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The expansion method for the nonrelativistic Hartree-Pock theory by Roothaan is extended to relativistic
cases for general open-shell atoms. Numerical applications of the theory to the first transition elements are
carried out. It is shown that the conventional approximation of the exchange potential shifts the energy value
considerably, whereas the off-diagonal Lagrange multiplier has little effect on the energy. Some problems in
the application of the theory to open-shell atoms are discussed.

I. INTRODUCTION

The recent relativistic Hartree-Fock (RHF) cal-
culation' for all atoms in the periodic system has
shown that a complete treatment of the exchange
integrals of the repulsive Coulomb interaction
term is important for the ground-state energy of
open-shell atoms such as the transition elements.

The RHF theory derived by Swirles' and Grant' '
is based on the semirelativistic wave equation that
is well known as the Breit equation. ' ' Although
not fully Lorentz invariant, it is used as an ap-
proximate wave equation. For either RHF or non-
relativistic Hartree- Fock (NRHF) theory, there are
two alternative schemes to solve the Hartree-Fock
equation. One is the numerical. integration method
of Hartr ceo; the other is the expansion method of
Roothaan, ""where orbitals are expanded in
terms of analytical functions. In the application
of the Hartree-Fock theory to open-shell systems,
one cannot obtain a single closed pseudo-eigen-
value equation because of the off-diagonal La-
grange multipliers (ODLM). The Roothaan ex-
pansion method can give the separate pseudo-
eigenvalue equations for closed- and open-shell
orbitals.

Kim" has extended the expansion method to the
relativistic closed-shell atoms. Although many
relativistic calculations for atoms have been re-
ported, no calculation using the relativistic Har-
tree-Fock-Roothaan (RHFR) theory, that is, the
expansion method, has been carried out except
that for helium, beryllium and neon by Kim. The
purpose of this work is to present the RHFR the-
ory for general open-shell atoms.

According to approximate ways for treating the
exchange potential, relativistic calculations by
the numerical integration method are classified
into three types, namely, relativistic Hartree
(RH), '4 "Hartree-Fock-Slater or modified Slater
(RHFS), " 2' and Dirac-Hartree-Fock (DHF)
where the exchange integrals have been treated
exactly for closed-shell atoms but approximately
for open-shell atoms by the use of a value aver-

aged over the shell. The DHF wave function has
been obtained by neglecting the ODLM for open-
shell. atoms. Some of the DHF results concerning
the ground-state configuration of atoms such as
Cu or Cr are not consistent with experiment,
whereas the NRHF calcul. ation2' for Cu, in which
the ODLM has been treated rigorously, has given
the same ground-state configuration as the ex-
perimental one. In the present work, the RHFR
theory of Kim" is extended to general open-shell
atoms. It is interesting to investigate the effect
of the exchange potential and the ODLM on the
energy.

In the present RHFR theory, we assume that
states considered satisfy the following conditions:
(a) The state has no more than one open shell for
each symmetry species; (b) The wave function
for the state is expressed by a singl, e configura-
tion; (c) When the configuration contains only
one open shell, the state can be uniquely speci-
fied by the total angular-momentum quantum num-
ber Z and the seniority number v; (d) When the
configuration contains more than one open shell,
the state can be uniquely specified by J only.

For the ground state or some lower excited
states, it is assumed that the angular momentum
j of each shell takes a value 1.ess than &. This as-
sumption leads to a simple treatment of two-elec-
tron integrals, since the expectation value of any
two-body interaction operator with a wave function
constructed from orbitals with j ~

—,', is diagonal.
in the seniority scheme'8'" which is used in the pres-
ent treatment. The Breit interaction and the ef-
fect of the finite nucleus are included in the theory
as a first-order perturbation. Numerical applica-
tions of the theory to the first transition elements
are made. Some problems in the application of
the theory are discussed.

II. FORMULATION

A. Hamiltonian and wave function

The total Hamiltonian is divided into two parts,
one unperturbed and the other perturbed:

Copyright 1975 by The American Physical ~(~cue(y.
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H =H+H',

where

H= H, p ~
p&v

and

HB +HFN

Hn(p) is the modified Dirac Hamiltonian

HD(p) =clx~ p~+c P' —Z/t~

where the rest-mass energy is subtracted to get
the binding energy. Dirac operators a and P' are
expressed by the matrices

fo') io 0

oi and p'=1&0 —2f

where 0 stands for the three Pauli matrices and I
is the 2X2 unit matrix.

