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Properties of solid and gaseous hydrogen, based upon anisotropic pair interactions
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Properties of H, are investigated using an analytic anisotropic potential which has been deduced from recent
atomic orbital and perturbation calculations. The low-pressure solid results are based upon a spherical average
of the anisotropic potential. The calculated ground-state energy is @= —88.76 + 2 K. The pressure-volume
curve agrees with experiment to within 10% over the range 9 & V & 22.65 cm'/mole H2. The high-pressure
solid properties are calculated using the anisotropic potential for particular frozen orientations, as mell as the
spherically averaged potential. The structures investigated are the P, 3 and P4,/mnm orientations. The
P42/mnm orientation yields energies and pressures 10-20% lower than either the spherical average or the P, 3
arrangement. Agreement with experimental shock-wave data is tolerable. The metal-insulator phase-transition
pressure is predicted to be between 1.61 && 10 and 3.76 &( 10 atm, depending on the metallic equation of state
used. Second virial coefficients B(T) are calculated for H2 and D, over the range 60 K & T & 523 K, using a
formalism which fully accounts for the potential anisotropies and the discrete rotational spectrum. The results
are in excellent agreement with experiment except at high temperatures, where the discrepancy is nearly 10%.
A comparison of the results with those obtained using the spherically averaged potential indicates that the
effect of anisotropies on B(T) is small. This coupled with the results from solid calculations implies that
anisotropies are generally not very important except at extremely high pressures. The difference in B(T)
between ortho and para H2 and D2 is also calculated.

I. INTRODUCTION

There is no adequate theoretical description of
many basic properties of molecular hydrogen. A
central difficulty is the uncertainty in the H, pair
interaction, which depends on the relative orien-
tation of the two molecules. This anisotropy is a
consequence of the nonspherical charge distribu-
tion. Nevertheless, it has been almost universally
assumed that a spherically symmetric potential
can well represent the system. This attitude is
supported by the observation that the charge dis-
tribution departs from sphericity by only 8%%uo.

'
There are several other reasons for ignoring an-
isotropies. First, techniques for predicting sys-
tem properties, based upon anisotropic interac-
tions, are complicated and poorly developed. Se-
cond, spherically symmetric, parametrized,
semiphenomenological potential forms have been
found which give calculated second virial coeffi-
cients in good agreement with experiment, ' when
the parameters are properly adjusted. A common
example is the Lennard-Zones 6-12 potential. The
problem is that when a potential so derived is used
to calculate other system properties (viscosity,
scattering cross sections, etc. }, the results often
agree badly with experiment. Generally, if the
potential form na/1roits parameters are selected

to fit one set of experimental properties, other
properties are poorly predicted.

A dramatic example of this failure is in the cal-
culation of solid H, properties, based upon the 6-
12 potential as deduced from second-virial-coef-
ficient data. ' Figure 1 shows the pressure-volume
(P V) curve at zero temperature. The dashed line
is based upon the 6-12 potential. ' The circles and
squares represent the experimental data. 4' ' As
can be seen, agreement with experiment is not

good, especially at higher pressures where the
discrepancy approximates a factor of 2. Until
recently, it was conjectured that this discrepancy
was due to either poor experimental P V data or an
inaccurate calculational procedure. These specu-
lations are now largely disposed of because of re-
cent experimental results of Anderson and Swen-
son' that support earlier work, 4 and by recent the-
oretical methods which have surmounted the diffi-
culties in dealing with the large zero-point mo-.
tion. ' It is now apparent that inaccuracies greater
than 10% in solid calculations must be attributed
to a faulty potential representation.

A phenomenological potential that is quite differ-
ent from the one deduced from second-virial-co-
efficient data has been unfolded from the cross-
section measurements of Farrar and Lee.' Al-
though the cross sections predicted using this po-
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tential are in excellent agreement with experi-
ment, the predicted second virial coefficients are
very poor. Moreover, if this potential is used to
calculate solid properties, such as the energy,
I' V, compressibility, etc. , the agreement with
experiment is also poor. These examples frame
the problem.

We believe that the problems connected with mo-
lecular hydrogen (H, ) cannot be resolved using a
phenomenological potential. Instead, we propose
to investigate those theoretical calculations of the
pair potential which are derived from first prin-
ciples. From these data is deduced an analytic ex-
pression for the intermolecular potential which de-
scribes the interaction for arbitrary orientations
of the molecules, without adjustable parameters,
a,nd where no a priori assumption is made regard-
ing the anisotropy. A detailed analysis of various
H, properties in the solid and gaseous phases,
based upon this potential, is then presented. A re-
cent note' gave a preliminary report on some of
this work, although a somewhat different, not fully
analytic, potential was used.

