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The kinetic-energy operator derived by De Celles and Darling with center-of-mass motion separated is used to
derive an orthonormal set of functions for the spherically symmetric states of a three-body bound-state system of
arbitrary masses and charges. This approach allows the calculation of the energy E to be reduced to the
solution of a coupled system of differential equations in one variable.

INTRODUCTION

The transformation of the kinetic-energy (KE)
operator of an N-body quantum-mechanical sys-
tem to a form which exhibits the separation of the
internal and rotational motions and their coupling,
the center-of -mass motion being separated out,
has been made by various authors using different
approaches,' and a derivation from a variational
principle has been given in Ref. 1(c). Linden and
Darling applied this method to the nuclear three-
body problem and obtained a set of radial equa-
tions in terms of the three interparticle distances.
These radial equations are derived for a charge-
independent general static exchange central inter-
action (combination of Wigner, Majorana, Bart-
lett, and Heisenberg forces), and a static nonex-
change tensor interaction. In the derivation of
these radial equations all symmetry properties,
including the Pauli principle, were included.

Another application by Darling and collabora-
tors,® in the case of three equal masses, is the
ozone molecule where, however, different internal
coordinates were employed. De Celles and Dar-
ling* derived a KE operator having the above-
mentioned form for a system of three bodies with
arbitrary masses, and their choice of internal
variables is such that the purely internal part is
a separable operator in these variables.

In this paper we shall find the characteristic
solutions of the equations of this separable opera-
tor, and we shall use these orthonormal functions
to transform the ground-state (L=0) bound-sys-
tem problem to a set of coupled ordinary differ-
ential equations in the variable R. We also make
a comparison with similar works.
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KINETIC-ENERGY OPERATOR (KEO)

We give here briefly the main ideas of the ap-
proach used by Darling'® to derive the KEQ. The
point of departure is the correct Schrédinger
equation for an N-particle system in Cartesian co-
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ordinates. The Cartesian coordinates are then
partly expressed in terms of suitable generalized
coordinates (corresponding to the 3N — 6 internal
coordinates of the system), and partly expressed
in terms of the infinitesimal operators of the con-
tinuous group of transformation (the group of
parallel displacement, and the group of all spa-
tial rotations). The advantage of this approach is
that the Hamiltonian operator can be expressed

in terms of the irreducible (numerical) matrices
P,, P, P, which are the representation of the
components of the total orbital angular momentum
under the three-dimensional rotation group. Sep-
arating out the translational motion, one gets the
KE part of the Hamiltonian operator which is only
a function of 3N - 6 internal variables and the
P,,P,, P, matrices. It must be emphasized that
this KE part of the Hamiltonian operator is a
Hermitian operator and consists of a purely vi-
brational part independent of the total angular mo-
mentum, a part depending quadratically on the
angular momentum matrices, and another part
depending linearly on these matrices and repre-
senting the interaction between the internal move-
ment and the over-all rotation [for more details,
see Ref. 1(c)].

In the case of the three-body problem, De Celles
and Darling* determined a set of internal variables
which made the purely internal operator a separa-
ble operator, and because of the Hermiticity, no
first-order derivatives appear in this operator.
With the body-fixed axes chosen as the principal
axes of inertia, and the mentioned choice of inter-
nal variables, the KEO has the form (Z=1)

1/, 4 ., 1 .
T "'Z'(I’R*'Rz pw""Rz COSZZ,D (2P>\+Sln¢P,)2
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The square of one of these internal variables R

is the moment of inertia about the axis perpendicu-
lar to the plane of the three particles through the
center of mass, or since principal axes of inertia
are employed, we have

R?=I+1,.