The perturbi. ng Hamiltonian H' consists of the
Breit operator Hq and the operator containing the
effect of the finite nucleus HFN. Problems arising
in the use of the Breit operator have been discuss-
ed in detail by Bethe and Salpeter. ' The general
expression for two-electron integrals of the Breit
operator has been given elsewhere. ""'""The
Breit interaction energy is smaller than the un-
perturbed energy by a factor (Zn) 'Moreov. er,
most of the contributions that are due to this in-
teraction arise from K and L, electrons. It can be
expected that the total energy for open-shell atoms
shifts very little whether this interaction between
two open shells is calculated rigorously by tensor
algebra or approximately by an average method
such as the weighted-mean method of Slater."
The effect of the finite nucleus is important, es-
pecially for K electrons, but it is very small com-

I

pared with the unperturbed energy. These two
perturbation energies cause small energy shifts
of an equal amount for every state with different
J arising from a given configuration.

In the present work, H' is neglected because
these two perturbation energies are small and
also because they have almost no dependence on
J.

A four-component orbital is written as

(P„„(r) X..(8, V) ~

„„„r=r-'I
(ig„„(r) g „-(8,cp) j (6)

P„„(r)and Q„,(r) are the large and small compo-
nents of the radial wave function, and they satisfy
the orthonormal condition

[P„„(r)P„.,(r)+Q„„(r)Q„,,(r)] dr ='„„..~K nK nK nK ~~
nn I

0

The spinor y „(8,y) is written as

B. Unperturbed energy

In general, the total wave function is a sum of
several Slater determinants. The unperturbed en-
ergy for the state considered here is written as

g„„(8,y) = g C(l2j;m —a', o')Y;,(8, y)P'",

(8)

where C(f 2j;m —o, o-) is a Clebsch-Gordan coeffi-
cient, Y, „(8,y) is a spherical harmonic, and P',"
is the two-component Pauli spinor. The relativis-
tic quantum number K is given by

a=+(j+-,') for l=j+-,' and l=j+-,',
where l and /denote the orbital-angular-momen-
tum quantum numbers of large and small compo-
nents of the wave function, respectively.

Z=g gN, .f„„+gN, f.„+-g g gg N, „N,„,{Z„„„,„,-H„„„,„,}
K K~

+ Q Q Q N„N „(J„„.,„.—K„,,„}+—Q Q N'Q, „'{J,„;„—&„,„}.
1

K K K K

(10)

N, „and N, K are the number of electrons in closed
and open shells, respectively. N, K always equals
2j+1, whereas N„ takes various values. The one-
electron integral I, is given by

f.=(4..(1)IH'(1) I P..(1))'.. .

where s denotes nK or oK and m and m' are the

magnetic quantum numbers associated with K.

By using tensor algebra, the general two-elec-
tron integral involving 1/r» has been given by
Grant. ' The three types of direct and exchange
.'.ntegrals have appeared in Eq. (10). The first two
types are the interaction between closed shells
and between a closed shell and an open shell.
These are given by
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=(, Q Q 2 (1)2 «(2) 2' (1)2,«(2)) = Q s'„(ss )P"(ss; s's')1 1
(12)

and

TfD,U =(2 1 2 1 1 P g g, (1)g, (2) g, (2)g, „(1) = g bUU(KK')FU(SS', SS'),1 1
(13)

where

a'„(KK') =5„, ,

b'„(KK') = [C'(jj 'v; —,', —-', )]'/(2v+1),

P"(AC;BD) = I ]I s)s, s)s, U„(1, 2)[P„(1)Ps(1)+Ijl„(()Q(1))(Ps(2)P (2)+Os(2)Q*(2)I,

(14)

(15)

(18)

and

F1,2) =r,"/r,"".
The last type is the interaction between two open
shells, which is written in the following form:

a'„(KKJ) =5„, (20)

(see Appendix). When K =K in E(ls. (18) and (19),
a„'(KKJ) and b'„(KKJ)are no't independent of each
other because F"(OK, oK; oK, oK) is the same in
both J,„,„and K,„,„. In our case,

and

sT „„=g Q„(KK sT)E (OK, OK' OK „OK )

K+K D&s = g bU(KK sT)F (OK) OK 2 OK2 OK )

(18) is assumed. This leads to a simplification in the
treatment of the coupling operator, which is de-
scribed below.

