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Effect of gravity on critical opalescence: The turbidity

H. K. Leung and Bruce N. Miller
Physics Department, Texas Christian University, Fort Worth, Texas 76129
(Received 20 February 1975; revised manuscript received 27 May 1975)

The effect of the earth's gravity on the total irradiance of light scattered from a simple fluid neai its
critical point is investigated. It is found that gravity modifies the results of the usual theories for the total
scattering (turbidity) qualitatively in two ways. First, the total scattering at the critical point (in the Born
approximation) does not diverge. Second, the turbidity does not achieve its maximum value at the critical
temperature, but rather above it. For example, the turbidity of xenon with a sample height of 1 cm reaches its
maximum value at about 10 ' K' above its critical temperature. By comparing these results with those of the
modified Ornstein-Zernike theory (critical exponent q~ 0) for a uniform fluid, an apparent gravity-induced q
is defined. This is a temperature- and sample-size-dependent quantity which, when substituted for q in the
modified Ornstein-Zernike theory for a uniform fiuid, produces the same turbidity as the gravity-modified
classical Ornstein-Zernike theory for a nonuniform fluid. It is surprising that the apparent g increases rapidly,
until it is of order unity, within a very short temperature range near the critical point, as the critical
temperature is approached from above. It is more surprising that the sudden change in the apparent q is
quantitatively commensurate, through the scaling law y = v(2 —g), with the rapid change in the exponent y
observed by a number of experimenters.

I. INTRODUCTION

Both the Smoluchowski-Einstein" and Ornstein-
Zernike' (OZ) theories of light scattering from
density fluctuations predict a divergence of the
scattering at the critical point due to the singulari-
ty in isothermal compressibility &~. As the criti-
cal point is approached, the same divergent com-
pressibility that is responsible for opalescence
couples with gravity to produce a large density
gradient in the fluid. Because the gradient is
proportional to the compressibility, at the height
in the fluid where the critical density occurs it
too diverges as the critical temperature is ap-
proached. The importance of the effect of gravity
on critical phenomena was recognized long ago.4

However, it is only in recent years that its effect
on light-scattering experiments has been consid-
ered ' "

In a recent paper, Splittorff and Miller investi-
gated the effect of gravity on the angular distribu-
tion of the scattered irradiance for a simple fluid
near its critical point. ' The results of that in-
vestigation are that gravity considerations modify
the usual predictions in three ways. First, the
scattering in the forward direction no longer di-
verges at the critical point. Second, the scattered
irradiance in any other direction achieves its max-
imum value at a temperature greater than T„ the
critical temperature. Third, even with the OZ
expression for the correlation function, Ornstein-
Zernike-Debye (OZD) plots of the inverse scat-
tered irradiance versus the square of the wave
vector are not linear, but curve towards the ori-
gin for small scattering angles. This lack of

linearity has heretofore been solely attributed to
a nonzero value of the critical exponent g. Gravity
effects here and, as we shall see, on the turbidi-
ty as well, demonstrate that deviations from OZ
behavior are not solely due to the failure of clas-
sical theories. Besides gravity, it has recently
been demonstrated that double-scattering effects
are responsible for similar deviations from OZD
behavior. "

A number of investigators operationally define
T, as that temperature where the total light scat-
tering (turbidity) is a maximum. '~ Others take
T, to be the temperature where the transmitted
beam vanishes. " In this article we study the in-
fluence of gravity on the total scattered irradiance
from a simple fluid near its critical point. In
contrast to the usual OZ theory for a uniform
fluid, we find that including gravity removes the
divergence in the total scattering at the critical
point. Dramatically, the turbidity attains its
maximum value not at T„but always at a temper-
ature above T„say T, which depends on the
geometry and critical parameters of the sample.
For example, a xenon sample with a height of one
centimeter has a temperature shift of about 10
K', which is easily resolved with modern instru-
ments. In general, larger samples produce larger
shifts. Clearly the operational definitions of T,
mentioned above fail.