II. THE POTENTIAL

Atomic orbital calculations of the potential are
generally performed for four different relative
orientations of the two molecules, called I., ~, X,
and T. The I configuration corresponds to both
intramolecular axes and the intermolecular axis
along the same line. The II configuration has both
intramolecular axes parallel to one another and
perpendicular to the intermolecular axis. The X
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configuration has all three axes perpendicular to
one another, and the T configuration has one intra-
molecular axis parallel to the intermolecular axis
a.nd one perpendicular to it.

Arbitrary orientations are labeled according to
Fig. 2, where 8,- and 8& are the polar angles of
molecules i and j with respect to the intermolec-
ular axis of length r. The associated azimuthal
angles are P; and P&.

There are two different approaches used in these
calculations. One method is to separate the po-
tential into parts: the valence interaction U~,
which dominates at small separations and comes
from the overlap of atomic wave functions, and
the multipole terms U», U~, and U which are
called the induced dipole-dipole, induced dipole-
quadr upole, and quadrupole-quadrupole potentials,
respectively. The multipole terms dominate at
large separations and are fairly accurately
known "'"

There have been a number of recent calculations
of the valence interaction U~ using the self-con-
sistent-field (SCF) method. The work of Tapia and
Bessis, "Tapia, Bessis, and Bratos, "Bender and
Schaeffer, "and Silver and Stevens" has been par-
ticularly helpful in deducing the potential for inter-
molecular separations with &~ 5.5 a.u. , although
there are other excellent works which give com-
parable results. " For large separations (r
~ 5.5 a.u. ), the older work of Evett and Margenau'~
(EM) seems to be the most reliable.

An alternative to calculating the four parts of the
potential separately is to incorporate them into a
single energy expression. The configuration inter-
action (Cf) method is such a scheme, for which
there are a variety of recent results "An .advan-
tage of the CI method is that all parts of the inter-
action are derived from a single formalism which,
in principle, is valid for all molecular separations
r. The major disadvantage is that a large, flex-
ible, carefully optimized basis set of orbitals is
required to obtain consistently reliable results.
Moreover, the optimal set depends on the range
of r investigated. Consequently, the CI calcula-
tions are presently not very accurate for &~ 5 a.u. ,
whereas for r&5 a.u. there seems to be general
agreement between different calculations to within
10$, although their accuracy may be worse be-
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FIG. 1. Pressure vs volume for solid H&. Theoretical
and experimental results are compared.

FIG. 2. Arbitrary orientation of two H& molecules.
The intramolecular distance a is approximately 1.4 a.u.
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cause all CI works suffer from similar computa-
tional limitations.

There are two major advantages to separating
the potential into the valence and multipole parts.
U~ can be calculated to higher accuracy, over a
range of r, using the SCF method, than can a CI
approach with an equivalently large flexible basis
set. Moreover, the multipole terms are separate-
ly known to fairly high accuracy. This means that
U~ data should be more reliable at large r than are
the CI results, although they too become increas-
ingly inaccurate as r increases. The second ad-
vantage is that in the large-r region, where U~ be-
comes suspect, it also becomes small, and the
more accurately known multipole terms begin to
dominate in contribution to the total potential.
This makes uncertainties in U~ at large r much
less critical. The major disadvantage to separat-
ing the potential is that the multipole terms must
be artificially made to vanish in the limit of small
separations. That is, U~= U~ as r -0.

To calculate system properties over a wide
range of conditions, there is no choice but to eval-
uate U~ in separate parts, which is the approach
taken in this work. The alternative CI calculations
are not presently capable of predicting the attrac-
tive part of the potential. To dispose of the multi-
pole terms at small separations, we have multi-
plied them by the damping term
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FIG. 4. Valence potential for parallel moelcular or-
ientations at intermolecular separations 2 ~ r ~6 a.u.

C(r) ={1+exp[ —4(& —3.5)t) ', (1)

which ensures that U~- U~ as r -0. The effect is
as follows: For rs 2.5 a.u. , C(&) =0, so that the
dispersion terms are almost completely damped
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FIG. 3. Valence potential for parallel molecular or-
ientations at intermolecular separations 5 ~ r~10 a.u.
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FIG. 5. Valence potential for perpenducular molecu-
lar orientations at intermolecular separations 5 ~ &~10
a.u.
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FIG. 6. Valence potential for perpendicular molecular
orientations at intermolecular separations 2 «r «6 a.u.
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FIG. 8. Valence potential for cross-molecular orien-
tations at intermolecular separations 2 ~ r. «6 a.u.

out. Hence, U~= U~. An investigation of the var-
ious atomic-orbital calculations" "shows that
U~ is indeed nearly equal to U~ in this regime. As
r increases, C(r) smoothly increases until, for
r&4.5 a.u. , C(&)=1, so that the dispersion terms
are completely contained in U~. The value of

4.5 a.u. is based upon an investigation of the range
of validity of the calculational methods used to de-
termine the multipole terms and also upon smooth
extrapolations of U~ at large r to the SCF and CI
values at small r. The cutoff range turns out to
be very close to that of Trubitsyn. " The uncer-
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FIG. 7. Valence potential for cross-molecular orien-
tations at intermolecular separations 5 «r «10 a.u.