In a plane with axes labeled I}/ and I/2, the
variable R and the angle given by half of the second
internal variable y play the role of polar coordi-
nates, so that

IY2=Rcos(y/2), IY?=Rsin(¥/2). (2)
The range of these variables is
O0<R<w, 0<yp<7/2, (3)

the latter being fixed by the fact that the principal
axes have been chosen so that I, <I,. These vari-
ables determine the over-all size of the triangle
formed by the three particles and the magnitudes
of the moments of inertia. The third internal
variable determines the skewness of the triangle
formed by the three particles. It is also of the
nature of an angle but its definition is somewhat
more complicated. If one introduces a nonphysical
three-dimensional space with axes 1,2,3, then the
two vectors

X = (%, X5, xs) ’

. (4a)
Y =31, Ya» ¥9)

and the vector
§=(mi/2,m;/2,m§/2) (4b)

are mutually perpendicular,
a-x=0, a-y=0,

because the origin is at the center of mass, and
X -y =0 because the body-fixed axes are principal
axes (the components of X and ¥ are m} ? times the
x, and y, components of the kth particle, i.e., the
mass-reduced components). The third internal co-
ordinate x =A/2 (-7 <A.<7) is the angle shown on
the Fig. 1, where the 3’ axis is along the vector a
and the 1’ axis is perpendicular to the plane 3-0-3'.

There are no restrictions on the three masses
of the interacting particles used in the derivation
of Eq. (1). It is to be noted that the range of varia-
tion of the angle x in Ref. 4 is only from 0 to 7.
Because of this, the element of integration is
2drdydR. But if one considers the reduced kinet-
ic-energy operator®® one can use directly the ele-
ment of integration dx dydR. Also, we shall write
in the following T'=T,+T,, where T, is the pure
vibrational part of the K. E. operator.

S STATES

For the S states, the three angular momenta of
rotation, P,, P,, P, with respect to the three prin-
cipal axes of inertia, are zero. TheK. E. operator
reduces to T,. This operator is separable in the
three variables R,y,A, and the characteristic solu-
tions can be expressed as a product of a radial
part and an angular part. The angular part turns
out to be a product of trigonometric functions
with Jacobi polynomials. These form an ortho-
normal set of functions in terms of which an ar-
bitrary function of ¥, can be expanded.

To solve the equation

TS=E®, (5)
we write ® =& (R)®,(1\)®,(y) and proceed in the

usual manner to obtain the separated differential
equations

s £-3
WL+(2EC——E2'4_>‘I’1=O’ (6)
2,

%{;—Mu%z:o, )
a%, <sz 1 v ) .

a? "\7 "Zsin®ycos’y ~cosHy ®,=0, ®)

where s%,V? are separation constants. The func-
tion @, is cyclic in A, with period 27, as explained
in Appendix B. This restricts v to integer values.

CHARACTERISTIC FUNCTIONS AND EXPANSIONS

We consider first the differential equation (6).
A solution which is continuous, finite, and satisfies
this equation at all points including R=0 and R~ =
is given in terms of the Bessel function
RY2J(R(2E,)'/?). This solution is not square in-
tegrable over the range (0, «), but we know that
a square-integrable function F,(R), as is generally
required by the physical conditions of quantum-
mechanical problems, can be expanded in terms
of RY2J(R(2E,)*?) by the use of the well-known
Fourier-Bessel expansion®

Fl(R) = f‘” R],/ZJS(R(ZEC)I/Z)(zEc)I/2 d(ZEc)l/z
(4]
X f T3 (@RE)F,(y) dy . 9)
0

The expansion of a single-valued and periodic
function of A, F,(}), in terms of the characteristic
solution of the differential operator (7) is the well-
known Fourier expansion

F,(\)=ag+ Y a,cosvr+ ) b, sinvk, (10)

v=1 v=1
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FIG. 1. Definition of the vectors &, X, and ¥.
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a,= 7 F,(\) cosvrdx, (11)
0
1 2T
b, == F,(\) sinyrdx.
0

The derivation of the characteristic solution of
Eq. (8) will be treated in some detail, because it
gives a relation between the Gauss hypergeometric
differential equation and the Hill-type differential
equation (8).” Titchmarsh® has treated the problem
by reducing the Gauss hypergeometric equation to
a form which eliminates the first-order differen-
tial operator, but we give in the following a sim-
pler approach. The substitution z =cos®y in Eq.

