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A modified version of the Van der Waals theory of fluid interfaces is presented. The modified theory is shown

to retain the qualitative simplicity of the original theory while yielding a much more quantitative description
of fluid properties.

I. INTRODUCTION 0 =le(~)]"~,

Nearly a century ago, Van der Waals' introduced
a theory of fluids which even today represents the
simplest qualitatively correct molecular model of
nonpolar fluids. The model yields explicit expres-
sions for the thermodynamic functions, predicts
the existence of metastable one-phase systems,
and yields solvable equations for interfacial densi-
ty profiles and interfacial tension of two-phase
systems. The model is based on a series of ap-
proximations, all of which were necessary to ob-
tain tractable results at the time of Van der Waas '

original work. Recent developments in the molec-
ular theory of fluids, however, allow one to elimi-
nate some of the approximations of the Van der
Waals model. The result is a quantitative improve-
ment in the model with little sacrifice in the orig-
inal simplicity. The purpose of this paper is to
develop such a modified Van der Waals model,
i.e., one in which the dispensable approximations
are removed, and to use the model to investigate
the interfacial properties of a liquid in equilibrium
with its vapor.

(2.1)

where q(T} denotes the contribution of the kinetic
and internal energies to the partition function of a
particle,

the total repulsive potential, and

the total attractive potential of the particles in a
given configuration r„.. . , r„. The first assump-
tion of the Van der %'aals model is that the at-
tractive potential u„" may be replaced by the aver-
age value (u„")z in Eq. (2.1), so that

Q =use '"~'z~' (2.2)

where Q„, defined by

II. GENERAL FEATURES OF THE MODIFIED VAN DER
WAALS THEORY OF FLUID INTERFACES

We shall consider an inhomogeneous system, at
temperature T and of volume V, containing ~ iden-
tical particles which interact via pairwise additive,
centrally symmetric forces. The pair potential
u(r} will be expressed as the sum of two parts,
us(r) and u„(r), where u„(r) is the potential as-
sociated with the short-ranged strongly repulsive
interactions. The precise forms of u+ and ~„may
be left unspecified in the general results to be
derived below. The canonical partition function
for the system is of the form

(2.3)
is the partition function of a system of purely
repulsive particles at the same temperature and
having the same density profile n(r} as the subject
system. The subscript ft on (u„)z indicates that
the average of u„" is computed for an ensemble of
the purely repulsive particles. Equation (2.2)
represents a "mean-field*' approximation, which
is valid if the molecular configurations allowed
by the repulsive interactions of the particles lie
sufficiently close to the most probable or average
molecular configuration. From the work of Lebo-
witz and Penrose' one can conclude that Eq. (2.2)
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E=Ez+UA ~

where

(2.4)

is exact in the limit of infinitely long-ranged at-
tractive interactions, and from the work of Weeks,
Chandler, and Andersen, ' the approximation of
Eq. (2.2} (which can be shown to be closely related
to the assumption that the fluid structure is pri-
marily determined by the repulsive interactions)
appears to be quite good for the Lennard-Jones
6-12 fluid at densities greater than twice the
critical density. Unfortunately, we cannot give
further justification for the mean-field approxima-
tion, although, as did Van der Waals, we shall
take Eq. (2.2} as the starting point of the theory.

We remark that the true average value (u„")
could have been introduced as logically as (u"„)„
in the first assumption, Eq. (2.2), of the Van der
Waals model. Since, however, only (u„)„can
presently be computed conveniently, we shall not
introduce the less restrictive assumption.

The Helmholtz free energy E corresponding to
Eq. (2.2} is

liquid interfaces, this assumption of the Van der
Waals model becomes exact as the critical tem-
perature is approached. Although the domain of
validity of the local-equilibrium approximation
cannot be determined presently, it is the authors'
opinion that the approximation underlying Eq.
(2.2) is more likely to give error than the local-
equilibrium approximation.

For an inhomogeneous system of N identical
particles with an attractive potential of the form

u~ = u„~«,

the quantity U„may be expressed in the form

n(r)n(r')g(r, r')u„(~r —r'~)d'rd'r',
V

(2.8)

where g (r, r') is the pair-correlation function of
a pair of particles at r and r', respectively. This
form follows from Eq. (2.6) by noting that

E„=—kT lnQ~, (2.5} «j R

(2.6)

Thus, according to the mean-field approximation,
the Helmholtz free energy of the subject fluid is
equal to the sum of the Helmholtz free energy &„
of a reference fluid with the same density profile
and composed of purely repulsive particles and
the thermodynamic excess energy U& arising
from the attractive interactions of the subject-
fluid particles.

