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Parametric interactions between four electromagnetic waves subjected to a linear phase-matching condition
have been considered in a plasma. The relativistic equation of motion of a single electron has been used. The
evolution of two signal waves in time by two powerful pump fields has been studied. The largest contributions
to frequency shifts and growth rates are found to come from the relativistic correction source, Moreover, in

some cases of frequencies very large compared to the characteristic plasma frequency, a part of the relativistic
effects totally cancels the other nonlinear effects. When the beat frequency of two of the waves equals the
characteristic plasma frequency and in the neighborhood of this condition, the contributions from the
nonrelativistic nonlinear sources are found to dominate. The frequency shifts and growth rates for high laser

powers are considerable.

I. INTRODUCTION

The relativistic effect is known to be considerable
in many cases of nonlinear parametric interac-
tions; for example, this effect should not be ig-
nored in studies of plasma beams, in plasmas
having relativistic thermal velocities, or when or-
dered velocities due to very strong wave fields
are relativistic. Some authors'-' have considered
several cases of such relativistic problems.

Moreover, we find that parametric effects are
also caused by the usual relativistic corrections
in rarefied stationary plasmas under the influence
of driver waves which should be transverse and
not necessarily so strong that the corresponding
ordered velocities are relativistic. In this paper
we consider a simple problem of this type. The
existence of such parametric interactions is
pointed out below.

The unscreened self- magnetic interaction being,
in fact, a relativistic process, the dispersive
electromagnetic effects are relativistic (cf. Thomp-
son ). This relativistic contribution even predom-
inates over other nonlinear interactions of the
same order in problems of wave propagation when
the wave amplitude is finite. The evaluation of
the nonlinear shift in frequency and wave number
of a monochromatic wave of finite amplitude in a
stationary plasma by Sluijter and Montgomery'
shows that the contribution of the relativistic cor-
rection term is larger than that of the nonrelativ-
istic part. Das' extended this work by studying the
effects of two electromagnetic waves. These
authors have used the relativistic equation of mo-
tion of a single electron in a Lorentz force field,
in addition to the usual Maxwell equations. We
have extended their work to the four-wave regime.
The reason is that the expansion of the relativistic

momentum p in powers of the velocity v shows
that the first relativistic nonlinear correction is
m(p'/2c')v. This quantity being cubic, and not
quadratic, in v, the effects of parametric interac-
tion in plasmas without any steady streaming mo-
tion can only be determined if at least four elec-
tromagnetic waves are considered.

Our nonlinear sources are the force —(e/mc)(v
x H), the current -env, the nonlinear operator
v V operating on v, and the nonlinear relativistic
relation between p and v. The equilibrium- state
field quantities bear the suffix 0. The linear or
first approximations of E, H, v, and n will be de-
noted by Ey Hy vy and n„ the next —that is, the
second —approximations by E„H„v„and e„ the
third by F„H„v„and m„and so on. Some
authors, on the contrary, call the linear approxi-
mation the zeroth or ground approximation, and
in general call, E„ the (n —1)th approximation of
E.

The method of solution is the standard one and
is discussed, for example, by Sagdeev and Galeev'
and Nishikawa. " The known technique for para-
metric three-wave interactions could be easily ex-
tended to our four-wave problem. Here it may be
mentioned that the small parameter for the pertur-
bation theory is

~ v, ~/c - e ~E, ~/mac.
The simplest of the parametric four-wave inter-

actions are those in which there are two powerful
pump waves interacting with two signal waves.
For further simplification, the study is confined
to rectilinear propagation in an unmagnetized and
homogeneous plasma. Our work also extends to
the investigation of resonant interactions in which
the difference between two of the four wave fre-
quencies equals the plasma frequency.

The growth rates and frequency shifts found here
are very pronounced, and the threshold values of
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the pump-wave intensities are not very high. The
effects of the relativistic correction terms are
predominant in all the nonresonant cases. But in
the near-resonant interactions, in which the dif-
ference between two of the frequencies is close to
the characteristic plasma frequency ~~, the rela-
tivistic terms can be totally neglected in the esti-
mation of the enhanced growth.

In the resonant interactions, in which this differ-
ence of frequencies exactly equals ~~, the equa-
tions for the parametric effects contain secularly
growing sources, The relativistic effect is also
negligible in the resonant interactions.