The calculations upon which these conclusions
rest employ the usual OZ theory of the pair cor-
relation length, which assumes that the critical
exponent p is identically zero. Due to gravity, the
results deviate from the OZ turbidity for a uniform
fluid. If one now assumes that these deviations are
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not due to gravity, but rather to nonclassical cri-
tical behavior, we can deduce an apparent value of
p, say p„which would yield the same deviation as
gravity. As one would expect, we find that g, is
small and varies little with temperature in the
region T» T,. However, as T approaches T„
there is a region where g, increases rapidly, until
it attains values on the order of unity. This is
reminiscent of the situation for the critical expo-
nent y. Experimenters have observed a rapid
change iny over a small range in temperature for
a number of fluids. " We find a remarkable quanti-
tative relationship between the changes in g, and

y, namely, the apparent values of g and y are
correctly related by the scaling law y =v(2-q).

II. TURBIDITY

L
I=Q sin'(g)

K +q
(2)

The idealized experimental setup is the same as
in our two earlier papers. '" The sample fluid
occupies a cylinder of height 2L. The axis of the
cylinder is aligned with the vertical, and the aver-
age density of the sample is its critical density
p, . Monochromatic plane-polarized light is inci-
dent on the bottom of the cylinder and propagates
parallel to the axis. It is convenient to define a
Cartesian coordinate system (x, y, z) with origin
located on the axis of the cylinder at the height
where p =p„with z directed upward along the
axis of the cylinder, and with x in the direction of
polarization of the incident light.

When density varies little over changes in height
in the sample on the order of a correlation length,
1/a', we may assume the usual asymptotic form
of an OZ pair-correlation function,

G(r) =(a/r)e "".
Here, & and K must be considered as functions of
height z, through their dependence on the density
for this isothermal situation. This argument of
local equilibrium, which is discussed more fully
in our previous papers, '" is valid for all current
experiments. It allows us to express the scattered
irradiance in a given direction as the incoherent
sum of the irradiance scattered from each small
layer dz in the fluid. Performing the sum quickly
yields'

number of the incident light, n is the index of re-
fraction, g is the angle between the direction of
the scattered radiation and the direction of polari-
zation of the incident radiation, and 6I is the scat-
tering angle. The subscript c indicates evaluation
at the critical point.

Because K' is inversely proportional to the iso-
thermal compressibility, it varies rapidly with
height in the critical region and must be retained
in the integrand in Eq. (2). All other quantities
are sensibly constant and are absorbed into the
factor Q.

The turbidity is defined as the total power scat-
tered through all directions. Integrating Eq. (2)
over all angles, one finds

dz E(o),vQ f'

where

E ( )o= [1+ (I + o)']in(1+2/o) —2(1+a),
and a new height-dependent variable,

o =cr(z) =z'/q, '

is introduced. When gravity can be ignored, the
fluid is uniform and the local density is the critical
density. Under these circumstances v depends
only on the temperature, and it is easy to see from
the behavior of the function E(o) that the corre-
sponding turbidity diverges as T approaches T,.

The explicit evaluation for & for a particular
fluid requires knowledge of the exact equation of
state of the fluid in the critical region. Although
there are many candidates, "no such equation is
presently known. Here we require an approxi-
mate equation that is asymptotically valid for
small and large values of ~p„~ and e,

p„= (p, p)/p„-e = (T —T.)/T„
and which is analytically tractable. An equation
which satisfies these needs, and which Wilcox and
Balzarini" have found to yield good density pro-
files for xenon, is

BP
Bp r

where & and B are constants, and y and 5 are the
usual critical exponents. " This choice is dis-
cussed in some detail in our earlier effort. '

An application of the compressibility equation
to the OZ correlation function yields"

q' = 2qo' sin'(8/2), q, ' = 2 A n'„ (4)
~P

~
l2k~T,

ep
' 10m

(10)

for the scattered irradiance per unit solid angle.
In the above, I, is the intensity of the incident
beam, Vis the sample volume, k is the wave

where k~ is the Boltzmann constant, m is the
molecular mass, and l is a length characteristic
of the short range of molecular interaction.
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To evaluate 7 analytically, the barometric equa-
tion is used to express the density and compres-
sibility as a function of height. The explicit depen-
dence of 7 on the generalized temperature

x =As/bq, '

and generalized sample height b [See Eq. (A5)] is
developed in Appendix A; Figure 1 gives plots of
turbidity per unit height versus x for several
values of h. For comparison, the turbidity of the
corresponding homogeneous system is also plotted
with the same normalization.

