E(g(2L+1), (42L 8+);1 L+; pm), (A8)

where E(4(2L+1), 4 (2l+3); 1+L; p') is the Gauss hypergeometric function. Equation (AV) can be written as

where

1T' &"~ "&~' 1(1+(K/2+v)/2+&}(-1)'
2 r![(K/2 —v)/2 —r]!I'(1+v+ r)

I

Z'(1 + (z'/2 + v')/2 +y' ) ( 1)"
r'! [(~'/2 —v')/2 —r']!I'(1 + v'+ r') (A9)

L, (r+r') = „& z'E(z)z''" dz .
0

z =p' L, (r+r') is calculated using the recurrence relations

16 16(r+r')(L ~r+r')
(2L ~ 1)(2L+3)~16(r+r')(L+~~r' ~1) (2L+l)(2l+3) ~16(r ~r')(L ~r+r'+1)

(A10)

(A11)

L&(0) =16' 2 /(2L+1)(2L+3) . (A12)

APPENDIX 8

We give here briefly the connection between the
independent variables used in this work and the
work of Simonov, ' since these two works develop
the two main methods used to derive the coupled
set of equations (1). The starting equations in the
work of Simonov are

(„=m,'~'lL cos (g/2) siny, ,

$, =m,'~'LL sin(g/2) cosy. , (B4)

g„g„+t„&!, sin2y. cosg
(1 —cos'g cos'2y}'I' '

P = 2m, LL'(1 —cosg cos2y) .

The angle g in the work of Simonov' is given by

» =(r, -r, )/v 2

( =M [-,'(r, +r, ) —r,] .

Using the variables IL, g, and y = ~/2, one can
easily show that"

»„=m,' 'll cos(f/2) cosy,

», = —m,'~'lL sin(g/2) siny,

&L' = &m, LL'(1 +cosg cos2y),

(»)
(B2)

(B3)

cos8=2M2(1+cos&L&c o2s)y'~',

sin!& =-,M2 (1 —cos&!&cos2y}' ' . (B6)

The variable A and ~ in the work of Simonov' are
given by

The quantity ~&' is equivalent to p' in the work of
Simonov, ' and the angle ~ of Simonov' is given by
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A' =cos'28+sin'28cos'y =cos'f,

cos& = (cos28)/4 =-cos2}t,

sin& = (sin28cosy)/2 = sin2}t,

~ =2X.

and"

—n/2& y.
& s/2 .

(BS)

APPENDIX C

The boundary conditions given in Eqs. (7}are
valid for the reduced function +„=Q„.„}t„"(RQ„"(~,p},
i.e., the function 4„is a solution of the reduced
KEO [for the definition of the reduced KEO, see
footnote (5) of part 1 and reference (10)]. By
direct application of the definition given in refer-
ence (10), p. 73, it can be shown that the non-re-
duced function + is related to the reduced function
4'„by relation @=4'„/R't'. The important result
is that when R-O, }too/R' '- n«+0, as it should be,
while }t„"/R's-0 for (Ii, v)4 (0, 0).
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