The coupl. ing operator 8, introduced by Roothaan'
is defined by

The coefficients a'„(KK'J) and b'„(KK'J) are deter-
mined so that the integrals represent the correct
total energy for the state considered. In the pres-
ent theory, it is assumed that more than one state
with the same total angular-momentum quantum
number J and the same seniority number v does
not appear in a given configuration. The calcula-
tion of these coefficients by the seniority scheme
wil. l be described in the Appendix.

When K 22K', a'„(KK'J') and b'„(KK'J) are obtained
from the off-diagonal matrix element involving
1/r„ for the case where two open-shells exist

~ =N Q [&((I'2 l
J'" -Tf'"

l 0"
CR

+&4..I 4. .)(J'" —A'")4..],
(21)

where both s and s' denotenz or oz, thatis, orbitals of
symmetry K, and N, denotes N, „and N, K when s
represents na and oz, respectively. J " and K'K

are the direct and the exchange operators by the
open-shell orbital. , whose expectation value, after
carrying out the sum over the shell, is given by

~2 Q Q &0 I
J'" -ff'"l 0, „)=~ '"~ Q [o(„(«)F"(oK,oK; s, s')-P„(KJ)E"(oK,s;oK, s')] .

CK g CK OK
V

(22)

The coefficients nU(KJ) and p„(«) are given by

n „(KJ') =a'„(KK) —a'„(KKJ) (23)

P„(«)=b;(KK) —b'„(K«) . (24)

The direct integral involving J'" vanishes since
o.„(KJ') is always zero because of relation (14)
and assumption (20).

P.(~) = g f.j.,(~) =f'. 5. (25)

C. The relativistic Hartree-Fock-Roothaan equation

Following Kim, "we expand large P(r) and small
Q(t) components of the radial wave function in
terms of the same Slater-type orbitals (STO's)
with nonintegral principal quantum number,
where the expansion coefficients are different
for P(r) and Q(r). These are given by the matrix
form
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and

(26)

where t',~ and q,s are the expansion coefficients.
A STO f„s(r) is written

f (r) (2g ) OSSA/ S[ fc( 2K|I + 1 )] -llSrsKPe CKS.K

(27)
R'(AB; CD) = dr, dr, U„(1,2)

0

(37)

where I'(2n„'s+1) is a gamma function, and

The one-electron integral. is written as

(28)

where

t' ZU„cT,
i —cZ; Sc S„+ZU„)

8, is the overlap matrix whose elements have the
form

xf„(r,)f, (r, )f,(r, )f, (r, ) .

The coefficients A", and B'„' are a'„(KK') and
b'„(KK'), respectively, when the interaction is
between two closed shells or between a closed
and an open shell. The coefficients become
a'„(KK' J) and b;(KK' J) between two open shells.
K&„",K'„'&, and &'„'„' are obtained by replacing
$, „(,„ in Eq. (37) by $, „p, „,p, „),I„, and

g, „g, „, respectively.
The coupling operator matrix R, is given by

~ [~OK&S(1ZKcS)t + QKcS(+OKcS)'F j
where

(38)

(39)

(S,)s, = dr f„s(r)f„(r) . (31)

The nuclear potential matrix U„and the kinetic en-
ergy matrix T,' are given by

(+'C"I &'C Slt (&.)
S~ ffSS!E&SI

' (40)

(U, )S, = "d f,(r)f..(r)
'r (32)

(41)

(g!)Pe = dr f„s(r) —+ —f„,(r) . (33)
(—KK)PS Q Q ~OKcS ~OK 'S

g V

XQ pU(KcT)R (Kp, KQ; KU, Klj).

The direct and the exchange two-electron inte-
grals are also written by the matrix

(42)

where

(~ ")p. = Q g (4 .~. .+n. .n. .)

(34)

(35)

The matrix elements for &'L'„, K„'~, and K'„"„can
be expressed in the same way as for &'L"& by re-
placing the expansion coefficients appropriately.