Q. l

5 6 7 8 9 10 I I

INTERMOLECULAR SEPARATION (a.u. )

FIG. 9. Valence potential for linear molecular orien-
tations at intermolecular separations 5«r«10 a.u.
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from the EM results, along with th'e multipole
terms"" yield a potential-well region which is
quite similar to that deduced from various experi-
mental data. ' Nevertheless, it is apparent that
more work is necessary to fully delineate the well
region of the potential.

The analytic form for the data fits, exhibited as
solid lines on Figs. 3-10, are

Ur» = exp[br (r)], Urn = exp[b n(r)]

Ur r = exp[br(r)], Ur» = exp[b»(r)],

IO
where U~~ is the valence potential for the linear
configuration, and so on. For r&5 a.u. ,

IO I
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FIG. 10. Valence potential for linear molecular orien-
tations at intermolecular separations 2 ~ x~6 a.u.

tainty in the potential introduced by this procedure
is less than the uncertainty in the atomic-orbital
data itself.

Figures 3-10 show the SCF results for the va-
lence potential with molecular orientations (L, II,

T) as a function of intermolecular separation.
The triangles are the recent results of Tapia,
Bessis, and Bratos" and of Tapia and Bessis."
These results become increasingly suspect for
intermolecular separations greater than about
5 a.u. As an example of the problem, a compari-
son of CI and SCF calculations by Tapia, Bessis,
and Bratos" shows that above 5.5 a,u. some SCF
results are actually lower in energy than the cor-
responding CI values. This is not reassuring, since
the CI calculations contain the SCF part plus neg-
ative contributions from the multipole parts: hence
the CI data should be consistently lower in energy.
Results which show some measure of consistency
for r~ 5.5 a.u. are those of Evett and Margenau"
(EM), which are represented by the squares on
Figs. 3-10. This work is generally regarded as
among the best of the older calculations, "where
certain approximations were made in evaluating
the three- and four-center integrals. There are
several less quantitative reasons for believing the
EM results may be fairly reliable. In the region
around r= 5 a.u. , their results seem to agree well
with the more sophisticated results of Tappia and

co-workers, "'"and for increasing ~, the data fit
smoothly on a semilog plot without much scatter.
Also, the spherically averaged potential, deduced

b~(r) = 15.4381 —1.7532r,

b u(r) = 13.8444 1.282 Vr —0.047 091 6 r',
(3a)

br(r) =13.6828 1.105 67r 0.078—402 r',
b»(r) = 13.5979 —1.154 32r- 0.067 37 r'.

For r) 5 a.u. ,

b~(r) =16.2815 —1 9219r.,

b „(r)= 17.040 57 —2.291 99r+ 0.026 851 r ',
br(r) =15.404 74 —1.8420Vr,

b»(r) = 15.4541 —1.8624r.

These data only represent the interaction for
four particular orientations. In order to derive a
completely analytic expression for the pa, ir poten-
tial with arbitrary relative orientations, the va-
lence potential U„(r„,r,4, &», r„)was expanded
in terms of the parameter a/2r, where a is the
distance between atoms in a given molecule (gen-
erally fixed at a = 1.4 a.u. ), and the r;& are the
distances between atoms of the two different mol-
ecules (see Fig. 2). The result is

(4)

Ur(r, 8„8„$)= g A((r)B;(8„8„$};
t =1

(5)

where the series is truncated after five terms.
Four of the functions A, (r} are chosen so that

U~ exactly reproduces the SCF results for the four
basic orientations (L, 11, T, X), as embodied in
Eqs. (2) and (3). The fifth function of r was chosen
such that orientations intermediate between the
basic four follow the results of Silver and Ste-
vens. " This condition ensures that U~ behaves
properly for angular orientations other than

(L, II, T, X). The results are
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A, (r) = exp[bx(r)],

A.(r) = r'4m[&n(r)] —expP x(r)]},
A, (r) =A, (r)/r',
A4(r) = exp[br(r)] —exp[ bx(r)] -A, (r),

A, (r) = 2 [exp b~(r) —exp&„(r)] —5.4A4(r) —
4A2 (r),

A, (r) = 3.158x 10'C(r)r-',

A, ,(r) =3 15.8x10'C(r)r ',
A, (r) = —3.663 x10'C(r)r-'

The angular dependent terms B, are

B =1,

B,= cos'&, +cos'6I»

B,= (cos8, cos8, +sin8, sin8, cosP)',

B4=cos'0, +cos 0,

(6)