For an inhomogeneous system, the free energy
E„may be written in the form

E„= f„(n(r))d'r,
V

(2 'I)

where f„ is the local Helmholtz free-energy
density of a reference system with the density
profile n(r). The second assumption of Van der
Waals, and one that we shall also use, is that
f„(n(r)) is equal to the Helmholtz free-energy
density of the reference fluid at equilibrium at
temperature & and with a uniform density equal
to n(r}. In other words, it is assumed that the
relationship between the local free-energy density
f„(n(r)) and the local density n(r} is the same as
that between the equilibrium free-energy density
and the density of a homogeneous reference fluid.
This "local-equilibrium" assumption is expected to
hold if the density profile varies sufficiently slow-
ly over distances of the order of magnitude of the
range of the repulsive forces. Thus, for vapor-

=—(N I)(u~(r„) )-„

=—(N- I) ~( u„(r„)p, (r„r,)d'r, d'r„
2 Jy

where p, (r„r,) d'r, d'r, is the probability that a
pair of particles are between r, and r, +d r, and
r, and r, +4 r„respectively. Defining the pair-
correlation function by g( r„r,}=p, (r„r,)/
p(r, )p(r, ), where p(r, ) d'r, is the probability that
a particle is located between r; and r;+dr, , and
noting that n(r&) =NP (r;), we obtain Eq. (2.8).

Combining Eqs. (2.4), (2.7), and (2.8), we obtain
the following expression for the mean-field ap-
proximation to the Helmholtz free energy of an
inhomogeneous fluid with a given density distribu-
tion n(r):

F = fR( n( r)}d'r,

n(r)n(r')g(r, r')u~(~r- r'~) d'rd'r'.
V

(2.8}

With the added assumption that f„(n) is equal to
the free-energy density of the homogeneous refer-
ence system at n, Eq. (2.9}represents the starting
point of Van der Waals theory. To obtain what is
known as the Van der Waals model, the added ap-
proximations (a) that g(r, r')=, 1 and (b) that
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fs(n) = —nkT[ lnq (T) + ln(1/n —6) +1] (2.10)

a= —p u~s ds (2.11}

This result, with Eq. (2.10), yields the well-

must be used. Equation (2.10) is based on the as-
sumption that the repulsive interactions are rigid-
sphere interactions and that the rigid-sphere-con-
figuration partition function can be approximated
by the relation Z)s)( = (V —Nb)"/N!, obtained by
analogy from the one-dimensional result. The
quantity b represents the rigid-sphere excluded
volume per molecule of the system. With approxi-
mations (a) and (b) one obtains for a homogeneous
fluid F =V[f„(N/V) —(N'/V'}a], where

(P+ N'a/V')(V —Nt ) =NkT . (2.12)

In the improved version of Van der Waals
theory (herein referred to as the modified Van
der Waals theory), Eq. (2.9) is retained, but ap-
proximations (a} and (b) are replaced by a less
severe approximation, namely, a "local-equilib-
rium" assumption for g(r, r') We shall assume
that the pair-correlation function may be approxi-
mated in Eq. (2.9) by the pair-correlation function
of a homogeneous fluid at the density n((r+ r')/
2) midway between the pair of particles. Thus,
Eq. (2.9) becomes

known Van der Waals equation of state for a homo-
geneous fluid, namely,

~l
n(r)n(r')g) ( r —r'(;n ~u„([ r —r'~)d'rd'r'.

2 ) (2.13)

Although the domain of validity of this approxima-
tion (which is quite similar to the local-equilib-
rium approximation introduced for fs) is difficult
to assess, it is clear that the broader and more
slowly varying the interface the more accurate
the approximation should be. Equation (2.13) is
the basic equation of what is herein referred to
as the modified Van der Waals theory.

Up to this point the density distribution has been
left unspecified. However, for a closed system of
N particles in a fixed volume V at a fixed tempera-
ture T, the equilibrium density distribution is

determined by the condition that & be a minimum.
Subject to the constraint that f„n(r)d'r=N, the
minimization condition for & is that the functional
derivative of F —o(f„n(r)d r with respect to n(r)
be zero for n(r) =n'(r), where the superscript
on n' denotes an equilibrium or "stationary" den-
sity distribution and a is a Lagrange multiplier.
The quantity e can be shozvn to be the chemical
Potential of the system Taking . the functional
derivative of F —o f„n(r) d'r with respect to
n(r) and setting it equal to zero, we obtain the
following integral equation for n'(r):

(2.14)

f )
( )

dfs(n)
dn (2.16)

The Van der Waals limit of Eq. (2.14), obtained
by setting g—= 1 and approximating f„by Eq. (2.10),
is

n'(r+s)u„(s)d's+f„'(n'(r)) —+=0 . (2.16)

Van Kampen has recently shown that Eq. (2.16)
admits at all temperatures the homogeneous one-
phase solutions (n' =N/V), giving the usual Van
der Waals equation of state, Eq. (2.12), and that,
below the critical temperature, Eq. (2.16) admits
inhomogeneous two-phase solutions along with the
one-phase solutions. The two-phase solutions are
identical to the coexistence states constructed
from the one-phase equation of state by the Max-

well equal-area tie-line construction and are more
stable (lower Helmholtz free energy} than the one-
phase states allowed by Eq. (2.16) in the two-phase
coexistence region. The same qualitative conclu-
sions could be drawn from Eq. (2.14) for realistic
models of g and fdd.