Vfe obtain the RHFR equations to determine the
expansion coefficients of large and small compo-
nents by applying the variational principle under
the condition that all orbitals are orthogonal to
each other. The derivation is the same as that for
the NRHF theory of Roothaan, where the coupling
operator has been introduced in place of the off-
diagonal Lagrange multipliers. The final equa-
tions are the following pseudo-eigenvalue equa-
tions for closed- and open-shell vectors of ex-
pansion coefficients

A„' 8 KP, K Q; KQ', K U

V

(36)
(43)
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(44)

where

+CK= l K +PCK +ROK y (45}

FoK=~~+Pa~+ Q R„„, (46)

rJSyS gSyS
EK

P, = Q N~ I (47)

By use of the Hartree-Fock (HF) orbital energies,
the total energy is expressed in the following
form:

dition for the energy obtained to be the lowest
stationary value. In the BHFR calculation, optimi-
zation of orbital exponents of STO's is important
to obtain a good result, since the lowest stationary
value for the energy with a wave function obtained
by the expansion method would be found with re-
spect to variation both of the expansion coefficients
and the orbital exponents. However, this is dif-
ficult, because too much time is needed for the
computation.

In the present calculation, full optimization of
the exponents is not carried out. By starting from
the NRHF exponents, "improvement is made by
carrying out some trial calculations with other
values of the exponents to test whether or not the
shift of the exponents yields a lower energy and a
good virial coefficient (V)/(&). Then, when it is
found that number of basis functions is too small
to construct reasonable orbitals, new functions
are added. The exponents of old functions are
adjusted if the overlap integral between new and
old functions has a value greater than 0.95.

III. DETAILS OF THE CALCULATION

The relativistic ground state, which is the
lowest positive energy state, corresponds to an
excited state in the nonrelativistic case, since
there are negative energy states below the state
in consideration. In the nonrelativistic varia-
tional calculation, it is guaranteed by the vari-
ational principle that one cannot obtain a lower
energy than the true ground-state energy. This
is not the case in the relativistic calculation. In
the RHF calculation, the ground-state energy is
obtained as the lowest stationary value among
positive energy states.

As Bagus" has mentioned in his NBHF calcula-
tion for hole states of rare gases, a stationary
value may be found by the use of the virial theo-
rem. Kim" has also used the virial theorem in
the BHFB calculation to obtain a stationary value
for the energy.

For a system interacting with a Coulombic
force, the relativistic virial theorem is given by"

(T) = —(V) and Z=(M), (49)

where (T), (V), and (M) are the expectation values
for kinetic, potential, and rest-mass energy op-
erators, respectively. However, satisfying the
relativistic virial theorem is not a sufficient con-

The RHFB equation is solved by iteration for the
closed- and open-shell equations until the self-
consistency is obtained. The solutions for negative
energy states are not used, since we are con-
cerned with positive energy states.

IV. CALCULATED RESULTS

The RHFB unperturbed energies of the ground
and excited states of the first transition elements
are listed in Table I together with DHF(TE), '
BHFS,"and NBHF" ones. The calculations are
carried out for all the states of the configuration
[Ar] 3d" 4s', where [Ar] means the electronic con-
figuration of the argon atom. For the configuration
[Ar] 3d" "4s', only a state with the highest J is
calculated with and without the ODLM, i.e. , the
coupling operator to examine the effect of the
ODLM on the energy. The Breit interaction and
the effect of the finite nucleus are neglected both
because they are small and depend on J very little.

The orbital exponents of STO's used are listed
in Table II. The relativistic shells are described
by the notations of nl+ and nL- for g = 1+2 and j
= I- &, respectively, where 1 and J are the orbital
and a total angular-momentum quantum numbers
for the shell under consideration. The same STO's,
except for the ls STO for the p- shell and the 2p
STOfor the d- shell, are used for nl+ shells, since
the large components of the radial wave functions
for these shells can be expected to be nearly equal.
It is also expected that the use of the same STO's
for these shells has little effect on the energy be-
cause the eigenvectors for the small-component
function are smaller by a factor 10 ' than those
for the large-componentone. For p- and d- shells,
1s and 2P STO's are needed, respectively, since
the small-component function for the nl —shell
has one more node than the large-component func-
tion.
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TABLE I. Comparison of the RHFR and other relativistic and nonrelativistic energies for
the first transition elements (in a.u.). Values without the ODLM are in parentheses. The
ground-state configuration obtained from experiment (Ref. 35) and the lowest RHFB energy
are underlined. The configuration without core electrons f Ar] is given in the third column.