Sugihara" and Sitenko" have considered some
cases of four-wave interactions; Wilhelmsson and
Pavlenko" have investigated the interaction of five
waves for explosive instabilities. But the problem
worked out here is outside the subject matter of
these studies.

II. FIELD EQUATIONS AND EQUATIONS FOR FOUR-WAVE

INTERACTIONS

Following Sluijter and Montgomery' and Das, '
we start with the self-consistent system of rela-
tivistic equations for electromagnetic waves in

cold plasmas:

B ~ v eE e—+ (v ~ V), , » i, =- —— (v xH),
&t (1 —v'/c')'" m mc

1BH
curlE = ———,

c Bt
1 BE 4me

curlH =— — (n, +n)v,cBt c

(2.1)

(2.2)

(2.3)

divE =- 4men, divH = 0. (2 4)

E, = e„ga,. cos 8,. + e,g b,. sin8, , (2.5)

where 8,. =k,.z —(d,t, b',.c'= uF,. —. (d~, &u~=4wn, e'/m,
and e„, e, , and e, are the unit vectors parallel to
Ox, Oy, and Oz, respectively. Hence

e a, b,.v =—e —' sin8. —e —' cos8,i m x (d 2
—

y
Cui i

(2.6)

[By E,we now denote the vector sum of the four
elliptically polarized electromagnetic waves in the
medium of the linear approximation. Assuming
that all of them are propagating parallel to Oz we
have v, =0 and

The second-order quantities are given by

e'e, ~ 2k,.(, b, ) 28 a,a,. —b,b, )((d, +&d,..)(k,. +.~k.)

~ g ~ i j
(a,.a. + b,b, )((d, —(d, )(k, b, )

(
. —

)
i j

(2 7)

eE2
v, =- —' — (v, xH, ),I BlC

E, = 4'~,v, , H, = 0, divE, = —4men, ; (2 8)

(a a,.—bbj(k,. sk,.)'cos(a,.,.s,a. , ) kk',. (a',. —b',.)cooke,. (a a,. sb,.b,.)(k,. —k, )'cos(jj,. —jj,.
))

81tm (d;(d. [((d;+ (d ) —(cF&] (d,.(4(d,. —QP&) (d,. (d. [((d& —(d.) —((r&]

(2.9)

For the computation of the third-order effects
we note that

(v, V)v, —(e/mc)(v, x H, ) = 0, (2.10)

which means that two of the third-order sources
in the momentum transfer equation (2.1) cancel
each other. Hence the third-order electric field
E, is actually determined from the equation

i2vi 1E —c'V'E +APE = k ——' '.+——(nv)
Bt 2g2

0

(2.11)
The first term inside the large parentheses comes
from the expansion of the relativistic momentum
in powers of v, .

(d —
COi + 2 + (d3, k~ —ki + k2 + k3 . (2.12)

In the general case, any further restrictions are
excluded, and so we have

((d,. - (d,.)' C (d&, i,j = 1,2, 3, 4 . (2.13)

If this nonlinear equation is solved for secularity-
free behavior by the method of Bogoliubov, Krilov,
and Mitropolsky (cf. Montgomery and Tidman" and
Tidman and Stainer" ), or of Lindstedt (cf. Bell-
man"), then the results of Sluijter and Montgom-
ery' for a single wave and of Das for two waves
can be recovered.

The investigation of the four-wave interactions
will be restricted by the following linear phase-
matching conditions:
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We now use (2.6) and (2.9) in (2.11) and then put

8.=81+8.+83 (2.14)

in the resulting relation. It is necessary to single
out only the vectors e„cos8,. and e,sin8, and
some of their coefficients, namely, only those
relevant coefficients which are obtained from the

mutual interaction of the four waves, subject to
(2.14). The coefficients of cos8,. and sin8,. for
i = 2, 3, 4 can be easily guessed from those of
cos 81 and sin 8, by fol lowing a rule of cyclic rota-
tion of 1, 2, 3, and 4 for the numerical suffixes
of a and b. So, mentioning only the relevant coef-
ficients of cos8, and sin8, on the right-hand side
of (2.11), we write

(2a,a4+2b, b~)a, +(a,a, —b,b, )a4 — ~ ' ' ', ' 3 —a4

(a,a, + b,b,)(k, k, pc'—
2

g2+b2 g2+b2
+e, sin8, b1 '~ '+ —~-

3 4

(2.15)

The remaining terms (+ ~ ~ ~ ) can moreover be determined with the help of (2.19) and (2.20) and similar rela-
tions for i =3, 4.