One of the systems we shall focus attention on
in this paper is a two-phase gas-liquid system with

a planar interface, i.e., one in which the density
varies only along the x direction. We shall assume
that the lengths of gas and liquid regions are long
compared to the thickness of the interfacial region.
The densities n~ and n, of the bulk gas and liquid
phases (far from the interfacial region) and the
quantity a are determined from the conditions

S

d'„'(n'„)sn„ f (d(s;nr)+ ",(s;n ))s (s)d s=n,
Bn

r g and t (2.1't)
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++g++@gS,+gSdS

+2tl —S, S ~ Sd S ~ (2.19)

f(n, ) —an, +-,'n,' f g (s, n, )n (s)d's

=f (n, )- an, +-,'n', f g(s, n, )ns(s)d's .

(2.18)

Equation (2.17) is obtained from Eq. (2.14) by re-
quiring the density to approach the constant values
n~ and n, far from the interface and in the gas and
liquid regions, respectively. To obtain Eq. (2.18),
we have noted that the pressure I'~ in a homoge-
neous bulk phase of a system whose free energy
is of the form of Eq. (2.13) is given by

g (n). = fs(n)---,'n' fg(s, n)n„(s)d's

The quantity in the large parentheses of Eq. (2.19)
is equal to the constant o, according to Eq. (2.17).
With this equality, the condition of hydrostatic
equilibrium in a planar system, Ps(n, ) =Ps(ng},
implies Eq. (2.18).

The surface tension for a planar interface may
be determined from the thermodynamic relation

(2.20)

where A is the area of the interface (normal to
the x axis). Suppose the system is a rectangular
parallelepiped of length Lx in the x direction and
of area L,L, normal to the x axis. Suppose also
that the lengths I„,L, , and I, are large com-
pared to the range of u„(s) and to the. width of the
interfacial region [i.e., of the region in which
n(x) goes from n, to ng ]. Suppose also that the
interfacial region is far from the ends of the sys-
tem in the x direction. Under these conditions,
Eq. (2.13) becomes

Lx2 x2

E=L„L, fs(n(x))dx+2L, L, g(s;n(x+~ s„))u„(s)n(x)n(x+s, )dxd's,
-L

xg,
-Lxg

(2.21)

where s =r' —r and —L„, and L„2 are the lower and
upper limits of x measured relative to an arbitrary
origin. We shall evaluate the area derivative of E
by varying L, while L„ is kept constant so that
dA =L,dL, . If we choose the origin such that
x =0 is located at the Gibbs dividing surface of
zero excess matter, i.e., such that

Lx2
I,,I,g n(x)dx=I, „Ig(n, I.„,+ngL„2),

(2.22)

then the constraints of constant V and ~ on the
area derivative in Eq. (2.20} yield the relations

dLx, Lx, dI „, Lx, (2.23}

Performing the area derivative of Eq. (2.20) with

the aid of these relations, we obtain

Lxl
[f„(n(x))-f„(x)]dx

Lx2

u„(s)[g(s; n(x +-,'s„)}n(x)n(x +s„)—n(g', ) (s, x)]dx d's,
Lxg

(2.24)

with the definitions

(2.2S)

and

where

)1(x) =0, x(0
=1, x)0 . (2.27)

ng', (x}=n', g(s, n, )[1—q(x)]+n2 g (s, n )q(x),

(2.26)

Since the integrands in Eq. (2.24) are zero for x
large compared to the width of the interfacial
region, the limits Lx2 and —L» can be set equal
to any computationally convenient values that are
large compared to the width of the interfacial
region. Once the equilibrium density profile n'(x)
is determined from Eq. (2.14), the surface tension
can be computed from Eq. (2.24).

For temperatures such that the density varies
slowly over distances of the order of the range of
u„, Eq. (2.14}can be reduced to a differential
equation with the aid of the expansions
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n(r rs)d(s;n(r+-' s))s„r(s)d's =-n(r)n (n(r)) -[V n(r)]( ' (n(r))+ ' (n(r)))

-[V, n(r)]*(— ' (n(r))+ ",' (n(r))) +O((v, n)') (a.a8)

n(r+2s}n(r--,' s) —(s;n(r))u„(s)d's =-
&

' n'(r)- — ' (n(r)Van(r) —
t V; n(r)]'$ +O((V, n) ),

(2.29)

where

w, -=— u„s g s;n r d's,

s'u&s g s;n r ds.