(8) gives directly

dz

3
2 z

de 1(1 1>d<I>3 (1—41/21 1 1
dz 2\z-1

which has the Riemann P symbol

0 1 o
®,=P| 1+v/2 % s/4 z}. (13)
i-v/2 1 -s/4
The function &, can also be written in the form®
®,=212V4(1 _z)/ 4G, (14)
where G is given by
01 o
G=P[ 0 0 i(s+2v+2) z}. (15)

- 0 $2v-s5+2)
The solution of the Gauss hypergeometric dif-
ferential equation

da*G dG _
z(l—z)—‘-i—zg-+[c—(a+b+1)z] EZ—abG—O (16)

is of the form
0 1 %
G=P 0 0 a z|; an)
l-c c-a-b b

hence the differential equation (8) admits the
solution

&,=212/ Y1 )/ 4G (a, b, c, 2), (18)

where G(a, b, ¢, z) is the Gauss hypergeometric
function, and

16 22 16G-17"

16 z(z-1)>‘1’3=°’ (12)

a=3(s+2v+2), b=32v-s+2), c=1+v. (19)

A second independent solution is given by
®3=20+2/41 _ 2)1/ 4G (a, b,1,1 - 2) (20)

The Wronskian of these solutions, as derived
in Appendix A, is given by W=2TI(a +b)/T'(a)T(b).
The solution G(a, b, c, z) is regular at z=0. At
z2=1,

I'(a+b) n_1_
T(a)r®) 1-z

so that the product (1 - z)*/*G(a, b, c, z) tends to
zero as z- 1. Similar considerations apply to
®3. Hence @, and &3 are finite in the closed in-
terval (0,1). But the Gauss hypergeometric dif-
ferential equation is not satisfied at z=1, when
a+b=c, and the hypergeometric series diverges
at this point. Since the physical conditions require
that the differential equation be satisfied for all
values of z including 0 and 1, we see that for this
last condition to be satisfied, G(a, b, c,z) must be
a polynomial, i.e., aor b=-n, n=0,1,2,3... .
For these values of a or b, the Wronskian is null;
i.e., the two solutions are linearly dependent,

G(a, b, c,z)~

Gla,b,1,1-2)=A,,G(a,b,c,2),
where

_(=1)" Tl +n+v)
A= n!  IT(l+v)

The function ¢, can be written as
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&, =202/ Y1~ 2 4G (-n, 1+n+v;1+052).  (21)

- We now introduce in place of s the parameter «
as follows:

(s+2v+2)/4==-3(k/2=v)==n, s=-k-2.

This has the advantage of simplifying the expres-
sion of the coupled-differential-equation system
(32).

Since 2=0,1,2,3, ..., this determines that
k=0,2,4,6,..., and that v=«/2,k/2-2,k/2 -4,

., v=0. The solution (21) can be expressed
in terms of the Jacobi polynomials through the
relation

(k/4-v/2)!
T Muameyy L Wa-op(l - 22)

=G(-3(k/2=),1+v/2+k/4;1+v;2).

(22)

We shall now keep this last notation and write
the solution (21) as follows:

& pt* 2 /2(1 o P)VAPYS, ) n(1-20%),  (23)

where we have substituted z =p?.

The element of integration dy is dz/2z'/%(1 - z)!/2
for Eq. (21), and to change it to pdp is equivalent
of changing our orthogonal set of functions from
(23) to p”Pf (/2 -1 (1 —2p%). Our orthonormal set
of functions will then be given by

2 1/2
e, ) = (%—) COSVA

XP”P'f}"z(K/z-v)(l—sz)X{ boovi0 (g
2, v=0,

K+2
3

1/2
p > SinVA p"PY/% (/2 - (1 = 207) .

w’i(a,zp)=(

The element of integration is m°pdpdx, with
0<p<l, —msA<m, p=cosy.