III. SOLID STATE PROPERTIES

Of principal importance in understanding solid
behavior is a resolution of the large discrepancy
between theory and experiment for ground-state

+ 0.7 cos8, cos8, (cos8, cos8, +sin8, sin82 cosP),

Br = 2cos ~g cos 82,

B,= 0.048 05[1 —5(cos'8, + cos'8, + 3 cos'8, cos'8, )

+2(sin8, sin8, cosP —4cos8, cos8, )']

B,= —0.2002(sin8, sin8, cosP —2cos8, cos8, P

—1.672(cos'8, + cos'8, ) —11.133,

B,=1.0.
The terms A,.B,, i =6, 7, 8, are the quadrupole-

quadrupole, dipole-dipole, and dipole -quadrupole
multipole terms, respectively. Energies are in K
and distances are in a.u.

A spherical average V~ can be obtained by inte-
grating U~ over angles or, approximately, by in-
tegrating the dispersion terms and evaluating the
spherical average of U~ by

Uv(r) = -', Uvr, + ~Uvn + -', Uvr + 4Uvr ~

The coefficients are the relative weights occupied
by each orientation in phase space. " The two
methods give results which agree to within 1%%ug for
all values of r.

The spherical average of Eq. (5), Ur, is dis-
played in Fig. 11 by the triangular points, and the
6-12 potentia12 is represented by the solid 1ine.
The two expressions are in fairly close agreement
over the range of separations displayed. For
smaller separations, however, U~ is much softer
than U(6-12).
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FIG. 11. The triangles are the spherical average of
the anisotropic potential t.Eq. (5)]. The solid line repre-
sents the 6-12 potential (Ref. 2).

properties, such as the P V relation. ' As men-
tioned earlier, the poor theoretical results are
based upon a parametrized, phenomenological
potential which best reproduces experimental sec-
ond-virial-coefficient data. The possibility that
the theoretical description of the solid' or the ex-
perimental' data are primarily responsible for the
problem have been systematically eliminated. The
only remaining source of such large errors is the
repr esentation of the interaction. One possibility
is that the anisotropy is more important than pre-
viously believed. It can be argued that the radial
dependence, predicted from gas properties, is
correct, and thus that the entire problem comes
from the neglect of anisotropy. This is basically
the position taken by Ebner and Sung (ES)." They
express the potential in terms of a standard phe-
nomenological form for the spherically symmetric
part and add an anisotropic contribution which is
an analytic fit of the atomic-orbital calculations
of de Boer." Neither the analytic fit nor the cal-
culations of de Boer is very good in comparison
to recent work. ' Moreover, potentially im-
portant terms are left out of the theory, and pa-
rameters are adjusted without strong justification.

It is difficult to understand how an anisotropy
which departs from sphericity by only 8/g can be
r esponsible for discrepancies between experimental
P V results and theory of as much as 100%%uo at 20
kbars, especially since the molecules are nearly
free rotators at these pressures and hence their
relative orientations should sample approximately
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C (rq, . . . , r]}()=
'

Q(r, —R, )
" f (r(q), (9)

y(r, —B,) =(P/)T)'i'exp[-, P(r, -R,P],
f (r) = exp[ —,' (z/r—)'] .

The quantities P and z are variational param-
eters to be determined by minimizing the energy,
and R, locates the equilibrium lattice sites. The
Q's provide the spatial localization characteristic
of a solid, and the f's account for the important
short-range pair correlations. These commonly
used forms are found to have sufficient flexibility
to accurately represent the ground state of the
system. ' The expectation value of the Hamiltonian
gives the energy

equal weights in phase space. Moreover, the local
field produced by near neighbors is nearly spher-
ically symmetric.

Although the contribution of anisotropies to solid
behavior is sti11 an open question, we believe the
ground-state properties are appropriately deter-
mined at low pressures from a spherically aver-
aged potential. Based upon Ur(r), a variational,
local field approximation is emp1oyed, where the
trial wave function for the N-particle system is
of the form

sums are simply taken over a static lattice. All
sums are taken over a fcc lattice except for the
y-nitrogen'structure, which is tetragonal bcc.
For further theoretical details, consult Ref. 22.
The pressures and compressibilities are obtained
by taking appropriate derivatives of the energy
with respect to the volume.

A. Low-pressure results, P~&2.4 X 10 atm

The calculated ground-state energy is F,
= —88.76+ 2 K, compared with an experimental

va, lue4 of —93.47 K, whereas the 6-12 potential
gives —85+2 K.22 Figure 1 shows the pressure
over the volume range 9& V&22.65 cm'/mole.
The circles and squares represent the experimen-
tal data, the solid line is the result of this work,
and the dashed line is the result obtained using the
6-12 potential. For molar volumes greater than
about 12 cm'/mole, the agreement with experi-
ment is good, but for smaller volumes the com-
parison worsens until, at P=—2x104 atm, the cal-
culated pressures are some 10/0 too high. As in-
dicated earlier, the 6-12 potential gives pressures
about 100)0 too high in this region.