(2.30)

(2.31)

n(x) -n, as x - —~,
(n )x-n~ as x-+~

dn—-0 as
dx

(a.s8)

Substituting Eqs. (2.28) and (2.29) into Eq. (2.14)
and neglecting terms of order (V„n)4, we find the
following differential equation for the equilibrium
density distribution:

~W

4n gn r 8n gn gn

The quantities n, n&, and n~ are determined by
the conditions

and

@(n ) =C(n, ) (2.37)

(2.38)

where O'(n) =8@/&n. Integrating Eq. (2.34), we
f ind

where

C (n}—= fz(n) —~ n'zo —nc(.

(n),

(2.32)

(2.33)

or

c dn —4)(n) = —4'(n, ),

dn, r, S(n) —S(n, ) )
'r'

dx c(n)

(2.39)

(2.40)

d c(n) dn~ ' d4)

dx 2 dx dx ' (a.s4)

where we have introduced the definition

In his work on interfacial density profiles, Van
der Waals used Eq. (2.32) for the special case
that g(s;n) =1 and the f„ofEq. (2.10).

For the special case of a planar interface, Equa-
tion (2.32) can be integrated directly and the cor-
responding surface tension can be written in an
especially simple form. Multiplying Eq. (2.32) by
dn/dx and rearranging the resulting left-hand side
of the equation, we obtain for the planar case the
result

The sign convention in Eq. (2.40) is chosen so that
the bulk gas phase lies in the positive x direction
with respect to the bulk liquid phase. Equation
(2.40} can be formally integrated to obtain

c(n}2'" 4 (n) —@(n )

(2.41)
a relatively simple formula for computing the
density profile for a planar interface.

Combining Eqs. (2.21) and (2.28) for the planar
case considered here, we may write I" in the form

16n gn

1c(n}=——(n'w )4n Bn (a.s5) 16n' Bn bn dx

and used the relation d@/dx = (&4/sn)dn/dx. Condi-
tions (2.17) and (2.18) imply the following boundary
conditions on n(x):

=A. dx ~ —p n zU + ~

(2.42)
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To obtain the second form of the right-hand side
of Eq. (2.42), we used the relation

la, Eq. (2.24), can be reduced with the aid of Eq.
(2.16) to the relatively simple form

x2 d'n
dx h(n)

-Lxc dx
dk dn r= f~ « — „'nx

dnE=A c(n) — dx iV@(n, ) yt)tn .
dx (2.44)

The limits I» and Lx2 have been extended to in-
finity for convenience. Such an extension is valid
as long as the linear dimensions of the system are
large compared to the thickness of the interfacial
region.

Equation (2.44), with the aid of the thermodynam-
ic relation Eq. (2.20), yields for the surface ten-
sion the simple formula

dn
y= c(n) —dx .

dx
(2.45)

According to this result, the variation of the den-
sity gradient across the interfacial region must
be known in order to compute the surface tension.
However, transforming the variable of integration
from x to n, we can express y in the density-
pyofile-independent form

ll )
y=v2 f c(n)[@(n)—4(n, )]j' 'dn . (2.46)

In the special case that f„(n) is given by Eq.
(2.10) and that c(n) is a constant, Eqs. (2.34)-
(2.46} reduce to the results of what we are calling
the original Van der Waals model. ' As far as we
have been able to ascertain, Lord Hayleigh' was
the first to derive the profile and surface-tension
expressions, Eqs. (2.34) and (2.45), for the case
of constant c(n). Later, other investigators, in-
cluding members of the Van der Waals school,
independently proposed the same equations.
Orowan' provides a brief discussion of tQe history
of the matter. As the Van der Waals school ap-
pears to have developed the implications of the
theory most extensively and since even Lord
Rayleigh's results were based on Van der Waals'
equation-of-state model, we have chosen to refer
to the early work as Van der Waals theory. Those
seeking the proper historical perspective are
urged to read the discussion and study the biblio-
graphy of Orowan's paper.