Let the powerful driver waves be those having the amplitudes a„b„a„and b„and let a„b„a„and b,
be the amplitudes of the signal waves. To study the slow evolution of the signal waves in time, we regard
a, , b„a„and b, of (2.5) to be slowly varying functions of time, such that

(2.16)

Hence, retaining a,. and b,. only, and expressing sin8& and cos8,. in exponential form, we get

E, —c'V'E, + aP~E, = —g (d, [e '82 (i e„a& + e. ,bz) + c.c.] (2.16a)

When the derived right-hand-side result is equated to the right-hand side of (2.15), an equation is obtained
which is apparently free of E„but which has the potential of yielding the temporal evolution of the ampli-
tudes of the four waves of E, given by (2.5). Since we are interested only in the temporal evolution of a2,
b„a„and b„we retain on the right-hand side of (2.16a) the coefficients of e„and e, which contain these
amplitudes and their first-order time derivatives. Hence, equating from both sides of the equation thus
obtained from (2.15) the coefficients of cos8„sin8„cos8„and sin8„ the following four linear, mutually
connected, first-order differential equations for a„b„a„and b, are obtained:

et g~~c (d / (d 6~~c2~(d (d ~ 2 4 2 2 4 2 2 4 ((d +~)&1 3 2 3 4 2 3 p

2(a,a, + b,b, )(b, ~ 2, )'c'
) (2.1'l )

6' C (d + (d2 6m C (2) (d K 2 ((2) + (2) )1 3 4 2 3 4 2 3 P

2(a,a, + b,b, )(b, + b, )*c'
) (2.18)
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Bt 8m2C2(g Q Q 8hhh C (d (I) (d ((g + ~ )2 3 4 1 3 4 1 3 P

2 {a,a, + b,b, ){k,+ k, )'c'
(2.19)

2 2(d ~ (j2 8mc2~~~ h 3 h 3 4 h 4 (~ y(d)2 3 1 3 4 1 3

2(a,a +b, b )(k, +k, )'c'
) (2.20)

Assuming the time variation of a„b„a„and
b2 to be proportional to e'"', a fourth-degree equa-
tion in (d is obtained from (2.17)-(2.20), which
yields, in general, four frequency shifts and four
accompanying growth rates. This means the de-
velopment of four new colors from the two colors
of the two driver waves. The one with the largest
growth rate will be most prominent.

It must be remembered that the nonlinear growth
does not become apparent when the linear damping
of the excited waves is larger than their nonlinear
growth, and that the pump-. wave amplitudes must
exceed certain threshold values in any real plasma
when such decay processes are visible. The
linear dissipation is taken into account by including
the dissipative force —vv per unit mass, in addi-
tion to other terms on the right-hand side of (2.1).
This term describes the average effect of collision
between electrons and ions in the motion of the
former. For threshold estimation we should re-
place 8/Bt by 8/Bt + vuP~/2 H in (2.17), and by
8/Bt+ var~/2(d2 in (2.19), and then put 8/Bt= 0. See,
for example, Rosenbluth and Sagdeev" and Larsson
and Stenflo' for a discussion on the estimation of
the threshold powers.

It is known" that a strong elliptically polarized
wave undergoes self-precession of its polarization
ellipse as it propagates through the plasma. We
have not considered this effect in this paper.

When the difference between two of the frequen-
cies is in the neighborhood of cup, the parametric
interactions become enhanced and some of the non-
relativistic nonlinear sources dominate over the
relativistic ones. To study such near-resonance
situations, we set

(()4 —(k)h = (k)2 + (k)3 = (()&(1 —8), 0 ( 5 && 1, (2.21)

Then the following cases arise:
(a) The two pump waves propagate in opposite

directions. So ~3&0 when ~4&0 and

(k)h + ({)3= ({)&—(k)2 = (k)&(1 —5) + (k)h —(()2 - (k)&(l —5)

hf (k) (k)2, (2.22)

(b) The two pump waves are in the same direc-

$2c2 ~ ~2
i (2.24)