The trial wave function used to simulate the
ground state is represented by the ~B solution
to the 6-12 potential for f (r), Eq. (11). A more
appropriate form for f (r) is the WEB solution

x G(r]„r„)dr„dr, ,

where

v(r) = 0'r(r) —(I'/2m )V' lnf(r),

(12)

(13)

based upon V~, namely, f (r) =exp[ —&, exp( —52r)].
The total wave function then has three variational
parameters, b„b„and P, which makes calcula-
tion expensive. Energies and pressures deter-
mined at three different volumes were lowered by
about 5%%u() in comparison to those obtained using
Eq. (11), which improves agreement with experi- .

ment. Extensive calculations were not made, how-
ever. The data are displayed in Table I.

The effect of all N- 2 molecules on an arbitrary
dynamical pair (X, k) is embodied in G(r)„, r~). The
N —2 molecules are said to comprise the local
molecular field experienced by (A, , k). Equation
(14) is an approximation which includes the direct
correlations between the N —2 molecular-field
molecules and (A. , k), but it does not contain the
correlations f (r, & ) between different molecular-
field molecules. In calculating H, properties, the
product in Eq. (14) need include correlations only
from the first two nearest-neighbor shells around
molecules X and k. Moreover, the exact dynamic
correlations need be included only for molecules
which are first-nearest neighbors to A, or k. Cor-
relations from molecules farther than nearest
neighbors away from A, or k are calculated by as-
suming the molecular-field molecules are static.
For (X, k) tenth neares-t neighbors or greater,

B. High-pressure results, P) 2.4 X 104 atm

At high pressures, the system becomes more
classical, so that unsophisticated calculational
procedures" are adequate, although the zero-
point energy is about 10%%uo of the classical energy
even at V= 3 cm'/mole, a factor of 6 in compres-
sion. Also, the atomic-orbital calculations for
the pair potential are more reliable" at small in-
termolecular separations, which corresponds to
high pressures. However, the anisotropy becomes
more pronounced, necessitating a careful treat-
ment of the angular-dependent forces. Another dif-
ficulty, recently discussed by Bee and Bender, "
is the likelihood that three-body forces and more
become important for small intermolecular sepa-
rations.

Ross"~'~ has recently deduced a spherically av-
eraged pair potential from atomic-orbital data, '
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TABLE I. Energy per molecule E (K), pressure and variational parameters P and ~ which
minimize the energy, vs molar volume. The results are based upon the spherically averaged
potential V~.

V (cm3/mole)
Solid H& (spherical average potential)

E (K/molecule) I' (103 atm)

22.65
18.00
15.50
13.60
12.00
10.80
9.00
7.50
6.00
5.00
4.00
3.00
2.00

-88.75+ 2.1
-70.81+3.0
-16.05+ 4.5

59.71+ 5.8
199.11+7.2
386.14+ 10.4
939.04+ 23

1894.10+46
3906.46+ 84
6578.60+ 139

12 225.00 + 249
26832.00+ 508
69 419.00 + 1101

0
1.00
2.49
4.81
9.42

16.00
32.32
67.11

169.20
311.70
700.20

1920.00
5580.00

15
27
49
55
59
70
80
95

230
260
345
400
550

1.11
1.08
1.01
1~ 01
1.03
1.00
0.97
0.95
0.85
0.83
0.79
0.75
0.61

with attractive terms added. A cell-model approx-
imation was used to calculate PV curves. A com-
parison with shock-wave data indicates that the
calculated pressures are too high.

We calculate high-pressure, ground-state solid
properties two different ways, corresponding to
extreme assumptions regarding the anisotropies.
First, solid properties are calculated based upon
the spherical averaged pair potential V~. A se-
cond set of calculations are performed based upon
a pair potential in which the molecules are as-
sumed to be frozen in a particular orientation.
The center-of-mass motion of each molecule is
treated as usual according to the theory described
in the beginning of this section. The legitimacy
of this latter procedure is based upon theoretical
evidence27~ ') that the molecular rotation becomes
more and more hindered until, at about 3x10' atm,
the molecules no longer rotate, but vibrate about
some equilibrium orientation. Very recent cal-
culations, 2'& ) using the accurate anisotropic po-
tential [Eq. (5)], lead to nearly the same conclu-
sion. With increasing pressure, the vibration
about the equilibrium orientation decreases until
the molecules virtually freeze in place. This
phenomenon is due to the fact that the forces which
orient the molecule increase faster than does the
disruptive zero-point motion.