Incidentally, in the case of Van der Waals'
original model, the general surface-tension formu-

(2.43)

which is obtained by integration by parts with the
condition (dm/dx) =0 at x =L„, and x = —L„, E.limi-
nating f„——,

' +'m, from Eq. (2.42) with the aid of
Eqs. (2.33) and (2.39), we find

where

—C(n, )-
2 n„(x) dx, (2.47)

n~, =n, [1-q(x)] gnat q(x) . (2.48)

In Sec. III we shall apply Eqs. (2.41) and (2.46)
for the original Van der Waals model and for the
modified version given here. These expressions
are based on the differential-equation approxima-
tion, Eq. (2.32), to the more general result, Eq.
(2.14). This approximation, which is obviously
accurate sufficiently close to the critical point,
appears from preliminary studies on Eq. (2.14}
to be quite accurate over the entire coexistence
range of temperatures. The results of numerical
investigations of Eq (2.14. ) will be reported in a
later paper. The small quantitative loss in going
to the differential equation seems to us of minor
importance when compared to the s implic ity
gained.

III. COMPUTATIONS

bkT 62

Z/2
4+ = —4' x*= — x

a c

(3.1)

In terms of these reduced parameters, the Van
der Waals model yields for Eqs. (2.41}and (2.46)

of(( Q )1

W2

dn*
[4'*(&*)- 4'*(&F)]'"

(3.2)

y =MR f [4 (n ) —4 (np)]' 'dn (3 ))
yf

where

~'* =&*K —&*&*[in(1/n* —1)+1] —(n+)' (3.4)

In the original Van der Waals model tke quantity
c is a constant and fs(n) is given by an expression,
Eq. (2.10), containing the energy parameter a,
Eq. (2.11}, and the excluded-volume parameter b.
It is convenient to eliminate a, b, and c from the
thermodynamic equations by introducing the
reduced parameters
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g =- —[&T ln&q(T)+n] .b

a (3.5)

Equations (2.37}and (2.38) yield the following con-
ditions which determine +,*, &~, and g as a func-
tion of T*.

TABLE I. Van der Waals reduced equation-of-state
data for liquid-vapor system. n~~, e,*, and f are ob-
tained by solving Eqs. (3.6) and (3.7) at several values
of T~. Values of y~ are obtained from Eq. (3.3).

and

c+(n7) =4 +(n+)

1 n*„T*
g =~+In ——1 — +2++v & =~ g .Vp

V

(3.6)

(3.7)

0.170
0.197
0.223
0.249
0.275
0.296

0.0159
0.0331
0.0601
0.102
0.171
0.333

0.783
0.735
0.679
0.610
0.515
0.333

0.153
0.110
0.071
0.037
0.011
0

0.732
0.723
0.719
0.719
0.721
0.724

OO

[n+(x+) —n7]dx++ [u+(x+} np]dx+ -=0 .
~ oo x+

(3.8)

- 0.7

. 0.6

. 0.5

-4
I

-2 0 I

X

FIG. 1. Interfacial density profiles of the Van der
Waals fluid tEq. (3.2)l. x*=0 is located at the Gibbs
dividing surface of zero excess matter.

From the reduced expressions we conclude the
well-known corresponding-states principle for a
Van der Waals fluid: n*(x*}is a universal func-
tion of x* and 2'*; i.e., it is the same for all Van
der Waals fluids compared at the same x* and
T*, and y* is a universal function of &*.

Values of n~, &,*, and ( versus &* obtained by
solving Eqs. (3.6) and (3.7) are given in Table I.
Choosing so*=0 for some arbitrary density no~

lying between ng and &f', one can compute iso-
therms of n* versus x* from Eq. (3.2). Such iso-
therms are presented in Fig. 1. The origin of
the coordinate system used in Fig. 1 is the Gibbs
dividing surface of zero excess matter. The posi-
tion x$ of the dividing surface relative to an arbi-
trary origin for the abscissa x* is obtained for
each isotherm from the defining equation

An examination of Fig. 1 shows that the iso-
therms follow the pattern that as T* decreases
the transition from gas to liquid is sharper, as
it should be. Moreover, the isotherms exhibit
the interesting feature of an approximate common
point of intersection. The density at this common
point corresponds to the reduced critical density.
That the profiles do not cross at exactly the same
point may have been caused by a computational
error. Assuming a hyperbolic tangentlike form
for the interfacial density Toxvaerd' has found a
similar occurrence in the isotherms of a Lennard-
Jones fluid. Since Van der Waals and Toxvaerd's
models are quite different, the existence of a
common intersection point at the critical density
for all of the isotherms may be of thermodynamic
s ignif icance. The intersection may be a corre-
sponding-states principle, this principle being a
common feature of the Van der Waals and Lennard-
Jones models. It will be shown below that the
modified Van der Waals theory applied for a I en-
nard-Jones model potential energy a.iso yields a.
common point of intersection of the density iso-
therms at the critical density. In fact, the quali-
tative features of the density profiles predicted
by the Van der Waals model are in good agree-
ment with those predicted by the more realistic
modified Van der Waals model and with those pre-
dicted by Toxvaerd's models. However, whereas
the latter models yield profiles in substantial
agreement with existing computer simulation re-
sults, the Van der Waals model predicts an inter-
facial region that is too broad. We shall return
to this point below.