Rixmber of electrons
Atom & Sd- 3d+ 4q + J

Virial
Theorem /HFDF DHF (TE) RHFS NRHF

Sc 3
2

5
2

-0.999 98

-0.999 98

763.377 763.3895 760.496 759.736

763.268 763.3150

22 2 -0.999 99

-0.999 98

852.841

852.749

852.8392 849.791 848.405

-0.999 98 852.728 852.7797

(-o.eee 98 852.726)

3
2

L

2

-O.g99 99

-0.999 98

(-0.99995

948.217 948.2191 945.016 942.883

948.156 948.1693

948.117)

Cr 24 4

Mn 25 4

Fe 26 4

Co 27 4

4 4

Ni 28 4 4

Cu 29 4 5

4 6

~Reference 1,
Reference 17.
Reference 27.

5
2

9
2

9
2

3
2

5
2

9
2

5
2

2

-1.000 01

-$.999 99

(-1.000 00

-0.999 98

-0.999 97

(-0.999 98

-0.999 99

-1,000 00

-1.000 00

-0.999 99

(-o.eee 99

-0.999 98

-0.999 98

-0.999 98

-0.999 94

(-0.999 98

-0.999 98

-0.999 98

-0.999 98

-0.999 97

(-o.eee es

-0.999 97

-0.999 97

(-0.999 97

1049.67 1049.6820 1046.299 1043.306

1271.44 1271.4370 1267.795 1262.443

1271.40

1271.30

1271.61 1271.4017

1271.60)

1392.09

1391.99

1391.98

1391.11 1392.0155

1392.0441 1388.264 1381.414

1392.19)

1519.32 1519.3420 1515.425 1506.869

1519.28

1519.15

1519.40 1519.31g4

1519.42)

1653.44 165S.4S52 16SS.g4g

1653.44 1653.4679 1649.474 1638.961

165S.4S)

1o49.73 1o4e.6319

1049.70)

1157.34 1157.3673 1153.867 1149.865

1157.49 1157.3251

1157.47)
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TABLE II. Optimum values of orbital exponents of STO's used in the RHFR calculation for
the first transition elements

Ato
Shell
STO 2g

S+
3s

p- andp+
2p 3p

20.8791
36.0

18.007
8.6

7.3798
4.7354
3.2087

3.2266
1.5278
0.96

9.5892
16.476

9.0
5.0
4.1417
2 ~ 8391
1.8

5.5469
4.57
3.57
2.25
1.6
0.9

21.7832 18.7059
37.0 9.3846

8.2372
4.8316
3.3793

3.4877
1 ~ 5391
0.9385

10.0056
16~ 7923

9.5
6.0
4 ~ 7353
2.9246
1.3418

9.1
5.4
3.3
2.15
1.3
0.95

V 22.7763
40.0

23.0
9.374

9.5
6.7
3.7

3.75 10.6236
1.6576 16.6889
0.9947

24.6096 21 ~ 1177
40.0 10 ~ 6685

8.7566
5.7335
4.148

3.65
1.816
1.0811

9 5894b
16.2699

23.5354 21.2835 10.5 3.2839 10.6674
41.0 10.5 6.5 1.7226 16.3625

4.0251 1.0567 7.6

8.0449
5.367
3.2011
1.475
0.9947

6.6401
3.5474
2.0
1 ~ 2

9.0
5.88
4.28
3 ~ 13
2.1

9.971
4.7919
3.5249
2.5756
1~ 572
1.172
8.3587
5.2264
3.47
2.7
1.8
1.2645

11.1772
5.6157
4.5
3.7239
2.4849
1.3718

Co

Ni

26.8272 22.0
40.0 12.1605

27 ~ 781 ~

40.0
22.6667
12.65

28.7426
42.1133

23.333
13.1453

25.8782 ~ 21.333
41.0 11.0123

9.5002
6.0
4.5

10.547
6.6822
5.2O84

12.0
7.5
4.5

11.4199
6.6632
5.8397

3.8
1.8
F 0

4.55
2.0159
1~ 1973

4.8023
2.8
1.2653

5.0328
2.1422
1.2525

1o.o92'
17.0237

12.0"
19.7

12.3 b

18.2

12.2857
19.0591

12.0
6.4765
4.4681
3.4539
2 ~ 5518

11.5
6.0
4.7
3.5319
2.7084

11.3575
6.3026
4.1333
3.0
2.3286

11.8919
7.2841
4.5745
2.8669
1.5

7.5
5.0041
3 ~ 5954
2.6169
1.8488
1.2

10.703
6.5802
4 ~ 5541
2.7482
1.534
0.9

12 ~ 6791
6.8718
4.63
2.9253
2.2
1.6098

13.0023
7.3857
5.0748
3.0723
1.7192
0.8

This ].g STO is also used for the p -shel. l in the cal.culation.
This 2p STO is al.so used for the d—shell.
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TABLE III. Comparison of orbital energies for copper
(Z =29) (in a.u.).