We have written the functions (24) so that they
be symmetric or antisymmetric with respect to
the change A -~ -2 (A - 27 — ) if the range of A is
taken from 0 to 27) (see Appendix B). We shall
write in the following u%(), ¥) to designate either
% (X, P) or wh (A, ¥).

The radial solution with Egs. (24) are continuum
wave functions for three free particles with total
angular momentum zero. However, the internal

motion of a system of particles can be such that
there are relative internal angular momenta of
one part of a system with respect to another part,
as for example in a system containing internal
rotators, even though these may counterbalance

to yield a total angular momentum zero. There is
just such a situation here for the three-particle
system. This internal angular momentum is char-
acterized by the functions which are somewhat
analogous to the spherical harmonics Y7(6, ¢) that
characterize the angular momentum of a particle
about the origin. Mathematically the correspon-
dence is A ~— ¢, v-—m with the circular function
in each case, y— 6, k- [; but the functional rela-
tion involves the Jacobi polynomials on the one
hand, and the associated Legendre functions on
the other. Physically the analogy is rather remote,
for in the problem considered here both the func-
tions of the A and the y characterize only the dif-
ferent components in the internal vibrational mo-
tion in the plane of the particles where the internal
angular momenta are thus always perpendicular

to the plane of the three particles.

It turns out that Gronwall,'® using a different
approach for a fixed-nucleus system, succeeded
in deriving an orthonormal set of functions which
is equivalent to ours. Simonov,! in the case of
three particles of the same mass, by quite a dif-
ferent but clever route has arrived for the S
states at employing the same functional forms as
the u%(\, ¥), and we have followed for simplicity
his notation here. If one consults the entries under
L=0 of his Table I, he shows the partition of the
internal angular momentum in his coordinates.

Zickendraht!? has also derived a KEO for the
three-body system with arbitrary masses. After
separating the center-of-mass motion the deriva-
tion he used consists in expressing a six-dimen-
sional Laplacian operator in a particular set of
hyperspherical coordinates. However, in our de-
rivation the KEO is derived for an N-body sys-
tem, as explained earlier, in a form depending
only on the 3N - 6 internal variables, and the de-
rivation of Eq. (1) is done by direct application to
the case where N=3 (see Ref. 4). The internal
part O,(L=0) of the KEO in Zickendraht’s work
is also separable, but is not Hermitian. Also our
aim is different, for we are interested in solving
a set of coupled ordinary differential equations
[Eas. (32)], as discussed later, whereas Zicken-
draht has constructed a variational function.

A slightly different approach for a fixed nucleus
system has also been done by Laughlin and Amos.*
We also mention the recent work of Whitten and
Sims, where a different approach is done to sepa-
rate the internal motion from the rotational mo-
tion of the three-body problem.
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TRANSFORMATION OF THE SOLUTION OF THE
TOTAL HAMILTONIAN

We consider now the solution g(R,zp,A) of the
equation

(T+V)¥=E¥, (25)

where V(R, i, ) is the total potential energy of
interaction between three particles.? We write

J

RASHAD M. SHOUCRI 12

E’(R, 4)9 >L) = Z J;m (2Ec)1/2 d(2E0)1/2;9K”((2Ec)1/2)

XRY2J_, (R(2E )%\, 9) 5
(26)

\Il and C are column functions of dimension 2L +1,
3 being the total orbital angular momentum. Sub-
stituting Eq. (26) in Eq. (25) gives

(T~ E) = Zf (2E /2 d(@E J/H(E,  B)Cc(@E)?) RY 2T o REE ) Wk(h, )} = —(Tp + V) ,

(27)
217 T/2 /
cKy((zEcv/z)(E-Ech f f (T, + VERY 2T _ (R(2E ) »ul (A, y) dX dy dR ..
- x=0 "
Substituting in this last equation for ¥ its expansion (26) gives the set of integral equations
Chl REN = E > f Cuol REDH K (2E)Y?, (RE)Y ) QE()? dRE)Y*. (28)
~Fe k!