In Table II, the reduced surface tension pre-
dicted by Eq. (3.3) is given for several reduced
temperatures. In order to convert the reduced
tensions to tensions for a particular fluid, we
must determine the value of the constants a, &,
and c. The critical parameters &, and I', may
be used to determine a and & through the rela-
tions 6 =AT, /8P, and a =27(kT, }2/64P, obtained
from Eq. (2.12). We have obtained the values of
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c for argon, carbon dioxide, propane, and ben-
zene by fitting the theoretical surface tension to
the experimental value at a reduced temperature
corresponding to about 0.8T, (except for propane,
for which 0.6T, was used because only limited
data were available). The temperature for which
c is determined is of course arbitrary and will
affect agreement between theory and experiment
at other temperatures to the extent that Van der
Waals theory is not quantitatively accurate. Sur-
face tensions predicted with aid of the fitted c's
are compared with experiment in Table II. From
the entries in the table we conclude that, if one is

TABLE II. Van der Waals predicted values compared
with experimental values of the surface tension versus
Tz (=T/T ) for argon, carbon dioxide, benzene, and
propane. The parameters a and b are determined from
critical-point data. The parameter c is determined by
fitting theoretical y to experiment at the temperature
indicated by an asterisk.

willing to tolerate an error of some 40Vp, the
model provides a means of estimating from one
measurement of the surface tension over a range
of temperatures up to about 0.96T, .

The temperature dependence of the surface
tension near the critical point may be determined
easily from Eq. (2.46}, which for constant c may
be expressed in the form

8
y=(2C)' ' dy[C'(n, ) —C'(y+n )]' '

0
(3.9)

where u =—&& —n~. Expanding z in a Taylor
series in u, we find to lowest order

y=Ku'=K(n, —n~)' . (3.10)

y =K"(T, T)"— (3.11}

Combining Eq. (3.10) with Van Kampen's result, »

namely, n, —n~=K'(T, —T)' ' in the vicinity of the
critical point, we obtain the expression

0.56
0.66
0.76

*0.86
0.96
0.995

0.80
*0.83
0.87
0.90
0.93
0.95
0.96
0.98
0.997

7pfc4
(dyn/cm)

Argon ~

16.10
10.91
6.60
2.99
0.47
0.028

Carbon dioxide

10.46
8.06
5.86
3.90
2.21
1.49
0.86
0.36
0.03

Pexpf

(dyn/cm)

13.45
9.40
6.01
2.99
0.58
0.041

10.08
8.06
6.14
4.34
2.67
1.90
1.19
0.57
0.07

u(Q =u„(r) +u„(r),
where the repulsive part is

o 12 g 6
u (r) =4m — — — +e 0&r& rr r m

(3.12)

valid near the critical point. The predicted criti-
cal exponent of 1.5, presented long ago by Van der
Waals, ' is to be compared to an exponent of 1.302
observed by Zollweg, Hawkins, and Benedek' for
xenon and of 1.253 observed by Bouchiat and
Meunier' for carbon dioxide. Since the quantity
c(n), Eq. (2.35), of the modified Van der Waals
model is finite and continuous at T„ this model
too predicts a critical exponent of 1.5.

Let us now discuss some numerical result for
the modified Van der Waals theory. We shall
specialize to the 6-12 Lennard-Jones potential
u(r), which can be expressed in the form

0.48
0.57
0.66
P.75

wp 84
0.93

Benzene ~

40.1
30.7
22.0
14.15
7.41
2.23

31.7
24.7
18.8
12.86
7.41
2.66

=0, r&r

and the attractive part is

u„(r) =- e, 0&r&r

=4c — ——,r&r

(3.13)

(3.14)

0.50
0.55

*0.60
0.66
0.71
p.77

Propane ~

19.08
16.28
13.59
11.04
8.64
6.41

17.07
15.34
13.59
11.84
10.09
8.35

~ J. J. Jasper, J. Phys. Chem. Ref. Data 1, 841 (1972).
International Critical Tables, edited by E. W. Wash-

burn (Mcoraw-Hill, New York, 1928), Vol. IV.