The total scattered irradiance is reduced by
this influence in such a manner that at the critical
temperature the divergence of the turbidity is
removed. Similar to the situation for the angular
distribution of scattered irradiance (except in the
forward direction), turbidity attains its maximum
value at a temperature T, corresponding general-
ized temperature x, where T„&T, (x &0). Any
interpretation of experimental data which assumes
that the critical temperature occurs at maximum
opalescence is suspect. ""

The existence of T & T, has an intuitive as well
as a computational basis. At a particular height,
as T, is approached from above, a point is reached
where the increase in scattering due to the de-
crease in e is completely canceled by a decrease
in scattering due to the increase in ~p„~. Averaging
over the whole volume determines T for the
sample.

In order to calculate T for a particular fluid,
it is necessary to assign values to the parameters
& and J3 characterizing the fluid. For xenon, A

and B were found to be 8.7X1Iy' cm'/sec' and 1.9
x lty' cm'/sec', respectively, by Wilcox and Bal-
zarini. " For other fluids they may be estimated
with the help of the principle of corresponding
states. " The vacuum wavelength of the incident
radiation and the short-range correlation length
are approximated by setting l/A. =10 '. As is in
the case of the angular distribution of scattered
intensity, ' the turbidity results are not sensitive
to the variation of 6 within the generally accepted
range 4 & 5 & 5. For convenience of computation,
we set 5 =4 and y = 1.22. The estimated "positions"
of maximum scattering for several fluids having
a wide range of sample heights are listed in Table
I.

Some of the values of T —T, are found to be
experimentally accessible. To date, there are
very few reports on turbidity measurements. "'"'"
None of them observe a temperature shift for max-
imum turbidity.

III. GRAVITY-INDUCED APPARENT CRITICAL

EXPONENT

Recently, Hohenberg and Barmatz found that
including the influence of gravity in the interpre-
tation of thermodynamic measurements in the
critical region leads to important quantitative
corrections of critical exponents. ' Dobbs and
Schmidt' also indicate that the neglect of gravity
leads to an underestimation of the value of y. In
our last paper' we estimated the apparent g one
would compute from the gravity-induced curva-
ture in OZD plots of the angular distribution. The
values of g so computed were significant in that
they were of the order that one expects when gravi-
ty is neglected. Thus gravity alone is responsible
for experimentally apparent values of p as large
as one expects for a uniform fluid.

The deviation of observations from the predic-
tions of the classical OZ theory may be attributed
to several unrelated factors, such as the gravity-
induced density gradient, the nonzero value of p
as proposed by Fisher, '4 and double and, in gen-
eral, multiple scattering. " In this section we are

TABLE I. The "position" (T-T~ in 10 3 C) of maxi-
mum scattering for several fluids with sample heights
2I in cm.
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FIG. 1. Dimensionless turbidity per unit height vs the
generalized temperature variable x for four values of the
sample-height parameter: (a) h=1, (b) h =5, (c) h=10,
and (d) h =50. The dotted curve is the OZ result neglect-
ing gravity.