Shell
BHFB
(J j.

) RHFS
NBHF

('s) Experiment ~

1s +
2s+
2p-
2p +
3S +

3p
3p +
3d-
3d+
4s+

332.661
41.664
36.302
35.548
3.149
3.421
3.322
0.478
0.466
0.244

328,67
39.92
35.23
34.45
4.458
2.960
2.861
0.372
0.361
0.261

328.793
40.820

35.619

5.013

3.326

0.492

0.236

330.14
40.48
35.11
34.38
4.57

2.87

0.39

0.284

E
V.T.

1653.44 1649.47 1638.96
-0.999-97 -2.000 00

'Reference 20.
Reference 27.

The number of STO's used in the calculation is
10 for s+, 8 for P -, 7 for P+, 7 for d-, and 6 for
d+ shells, respectively. The optimum exponents
are obtained in the calculation of the state with the
configuration [Ar]3d"4s' and are transferred for
the calculation of the state with the configuration
[Ar] 3d" "4s'

The HHFH energy is obtained so as to satisfy the
virial theorem. The maximum deviation of (V) /
(T ) from the best value of —1.00000 is +0.00003
in these calculations, so that the maximum energy

deviation owing to incomplete optimization of the
exponents is considered to be within +1 in magni-
tude at the fifth figure, whereas the numerical
error of the single precision calculation lies at
the sixth figure within +1.

The electronic configuration of the ground state
as determined by experiment" is underlined in the
columns labeled "Number of electrons" in Table
I. The lowest energy obtained by the RHFR cal-
culation is also underlined in that table. Agree-
ment of the ground-state configuration obtained
from the RHFR and experiment is obtained for Sc,
Ti, V, Cr, and Cu, whereas the DHF(TE)' results
are in agreement with experiment for all atoms
considered here except for Cr and Cu. The dis-
crepancies probably arise from inaccuracy of
prediction of the ground-state configuration for
these atoms by various Hartree-Fock schemes.
Since Sd and 4s orbital energies are approximately
the same, the energy difference between the con-
figurations [Ar] 3d"4s' and [Ar]3d"+'4s' is small.

The DHF energies obtained by Maly ~ ~. ' have
been calculated by two methods with the same wave
function that was obtained by neglecting ODI.M's
in the Hartree-Fock equation. One is the method
denoted by TE (total energy), in which the exact
coefficient N„b'„(KK&) is replaced by N, „b'„(zz).
The other is denoted by AE (average energy), in
which (N, „-1)[(2j+1)/2j]&'„(KK) is used The.
latter is the weighted-mean method of Slater. "
The AE method gives the exact coefficient of the

TABLE IV. Energy difference by the RHFH calculation between the ground state and excited
states arising from the same configuration as the ground state for Ti, Fe, Co, and Ni (in
a.u. ) . EE = E (excited) -E (ground) .

RHFR
Number of electrons Ground Excited

Atom S 3d — 3d + 4s + state state AE x 102

Experiment '
Ground Excited

state state

22

Fe 26 4

Ni 28 4

Co 27 4

J=2

J=4

8J=-
2

J=0

5J= 2

3J 2

0.04

0.14

0.11

0.10

4Fe/

0.04

0.17

F4

0.092 F2

03
5
D2

5'
5g

4F712

4
Fsr2

'F
St2

0.077 559 6

0.176 368

0.189 615

0.320 940

0.404 881

0.445 884

0.372 00

0.641 349

0.824 836

0.607 301

1.01046

Reference 35. 1 cm ~=4.55879x10 a.u. is used.
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exchange integrals for the ground state of a closed-
shell atom and an open-shell atom which has one
electron or one hole in the open shell. Comparing
these coefficients, we expect that TE is lower than
AE for any open-shell atom if the same wave func-
tion is used, since N, „&(N,„l)-[(2j +1)/ 2j J .
This, however, is not so in the DHF results ob-
tained by Maly et al.' In Table I, TE's in the DHF
results are listed.