The parameter r is determined by the condition

(3.15)

To apply the modified Van der Waals model, we
need for the potential model just described the
free-energy density fs(n) and the pair-correlation
function. Recently, Weeks, Chandler, and Ander-
sen" have found that f „(n) for the potential energy
u~ may be well approximated by the free-energy
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density fsHs (n} of an equivalent hard-sphere sys-
tem. The equivalent hard-sphere system is a
fluid of hard spheres at the same density and tem-
perature as the subject fluid, of diameter d deter-
mined by the equation

0= e "&-e "d y r d'r (3.16)

where

u =~, r&dd

=0, (3.17}

and y„(&}is the hard sp-here limit of the correla-
tion function y(&) = e " "g(&). To determine the
values of d for our calculations, we used the
Percus- Yevick" theoretical values of y, (&). Then
fsH was calculated from the Carnahan-Starling
formula, '~

where

g= gm dn.

(3.18)

(3.19)

The pair-correlation function we have used is
of the form suggested by Weeks, Chandler, and
Andersen' (WCA) for Lennard-Jones fluids, name-
ly,

(3.20)

WCA found that predictions of Eq. (3.20), with the
Percus- Yevick values of pd, agree well with
molecular-dynamics results for fluid densities
above n =0.65/o', a density about twice the criti-
cal value. Although Eq. (3.20) becomes inaccurate
for densities below 0.65/o', for lack of an alterna-
tive source of analytical values of g(&), we have
chosen in the present calculations to use Eq. (3.20}
for the entire density range. Thus, the liquid side
of our predicted profiles are expected to be more
accurate than the vapor side, except in the very-
low-density region, where the fluid behavior is
ideal and insensitive to g(&}.

With the Lennard-Jones model, it is convenient
to introduce the dimensionless variables

The reduced gas and liquid densities, the quanti-
ty f„=&„in[&(&)o']+n/&, and the reduced sur-
face tension for the present model are given for
various values of &„ in Table III. Isotherms of
n„versus x„are shown in Fig. 2. The origin of
the abscissa is again located at the Gibbs dividing
surface of zero excess mass. Similarly to the pro-
files of the original Van der Waals theory, the den-
sity profiles of the modified Van der Waals theory
are seen in Fig. 2 to intersect at the critical den-
sity at; a constant distance from the Gibbs dividing
surface.

Qualitatively, the profil'es in Figs. 1 and 2 be-
have quite similarly. However, a comparison
shown in Fig. 3 indicates that the modified Van
der Waals model gives profiles in quantitative
agreement with experiment while the original Van
der Waals model does not. Using the potential en-
ergy parameters o' =3.4 A and e/k =119,4 'K (cor-
responding to values often assumed for argon)
Lee, Barker, and Pound~~ (LBP}determined by
Monte Carlo methods the density profile for a
Lennard-Jones liquid-vapor interface at 84 'K.
The profile predicted by the modified Van der
Waals model is seen in Fig. 3 to agree quite well
with the profile computed by LBP (the reduced
bulk-liquid density predicted by the model is
0.842 and found by LBP is 0.81). On the other
hand, the profile predicted by the original Van
der Waals model (for the argon used in computing
y in Table II) is much too broad and, as is already
well known, gives a poor prediction of the bulk-
liquid density.

A direct comparison between the shape of the
modified Van der Waals model profiles and actual
density profiles for a planar interface is not yet

Tr '0772

n„=no'', T„=kT/e, y =o'y/e

P„=O' P /6 ~ x„=x/o . (3.21)

These variables obey the law of corresponding
states: P„, given by Eq. (2.19), is a universal
function of &„and T„ in the one-phase region and
of T„along the coexistence curve: y„ is a uni-
versal function of T„; n„ is a universal function
of &„and x„.

I

-4 -3 -2 -I 0 I 2 3 4 5 6
Xr

I IG. 2. Interfacial density profiles of the modified
Van der Waals fluid [Eq. (2.41)l for the Lennard- Jones
potential. x„=o is located at the Gibbs dividing surface
of zero excess matter.
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possible, because of obvious experimental diffi-
culties. However, we can compare for the model
and experiment, the temperature dependence of
an interfacial length which qualitatively character-
izes the shape of a planar interfacial density pro-
file. Let us define moments of the density profiles
as follows:

TABLE III. Modified Van der Waals equation-of-state
data for liquid-vapor system (for a Lennard-Jones po-
tential). ng, nr&, and C„are obtained by solving Eqs.
(2.37) and (2.38) ~r =~r 1nI&(~)0 ~-+e/e. Values of &r
are obtained from Eq. (2.46), reduced according to Eq.
(3.21).

r8g

1 '",dn(x)
dx (3.22)

(3.23)

K
(1 T/T )0~ 520&0 005 (3.24)

~1/2 [(~2) (~)2 ] 1/2

A plot of g', '/u versus 1/(1 —T/T ) for the modi
fied Van der Waals model shows that the data are
closely approximated by

~X/2
2

0.772
0.875
1.029
1.117
1.235
1.374
1.405
1.460
1.469

0.0044
0.0112
0.0314
0.0502
0.0876
0.163
0.190
0.274
0.310

0.815
0.771
0.702
0.660
0.594
0.485
0.451
0.355
0.310

4.209
4.010
3.781
3.681
3.573
3.480
3.464
3.439
3.443

1.315
1.032
0.661
0.475
0.256
0.062
0.033
0.0014
0

for a wide range of temperatures (0.49& T/T,
~ 0.994). The exponent of 0.52 in Eq. (3.24) is to
be compared with an exponent of 0.66 determined
from ref lectivity measurements near the critical
temperature by Wu and Webb" for the effective
interfacial thickness I '(T).