The two orientations investigated are the
P, 3(n-N, ) and the P4, /mnm (y-N, ) structure The.
analysis is complicated because each pair of mo-
lecules having a different relative orientation in-
teracts via a potential with different radial depen-
dence [see Eq. (5)]. This makes summing energy
contributions from different nearest-neighbor
shells in Eq. (12) very complicated. Contributions
from shells beyond fifth-nearest neighbors are

computed using the spherical average potential.
The y-N, structure, which has a P4, /mnm orien-
tation on a body-centered tetragonal lattice, is
further complicated because the c/a ratio must be
treated as a variational parameter for H, . The
orientational structures of nitrogen are used be-
cause N, is thought to be a fairly good analog for
high-pressure H, .
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FIG. 12. Binding energy per atom vs H2 molar volume.
Results are presented for the molecular phase and for
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TABLE III. Second virial coefficients for H2 vs temperature. B (T) is the calculated result based upon the anistropic
potential of Eq. (5), B (T) is the result based upon Vp Bexp is the experimental value (Ref. 2), BFL is the result based
upon the Farrar-Lee potential (Ref. 7), Bs~ is the result based upon the shock-wave potential (Ref, '28), and BLJ is the
6-12 potential. result (Ref. 2).

Bci Bir
H2 second virial coefficients (cm~/mole)
B 2g (CiP Cgo N(~ B (T) B (T) Bexp BFL Bsw BLJ

523
423
373
323
273
223
173
138
113
98
90
80
70
60

14.421
13.935
13,477
12.768
'1.646
9.791
6.479
2 e 337

-2.545
-6.902
-9.924

-14.706
-21.110
-30.085

0.348
0.468
0.559
0.688
0.881
1.192
1.762
2.521
3.492
4.433
5.128
6.300
8.012

10.693

0.0489
0.0755
0.0975
0.1302
0.1815
0,2660
0.4116
0.5690
0.6975
0.7452
0.7359
0.6433
0.3555

-0.4020

-0.002
-0.004
-0.005
-0.008
-0.013
-0.022
-0.048
-0.017
-0.244
-0.454
-0.663
-1.121
-2.024
-3.962

5.30x10 6

9.85x 10 '
4.42x10 4

1.98x10 3

8.87x10 3

4.00x10 2

1.80x 10
5.17x10 ~

1.12
1.83
2.41
3.47
5.22
8.35

14.86
14.52
14.15
13.59
12,70
11.23
8.52
5.22
1.23

-2.39
-4.96
-9.16

-15.14
-24.19

14.88
14.54
14.20
13.65
12.74
11.23
8.49
5.06
1.07

-2.56
-5.04
-8.94

-14.11
-21.30

16.08
15.60
14.87
13.76
11.97
8.84
5.01

~ 67
-3.06

19.62
19.31
18.79
17.94
16.49
13.88
10 ~ 60
6.74
3.31

10.94
10.46
9.75
8.63
6.82
3.64

-2.86
-5.76
-8.88

16.21
15.69
14.92
13.75
11.93
8.82
5.10
0.68

-3.16

than one cm'/mole H, . These results are based
upon the spherical average potential. Based upon
the most stable y-N, bcc orientation, the transi-
tion pressures using the different metallic results
are 1.61x10', 2.72x10', and 3.76x10' atm, in the
same order as presented above. Contrary to pre-
vailing impressions, uncertainties in the metallic
phase are a major source of uncertainty in pre-
dicting the phase transition pressure.

IV. SECOND VIRIAL COEFFICIENTS

Calculations of second virial coefficients B(T)
for atomic and molecular systems have been al-

most exclusively based upon a spherically sym-
metric representation of the pair potential.
Wigner and Kirkwood'2 showed that B(T) can be
expressed as an expansion in powers of h. The
explicit forms are well documented. " For sys-
tems with anisotropic interactions, such as di-
atomic gases, Wang Chang'4 has modified the
Wigner-Kirkwood power-series expansion to ac-
commodate the angular dependence of the poten-
tial. The effect of discrete molecular rotational
states is also incorporated. Although some at-
tempts have been made to calculate B(T) using
this method, the phenomenological forms chosen
to represent the anisotropy are not satisfactory.

TABLE IV. Second virial coefficients for D2 vs temperature. B (T) is the calculated result based upon the anistropic
potential of Eq. (5), Bexpis Ole experimental. VRlue (Ref. 2) BLJ is cRlculRted from the 6 12 potentiRl. BH BD is the
difference inB (T) between H2 and D2, and (BH2-BD2) p is Ole experimental value for this difference (Ref. 2).