The symmetric kernel is given by

2T p,~T/2 o ’
K& '((2E,)Y?, QENY?) = f f f RY2J_ (R(E)M?RY 2] o (R(2EL)Y?) w,(\, ) (X, ) dR d\ d .
0 (1] 1]

Recent work on the existence of the solution of a
set of equations of the type (28) are given in Ref.
15.

An alternative approach to the problem is to ex-
press the solution of Eq. (25) in terms of the or-
thonormal set of angular functions u%(A,y). We
write

¥= EFKU

Written explicitly, this has the form

R)u, (X, 9) .

TE Fy,
\I’L -1 Fﬁ;l
=3 L wOGe). (30)
K,V .
S Fey

Since we have changed our element of integration
from dz/2zY%(1-z)*2 to pdp, the wave function
is correspondingly divided by a factor of

zY/4(1 - 2)/4, The operator of Egs. (1) is now
transformed to

G ,,f>‘11+(f pf>\II+V'I! E¥, 31)

where f =sin!/ %) cos/ 2.

(29)

We confine ourselves to states of spherical
symmetry, for which

(%T,f)II:O, L=0.

The wave function ¥ can now be written in the
form

¥ =Y URWL, )

K’

and Eq. (31) reduces to

3 i) (e vam - AR

(S

=2V Y WL xR -
k!v!
We multiply both sides by u%(X, ¥) and integrate
with respect to A,y to obtain

2 -1
(iz— +2E-———————(K+;): “> == S UTKLR),

kv’

(32)

where

j

, 1 2m ,
vg=-2 [ [wo, 0 vao, pepdear. 33)
(o} [}
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Equation (33) has to be divided by %2 if we do not
take 7Z=1. Similarly 2F in Eq. (32) would be re-
placed by 2E/#?,

SOLUTION OF THE COUPLED SET OF DIFFERENTIAL
EQUATIONS

We first note that if we take only the diagonal
element of the interaction U% into consideration,
Eq. (32) will take the form

dz? K+ 3)(k+3
(W +2E +U'(R) J——%—”) Xk(R)=0.  (34)
In the case of a Coulomb interaction, the poten-
tial function has been derived by De Celles and
Darling.? It can be shown by simple inspection
that the interaction potential U%%(R) can be written
as C%/R, where CY. is independent of R. Equation
(34) reduces to the hydrogenlike form
d? C%  (k+3)(k+73)
(zﬁz Y2EF R -
The solution of this equation has been discussed by
Titchmarsh, Ref.8, p. 99. The solution has a
discrete and a continuous spectrum. The discrete
spectrum for the lowest-order radial functicn
X3(R) is given by
(Co)*

2B, =~ Gin+1p’ n=0,1,2,3... .

> Xx(R)=0. (35)

C3%=11.179 4544 a.u., which gives E,=-2.499 604
a.u. for *He, compared to the experimental value
of —2.90372 a.u. This represents 86% of the total
energy, obtained with the zero-order wave func-
tion, a result comparable to that obtained with the
zero-order wave functions of Laughlin and Amos.'®

A more accurate calculation of the eigenvalue
can be done by transforming either Eq. (32) or
(34) into a set of coupled integral equations. This
is the method adopted by Simonov!! in case of Eq.
(32). The derivation of the Green’s function of
Eq. (34) is discussed by Titchmarsh® for the case
of a Coulomb interaction.

An alternative and interesting approach is to
transform the set of differential equations (32)

into a set of difference equations. Work along this
line has already been done by Winter et al.,'® where
a two-dimensional difference equation was used.
Because of the two dimensions, the number of
pivotal points needed to obtain a result which would
compete with the accuracy of the variational meth- .
od is prohibitive, and the calculation of the energy
was done by using numerical extrapolation. The
reduction of the three-body problem to a coupled
system of one-variable differential equations
makes it likely that such a result could be achieved
by using a difference scheme. Work along this

line is actually in progress and will be reported
later.
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APPENDIX A

For the differentiation of the function &, or @3,
we write

dé, _d®, dz

Sl dz dp
By direct differentiation we obtain (c=v)

de, =2(:(1 -z)-1

T Azl le

+zt2e-1/4(1 - 2)1/4962 Gl@a+1,b+1,c+1;2),

% = _2sinycosy = -2[z(1 -2)]V/2, (A1)
dd®s 2c¢(1-z)-1
dz =~ 4z(1-32)

@3
~2(2eV/4(1 _ 2)/ %gpG(a+1,b+1,2,1=2).