0.01
0.1
0.5
1.0
5.0

1.12
3.78
7.6

10.1
17.5

0.19
0.8
1.8
2.5
4.75

0.27
0.96
2.05
2.7
4.9

1.35
4.5
9.3

12.1
21.5

0.18
0.68
1.48
1.97
3.6
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within a short temperature range. It is surprising
that q, can assume such large values. This rapid
increase and large magnitude may be useful to
differentiate an apparent from a true exponent.
Figure 4 gives q, (e) for several fluids with height
21 =1 cm. It also gives an indirect measure of
the influence of gravity on critical scattering from
these fluids. Hohenberg and Barmatz have calcu-
lated the characteristic temperature below which
the influence of gravity becomes important. " We
find that our results are in fair agreement with
theirs.

The values of g, becomes unbelievably large

when compared with expected values of q as T
approaches T,. However, if the scaling law rela-
tiony=v(2-q)is considered, the sudden jump in

qs (taken to be g here) as a result of gravity must
accompany a sudden drop in y if v remains sensibly
constant. This agrees with the observations that

y changes "suddenly" from 1.44 to 0.97 when
c =10 ' for xenon, "'"'"and from 1.37 to 1.1
when & =10 ' for carbon dioxide. "'" Thus, if the
scaling law is a valid relation between apparent,
gravity-induced exponents, then the observed drop
in the apparent value of y is consistent with our
computed jump in the apparent value of p.

APPENDIX A

The evaluation of the right-hand side of Eq. (5) involves the integral

J 1 +
n 1dss"')n(1+bs') = X"'+'ln(1+bs')+(-1)Sb 1"+'&'&Ll'l(b'1'

) —SxY (—1)' b 'xl'-'1'")
ns+1 (n —l)s +1

(Al)

where s =5 —1; n =0, 1, 2, 3, and

%hen s is an integer, I. ' may be evaluated with the method of integration by partial fractions. ' By factor-
ing out the temperature-independent constant multiplying r in Eq. (5) and dividing by 2L, we define f, the
dimensionless turbidity per unit height,

dz F(o) . (A2)

We find that

s ~ ns+x s
„Ss„d)nil—(-1)"s '(S" ' —S" '))Z ns+1 " " ~ is+1n=O l =v+1

A„+sP „,",1(-1)"{S, '"""(1"(S "'s ) —&"(())) -S '"'"'(1-' '(()."s,)-1"(b*))),
n=0

(AS)

where

A.g

b 21 I. (1 5 s)s

A useful dimensionless height may be construc-
ted by factoring out the dependence on generalized
temperature from M~:

x
P =

&=x "u =gL(B'~~/b ')'('~~-» (A5)

Ao=x(x + 2x+2), A, =Ox(3x +4x+2),
A, = 5'x'(Sx+ 2), A, = 5'x',

Bo = -2x(x+ 1), B, = -25x(2x+1),

B2 = -252x, B3= 0.

(A4)

To obtain numerical results, v~ must be expres-
sed in terms of u~ in Eq. (AS) by inverting

6
Ql VI, +VI

APPENDIX B

The functional relationship between the inverse
correlation length and the generalized tempera-
ture parameter can be derived from the compres-
sibility equation which relates the correlation
function and the isothermal compressibility of the
fluid. With G(&) given by Eq. (1) and Eq. (12) for
g = 0 and p & 0, respectively, we find that near the
critical point,
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&P 1z' = 4spap, p =
ep u, r

2 xg

(1 -q)x

&P
~,' " =4wpa" "(1 -q)I'(1 —q)P

and thus

~,' " = a "(1—q)I'(1 -q)z'.

(B2)

where

cos[(g + f) tan '(2/x, )'~2] —1],

At points not too close to the critical point
the correlation length is much shorter than a light
wavelength and &o = q/z, «1, the angular distribu-
tion of scattered irradiance I„and the turbidity v. „
are then given respectively by Eqs. (1) and (2) of
Ref. 15. For our purposes we compute the exact
result without the small-~ approximation. %e
find

x, =
t. (a4'.)"(1-n)I'(I -n)x]' " "'

Co= x,'+2x, +2, C, = -4x, (xi+1),

C, =2x, (3x, +1), C, =-4x,', C4=x,2.

For the purposes of numerical computation we

have taken

aq0=10 2.

(B6)
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