The RHFR orbital energies for Cu are listed in
Table III together with the RHFS" and the NRHF"
ones and the experimental binding energies. " The
RHFS and the NRHF orbital energies are closer
to the experimental binding energies than are the
RHFR ones. Because Koopmans's theorem does
not hold in this case' ' "and, moreover, the ex-
perimental energy contains various energies that
are due to electron correlation effect, quantum
electrodynamic effects, ~ etc. , it cannot be con-
cluded that the RHFR result is not valid.

The orbital energy of the Sd+ shell is higher
than that of the 3d'- shell in the RHFR results for
the state with the highest ~of Cr, Mn, Fe, and¹i,
whose configurations are [Ar]3d" "4s', and of Co,
in which it arises from both [Ar] Sd" "4s' and

[Ar] Sd" 4s, ' i.e., ;Cr (~ = 3), Mn(& =
2 ), Fe (& = 5),

Ni(&=3), and Co(two &=-2) states (see Table I).
The inversion of the orbital energy between nI—
and nl+ shells will be discussed later in connec-
tion with problems in the RHFR calculation.

V. DISCUSSION

In Table I, the difference of the energy values
between the RHFR and the DHF(TE)' calculations
is due not only to incomplete optimization of the
exponents in the RHFB calculation and the dif-
ference of numerical technique, but also to the
approximation of the exchange potential in the
DHF(TK) calculation.

The effect of the exchange potential on the energy
can be examined by comparing the energy value
between the states with various J values arising
from the same configuration. By using the energy
values in Table I, energy differences between
various states for Ti, Fe, Co, and Ni and cor-
responding experimental values are listed in
Table IV.

For Ti, the energy difference between the ground
(&=2) and the excited (&=0) states arising from
the configuration [Ar] Sd —'4s +2 is 0.092 a.u. ,
which is 0.01% of the ground-state energy. For
other atoms, the magnitude of the energy dif-
ferences between the ground and the highest ex-
cited states are also about 0.01% of the ground-
state energy. This means that energy value could
shift at the fifth figure by the approximation of the

exchange potential in the worst case. As has been
mentioned before, the RHFR energies for all the
states considered here are obtained by using the
same STO's, since the difference in the wave func-
tion between the ground and lower excited states
is very small. Regarding the energy difference
between these states, it will be expected that the
RHFR values in Table IV shift little if the RHFR
energies are obtained by carrying out the complete
optimization of the exponents in each calculation.
It is concluded that the approximation of the ex-
change potential shifts the energy value considera-
bly. However, the RHFR energy difference is too
large when compared with experiment. The former
is several hundred times larger than the latter.
The reason for this is that a single configuration
wave function bv pure j3 coupling cannot give an
adequate description for these atoms.

By comparing the energies obtained with and with-
out the ODLM, that is, the coupling operator for
the configuration [Ar] Sd"+'4s', it is found from
Table I that the ODLM has little effect on the en-
ergy. In Table I, the RHFR energies obtained
without the ODLM are in parentheses. The ex-
ceptional result for Co may be due to the inap-
propriate basis functions which gave a bad virial
coefficient of —0.99994.

Sometimes convergence is not obtained in the
RHFB calculation. Even if the convergence is ob-
tain. ed, it happens in some cases that the orbital
energy of the nL+ shell is lower than that of the
el —shell, which contradicts the experiment.
Such an inversion of the orbital energy has oc-
curred in the calculation for atoms from Cr
through ¹i,whose configuration is [Ar]Sd —'Sd
+" '48', and for Co in the ground state. This has
already been mentioned. For excited states with
lower ~, this inversion of the orbital energy does
not appear. The reason for the inversion of the
nI + orbital energies is that the electronic states
of small atoms or outer electrons of heavier
atoms are described substantially by the L8 or
intermediate coupling. In. other words, nL + or-
bitals are nearly degenerate. The single-con-
figuration wavefunction by the RHFR theory is
written in pure gg coupling and is not adequate for
describing these states.