LPB dete rm ined from the ir computer data a
surface tension of 16.5 +2.3 dyn/cm. In fairly
good agreement with this, the modified Van der
Waals model yields 21.6 dyn/cm.

Although the LPB results appear to be the only
source of Lennard- Jones "data" to compare the

.- 0.7

0.6

0.5

"5 0 I 2 5 4 5 6
Xf~

I IG. 3. Comparison of density profile of Monte Carlo
computations (Ref. 13), the Van der Waals theory, and
the modified Van der Waals theory. The Monte Carlo
curve (solid line) and the modified-theory curve (dashed
line) are for a Lennard-Jones potential model with argon-
like parameters 0 =3.4 A and ~//4=119. 4'K. The param-
eters for the Van der Waals curve (dot-dashed line) were
determined from argon data. In a more recent study
(Ref. 14) it has been shown that the ripples in the Monte
Carlo curve (solid line) are statistical artifacts of the
computations.

model with, we can test the model by comparing
predictions with exper imental results for argon.
For the Lennard-Jones parameters, we shall use
the set of parameters u =3.37 A and e/k =116.41 'K
instead of the usual set of 3.4 A and 119.4'K. The
former set was determined recently by Baiter and
Davis" by optimizing agreement between the ex-
perimental and theoretical pressure [using the
WCA pair correlation function, Eg. (3.20)] for
liquid argon between 84 and 106'K. The two sets
of parameters lead to quite similar results, the
set of Salter and Davis perhaps giving slightly
better over-all results. The critical parameters
predicted by the model are P, =78.5 atm, T,
=171.0'K, and n, =0.537 g/cm'. These may be
compared to the observed values for argon: P,
= 46.0 atm, T, = 150.72 ' K, and n, = 0.531 g/cm'.
We do not know whether the high predicted values
result from a shortcoming of the modified Van
der Waals theory or only from the known failure
of the WCA pair-correlation function at densities
lower than n„=0.65. It is interesting that in spite
of the relatively high values predicted for P, and
T„ the predicted dependence of the reduced vapor
pressure Ps P/P, on the r-educed temperature
T/T, agrees well with experiment on argon and
so also does the predicted dependence of y on
T/T, . These comparisons are shown in Figs. 4
and 5.

IV. CONCLUSIONS

We have shown that a modified version of Van
der Waals theory maintains the original simplicity
of Van der Waals theory of bulk and interfacial
properties but yields a much more quantitative
description than the original theory. An obvious
improvement on the calculations reported in Sec.
III would be the introduction of a more accurate
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FIG. 4. Comparison of experimental and modified Van
der Waals theoretical reduced vapor pressure P*z=&/&, )
versus reduced temperature (T& = T/T~). Experimental
data are for argon. Theoretical values are based on the
Lennard-Jones potential with o =3.37 A and e/4=116.4'K.

FIG. 5. Comparison of experimental (argon) and modi-
fied Van der Waals theoretical (Lennard-Jones potential,
o'=3.37 A, e/0=116.4'K) surface tension versus reduced
temperature.

pair-correlation function than the WCA approxi-
mation of Eq. (3.20}. Another improvement would
be to solve the integral equation for the density
profile instead of the differential-equation ap-
proximation. However, we have preliminary
studies, to be reported later, that indicate little
difference between the results of the integral and
differential equations for the planar liquid-vapor
inter face.

The density profiles predicted by the modified
Van der Waals theory are very similar to those
predicted by Toxvaerd with two models, one' a
perturbation theory with an assumed hyperbolic
tangentlike profile and the other" a solution of
the Yvon-Born-Green equation for a. correlation-
function model. The advantage of the modified
Van der Waals model over those of Toxvaerd is
that profile and surface-tension formulas of the

former are much simpler and easier (cheaper}
for computational purposes.

In closing, let us point out that Hill" and Plesner
et a/. ""have previously developed variations of
the Van der Waals theory. These investigators as-
sumed a structureless fluid (g=—1}and used a less
quantitative theory of the repulsive fluid than the
WCA theory. Thus, we feel the present theory
represents the best available version of the Van
der Waals theory.
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