Bcl Bgg B2
D2 second virial coefficients (cm /mole)

(Cgp -C(oI (r B (T) Bexp BU BH2 B D2 (BH2 B~)

523
423
373
323
273
223
173
138
113

98
90
80
70
60
50

14.421
13.935
13.477
12.768
11.646
9.791
6.479
2.337

-2.545
-6.902
—9.924

-14.706
—21.110
—30.085
-43.476

0.174
0.234
0.280
0.344
0.441
0.597
0.882
1.261
1.747
2.218
2.566
3.152
4.009
5.350
7.673

0.0241
0.0368
0.0474
0.0631
0.0880
0.131Q
0.2145
0.3302
0.4774
0.6135
0.7081
0.8549
1.0395
1.2601
1,4695

-0.560x 10 '
-Q.9'7Qx 1Q

-0.136x 10
-0.201x10 2

-0.317x 10 2

-0.554x10 2

—0.119x 10 i

-0.268x10 '
-0.061
-0.114
—0.166
-0.280
-0.506
-0.991
-2.154

0.519x 10 5

0.105x 10
0.198x 10 2

0.156x10 '
0.688x 10
0.168
0.271
0.495
0.912
1.715
3.383

14.619
14,205
13.803
13.173
12.171
10.513
7.553
3.881

-0.439
-4.256
-6.901

-11.081
-16.693
—24.465
-36.685

15.54
15,07
14.38
13.30
11.53
8.37
4.38

-0.38
-4.59

15.87
15.33
14.53
13.34
11.45
8.20
4.29

-0.30
-4.35

0.189
0.260
0.313
0.388
0.500
0.681
0.985
1.340
1.672
1.865
1.935

0.54
0.53
0.49
0.46
0.44
0.47
0.63
1,05
1.53
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As a result, it is not known to what extent the
anisotropy contributes to the second virial coeffi-
cients for H, . However, the relatively accurate
representation of the anisotropy given by Eqs.
(3) and (5)-('f) makes it possible to partially re-
solve that uncertainty. Before describing the cal-
culations, some insight into the problem is gained
from general considerations. Second virial coeffi-
cients and most transport properties are intimate-
ly related to the dynamics of two-body collision
processes. An inspection of Eq. (5) shows that the
interaction between two H, molecules can be very
different, depending on their relative orientation;
hence a description of the relative molecular ori-
entations during the collision period is essential.
If the rotational period 7„ is small compared to
the collision period r, over which the interaction
is effective, the pair experiences many different
relative orientations during a single collision.
This condition must be accounted for in calculat-
ing physical properties. For v„«v'„ it may be
acceptable to represent the interaction by the po-
tential averaged over all orientations. If 7„pp 7.„
the molecular orientations are spatially frozen
during the collision and can be deduced from the
dynamical trajectories. The situation is most
complicated when v„=7, .

A. The Wang Chang method

The second virial coefficient for a diatomic gas
I.s given by the series

B(T)=B„+Bgg +B,„+B2)+B2„+' ' +B, (15)

where B,&
is the classical term, B„and B„are

the first two quantum corrections owing to trans-
lational degrees of freedom, B,„and B,„are the
quantum corrections arising from the rotational
degrees of freedom, and B, is the statistical cor-

20

rection. These four-dimensional integrals which
depend upon r, 8„8„and P, —g, are given in
Refs. 33 and 34.

The results for the second virial coefficients of
H, and D„using Eq. (15), are tabulated in Tables
III and IV and displayed in Figs. 14 and 15. Also
tabulated are the results for H„based upon a
spherical average of Ur(r, 8„8„$)and including
the first two quantum corrections as well as the
statistical term. A comparison of these results
with those obtained using the Wang Chang formal-
ism directly measures the impact of the potential
anisotropy on second virial coefficients. As can
be seen from Table III and Fig. 14, the difference
in B(T) derived using these two methods is small.
It would appear that the anisotropy does not. con-
tribute to B(T) in an important way. At low tem-
peratures (TS 80 K) one cannot draw this conclu-
sion, because the approximate expressions used
here to calculate B(T) are no longer reliable.

We have also calculated virial coefficients for
several potentials deduced from various experi-
mental data. As mentioned earlier, Farrar and
Lee' have unfolded a spherically symmetric po-
tential from H, -H, scattering results which well
represents that data. Figure 14 shows that B(T)
calculated from this potential is in poor agreement
with experiment. This was anticipated by Farrar
and Lee.

Another potential form has been derived from
the P V, shock-wave data of van Thiel et al."
Figure 14 shows that virial coefficients calculated
from this potential are not in good agreement with
experiment either. The triangles in Fig. 14 repre-
sent B(T) for the Lennard-Jones 6-12 potential
with parameters e = 36.7 K and 0 = 2.958 A, which
are so chosen because they give the best fit to the
experimental virial coefficient data. '

Figure 16 shows the difference in B(T) between
hydrogen and deuterium, designated by the solid

IO
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FIG. 14. Second virial coefficient vs temperature for
H2.