Direct substitution of Egs. (Al) in the expression of
the Wronskian of ®, and ®; with respect to y gives

W=-2 (gf—(—l-ﬂ'-'—l— z°*G(a, b, c,z)G(a, b,1,1~2) —2°(1 -~ 2)abG(a, b, c,z)Gla+1,b+1,2,1 -z)

4

_2e-2)=1 cuiGia,b,1,1-2)G(a, b, c,2) - 2°(1 = z)%’lc(a, b,1,1-2)G(a+1,b+1, c+1,z)> . (A2)

4

The expression (A2) is evaluated at z=1. Since
in our case a+b=c, the hypergeometric function
G(a, b, c,z) is divergent at this point. Use is thus
made of the asymptotic expression of this function

r

near z=1. This is given by"’

T'(a+b) 1

Gla, b, c’z)~-I_‘Tc1—)f_(l)) ny =7

(A3)
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FIG. 2. Effect of the change of A on the configuration
of the triangle.

T(c+1){a+1+b+1=c~-1)

Gla+1,b+1,c+1,2)~ T+ DTG+

1
erﬁm?f

. T(c+1) 1
Te+1)T(d+1)1 -2z "

(A4)

Noting that
lim(1-2)In(1 -2)-0,
2—>1

we see that the only contribution is obtained from
the last term in the expression (A2). The first and
the third terms cancel. Hence

ab  T(c+1) I(a+b)

T Ta+)T(+1) 2 T(a)T() " (45)

w=2

APPENDIX B

From Fig. 1, it is clear that a change A— A +27
results in a change of the sign of the X and ¥ in
the primed system of coordinates defined by
De Celles and Darling*. This results in an inver-

FIG. 3. Effect of the change A—~A on the configura~
tion of the triangle.

sion through the origin in the plane of the three
particles, which is equivalent to a rotation by 7
around the Z axis.

Consequently a change A - + 27 followed by a
rotation by 7 about the z axis results in an identical
configuration. ¥(+27)=¢e'"P2¥(\); ¥(\) is periodic
if K is even, an?iperiodic if K is oda, where K
is the component of the orbital angular momentum
along the Z axis perpendicular to the plane of the
three particles.’® For spherically symmetric
states, ¥(x +27) =¥ (1). This restricts v to integer
values as mentioned for Eq. (7).

The effect of the change of A on the configuration
of the triangle can be easily deduced as shown in
Fig. 2, using Egs. (B1),*

7%= (R?/2m,,) [1+ cosy cosr],
733= (R%/2m,,)[1 +cosy cos(r +26,)], (B1)
72, = (R?/2m,)[1 +cosy cos(x - 25,)],

and the results of Appendix B of Ref. 4. Figure
2, for simplicity, is for the case of three equal
masses, for which 6,=06,=7/3.

We finally consider the interchange of two iden-
tical particles 1 and 2 and the application of the
Pauli exclusion principle. The substitution
A - = changes the twisted configuration of the
triangle at A to that at —A as shown in Fig. 3. The
spatial wave function must be symmetric or anti-
symmetric under the following operations which
interchange the identical particles 1,2: XA = =2,
and rotation by 7 around the y axis. Since for the
ground state the wave function is spherically
symmetric, this implies that the spatial wave func-
tion [Eqs. (24)] must be either symmetric (singlet
state) or antisymmetric (triplet state) with respect
to the change A— —x.

*This work has been supported by a grant from the Na-
tional Research Council of Canada.
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