The inversion of the nL + orbital energies will
disappear if we use the average method. How-
ever, the description of the state with the rigorous
total angular momentum ~ is discarded in this case.
Proper improvement of the BHFR scheme would
be made by constructing the wave function as a
linear combination of some configurations, i.'e. ,
by taking configuration mixing into account. How-
ever, this leads to the multiconfiguration Hartree-
Fock scheme, which will be difficult to solve and
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is not described here.
One of the merits of using the expansion method

is that the wave function obtained is easy to use
in other calculations in related fields. The diffi-
culty of this method lies in the optimization of the
orbital exponents in terms of a small number of
basis functions. This requires a large amount of
time for computation. However, the application
of the RHFR theory to heavier atoms is now pos-
sible as high-speed computers with large memory
are coming into existence.
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APPENDIX: THE MATRIX ELEMENT OF 1/P1g BY USE OF
THE SENIORITY SCHEME

Even if more than two open shells are involved
in the configuration, the integrals for a general
two-electron operator V» are reduced to the fol-
lowing two open-shell cases":

(
+ttpj(J)jU,

'(Z),UZ'('„j(vJ(,j'(,vJ),J') =,A,, +2, +B,
&&»

(A1)

where the diagonal matrix element A), is written

j xv J' P j xv J
j&»

(A2)

and the off-diagonal matrix element & is

fly +tip

B = j v J j v J J - P» j v J j v J J
' f =1 »~1+A

E0= . Q (2&'+1)V~~2j +1 p( )
(A5)

(AO)

Recently, Grant~ has made a computer program
to calculate the coefficients of two-electron radial
integrals involving 1/r„ for the jj configuration

nz is the number of electrons in the j), shell, and
v~ and Jq are the seniority and the total angular-
momentum quantum numbers for the configuration,
respectively. The diagonal matrix element A. is
expressed by use of the seniority number v as
follows:

V

A = j"vJ P ('„j"vJ)
g&»

n —v (n —v)(n+v —2)
2 " 2(2j -1)

(A4)

where

3
2

5
2

7
2

dp (j "vJ)
v=4

3
2

5
2

8
2

9
2

4 0 0

2 2

5 1

3 1

5
2

2

3

2

5

2

9
2

11
2

15
2

4
245
104

1225

6
175
2
35

8
175

5
189
17

441

27
79

1828
5

M89

5

68

17
441

10
44T

1
72
1
54

2
705
1

77

589
13

868

31
5929

73
254i
28

847

TABLE V. Values of d„(j "vJ)).

v=6

25
3861

25
1287

5?5
424 71

2714
181 088

425
424 71

1025
184 041
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Shell &f ) f n f +f Jf J by(&p2J) bv«p

TABLE VI. Values of b„{Kp2J) for the configuration

4=ii &&(~i~g~. ig=k. J)'
the coefficients of fractional parentage (cfp},40 the
diagonal integral A. for 1/&» is given in the fol-
lowing form:

1 f
2

3-2
2

12
3 12

2 1

13
2

f
0 3

i1
i f
2 8
3
2 0

1 2
27

1
9
i
3

5
78

A =
2 Q d„(j"vJ)F(oK, oK;oKqoK). (A7)

n(n —1)

From Egs. (20), (21), (22) and (AV), b'„(zzJ) is
obtained as

5'„(zeT) =1/n, v =0,
2 r 1 1 2

3
2

0 0 2

2 2

2
3
2

d+ -3 p 1 15

0 0

2 2 2

4 2
3
2 2

2

4 0 0 2

2 2 2

f
2

3
2

i
5

f
f0

25

2
75

f
2 25

i
To

3 f
2 25

7
2 0

f
W5

2

f i
2 70
3 7

7R
i

25
0

725

5
2

5
2

9
2

5
2
0
2

25

3
50

2
25

7
50

0
55

3
25

50

25

=- (n-1/ n)d„(jwJ) v&0, (A8)

8 =n~n~ Q [Q„(K~K2J)E (OK~, OK~,'OK~, OK2)

where n =N, „. The values of d„(j"vJ}are calculated
by use of Egs. {A4), (A6), and {A6), and are listed
in Table V.

The expression for the off-diagonal matrix
element & is complex for general open-shell cases.
As has been noted, we consider the cases where
more than one state with the same J does not ap-
pear in a given configuration which contains more
than one open shell. Detailed expressions for the
matrix element 8 are given elsewhere. "'" After
evaluation of the angular integration and by use of
cfp's, the matrix element & can be expressed with

Qy(K~KI J) and &„'(~,~,J}as follows:

j 2 is for the 8+ shell. .

mixing method, where the seniority scheme is
used. The integral of Eq. (A1) is included as the
single-configuration case in the program. After
carrying out the angular integration and by using

-6p (K~K~J)E (oK~ OKs'OK~ OK }]
(A 9)

where a„'(K,KI J)=6„0. Numerical values of
b; (K K2 J}in which j2 is for the s+ shell, are
listed in Table VI.
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