FIG. 15. Second virial coefficient vs temperature for
D2.
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FIG. 16. Difference between H2 and D2 second virial
coefficients vs temperature.

line. The data points are the experimental work
of Michels et a/. ' We believe the turnover in the
calculated difference is a reflection of the increas-
ing inaccuracy of the theory at low temperatures.
The difference in B(T) between~para- and ortho-
hydrogen is displayed for H and D~ in Fig. 17.
Experimental data sufficiently accurate to. measure
B~ —B, exists only at temperatures below that for
which the theory is valid.

V. DISCUSSION AND CONCLUSIONS
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250

FIG. 17. Difference in second virial coefficients be-
tween ortho- and para-H& vs temperature. The solid
line displays the same difference for D2.

The ground-state energy, PV data, and other re-
lated properties of solid H, have been predicted to
within 10% of experiment over the pressure range
0 &P &2.4 kbars, based upon the spherical average
of an analytic, anisotropic interaction deduced
from SCF and perturbation calculations.

A satisfactory potential shouM yield good pre-
dictions for other H, properties, as well as for
the solid. Hence, second virial coefficients B(T)
have been calculated for H, and D, over the tem-

perature range 60' T&523 K. It was not pre-
viously known if it is appropriate to calculate
B(T) from a spherically averaged potential or from
a fully anisotropic representation. To resolve this
question, the B(T) were first calculated from Uz,

used in the solid description; then, in a second
calculation, the full anisotropies were -incorporat-
ed using the method of Wang Chang. '4 The two
methods give nearly. identical results, indicating
that the anisotropies. contribute little to B(&). The
B(T) for both H, and D, compare closely with ex-
periment for T&225 K, but as T approaches
432 K, they disagree by nearly 10%. The over-
all agreement is, however, much better than that
generally obtained using phenomenological poten-
tials deduced from other H, properties.

It is evident that all calculated system properties
agree with experiment to within 10% and, in most
cases, better than that. Preliminary results for
the differential and total cross sections, based
upon U~, also support this claim. In view of the
fact that the calculations are from first principles
and contain no adjustable parameters, the agree-
ment is satisfactory.

There is no evidence that anisotropies have any
major effect on any H, properties studied here,
except at very high pressures. Calculations of
transport properties, in addition to a complete
anisotropic description of the solid, are necessary
to more fully understand the impact of angular-
dependent forces.

Understanding high-pressure behavior is com-
plicated by the fact that experimental evidence
is sparse, relatively unreliable, and because there
is evidence that three- or more-body forces may
be important. Ree and Bender" have carried out
CI and SCF calculations for pairs of H, molecules
and for groups of three as a function of intermo-
lecular separation. They find that the assumption
of pairwise additivity seems to break down at
small r. The violation apparently becomes very
serious for separations less than 3.5 a.u. As can
be seen from Fig. 12, the H, energy-volume curve
must be known to volumes at least as low as
3 cm'/mole (a nearest-neighbor distance of 3.61
a, .u. ) in order to make an accurate tangent con-
struction for the metallic transition pressure and
volume change. This is in the region where three-
body contributions are beginning to become im-
portant.

Although attention has been focused on an im-
portant problem for systems at high pressure,
we believe it is premature to conclude that many-
body forces are necessary in predicting the me-
tallic-hydrogen transition pressure. The accuracy
of existing atomic-orbital calculations, especially
three-body results, may not be good enough. It is
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also a concern that only limited orientations of
three molecules have been calculated and used inn

analysis. This is clearly pointed out by Ree sand

Bender. Finally, the comparison of the Ree-.
Bender results with shock-wave data is not con-
vincing in view of the very large uncertainties in
the experiment. In fact, the relatively. hard,
spherically averaged potential deduced in this work
gives pressures which fall within the experimental
error flags (see Fig. 13). Historically, calcula-
tions of many-body contributions have been very
difficult to interpret because of the computational
problems inherent in the work. ' lt may be that
three-body terms are fully as important as indi-
cated by Ree and Bender, but much more work is
necessary to convincingly delineate the situation.

Regardless of uncertainties over many-body
forces, a prediction of the high-pressure equation
of state, based upon an accurate pair potential, is

a necessary element in the evolution of the problem
and must precede definitive understanding of three-
body effects. Based upon Ree and Bender's re-
sults, we estimate that the neglect of three-body
forces introduces uncertainties of about 10% in the
equation-of-state calculations at 3 cm'/mole, al-
though Ree and Bender's estimate is larger. This
seems to be acceptable at present, in view of other
uncertainties previously discussed. Our results
clearly indicate that the bcc y-N, structure is
energetically favored over the fcc n-N, structure
at high pressures. The predicted metallic transi-
tion pressures range from 1.61 x10 to 3.76 x10
atm, depending on which metallic results are used.
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