If the pump-wave intensities, averaged over one
time period of the respective wave fields, are de-
noted by P, and P, (in cgs units) then

P, = ca', /8h(, P, = ca',/8h(, (2.25)

if the waves are plane polarized.
The typical values of the parameters to be used

in the numerical estimation of our formulas are

P, =P, =10" erg/cm'sec, (d~=10hh sec ',
(2.28)

III. RELATIVISTIC FREQUENCY SHIFTS

It is noted that in (2.17)-(2.20) the relativistic
effects have yielded the second term on the left-
hand sides and the first three terms inside the
square brackets on the right-hand sides. An inter-
esting interference effect occurs if

(3.1)

These conditions are possible for very high fre-
(Iuencies for which (2.24) holds and none of the
near-resonance conditions expressed through (2.21)
to (2.23) are valid. Then the right-hand sides of
(2.17)-(2.20) vanish because a part of the relativ-
istic contributions cancels the sum of al1. the
other nonlinear effects; thus we are left with

8
)

ie'uP, a', + b', a~+ b', (a, , b, )
Qt ' ' 8yyz c H co3 4 i

tion. Then in order to satisfy (2.12) we must have
&2&0 whenever co, &0, co3&0, and ~4&0; and

({)h+ (d& = (k)4 —(k)2 = (()&(1 —b)+ (ch (()2
I

(dh
I

+
I

(d2

(2.23)

and (bh+b, )'c'/[((oh+ ~,)' —H~]=1.
In the case of very high frequencies in a trans-

parent plasma, the dispersion relation 02c2
= uF, —uF& (i =1,2, 3, 4), can be simplified to
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for i =1,2. Hence (2.17)-(2.20) lose the character
of simultaneous equations and so are not mutually
connected. Solving (3.2) we get the relative fre-
quency shift

5(0 82& a2+b a +5
(3.3)

which is towards the red side. Hence some of the
high-frequency weak oscillations can induce red
shifts by nonlinear mixing with some powerful
high-frequency vibrations when subjected to the
linear phase-matching condition (2.14) in a plasma.
This interesting effect should be thoroughly investi-
gated with the help of some experiments for their
detection.

Putting b,. = 0, i =1,2, 3, 4, and using the values

of (2.25) and (2.26), we get the numerical estima-
tion

Q co.'=3 6x10 "
(d. (3.4)

At this time it is not clear that such a relative
frequency shift of this order of magnitude is de-
tectable. "

IV. NEAR-RESONANT PARAMETRIC INTERACTIONS

A. Plane-polarized pump fields

In (2.17)—(2.20), assuming the solution e'"', and
considering plane-polarized waves only, we get for
the increment to the frequencies cu, and ~, the
quadratic equation

eau&2a a~ 2 1 3 (k2+k, ) c 2(k2+k3) c (k, +k3) c 2(k2+k3) c
8m'c'Id, &u, &u, &u, (~,+ &u, )' —uP~ (v, + &a,)' —&u' (&u, + &@,)'- H (&u, + Id, )' —H

(4.1)

The two factors in the square brackets on the right-
hand side contain terms whose denominators are
(u, + &@,)' —H& and (~, + &u, )' uP~. When one of the
near-resonant conditions (2.22) and (2.23) is satis-
fied, these terms dominate over the others. Since
these are the only terms which come exclusively
from nonrelativistic nonlinear effects, the relativ-
istic contributions can be totally ignored in such
interactions.

Using (2.22) we obtain

B. Circularly polarized pump fields

A/B = (—,', 1),
where

(4.7)

e'(d' a' a' e' QP CP a'

Putting b, =a, and b, =a, in (2.17) (2.20), we
find that the waves of a, + b, are parametrically
coupled, respectively, to those of a, +b, . There
will then be four frequency shifts which are the
solutions of the following two quadratic equations:

8m2c2&d (d (~ ~ )~~2

The data of (2.26) yield

+=6.5 x10' sec '.
The condition (2.23) gives the growth rate

e (gag g (1 + ] /2 6)' ~ (I + I/6) ~ ~

Bm'c'u, &u
~

&u, &u, ~'I

Putting the values of (2.26) into (4.4), we get

y=9.25 &&10'sec '.

(4.2)

(4.3)

(4.4)

(4.5)

e'usa, a, ' 1
1 (k, +k, )'c'

(k, +k, )'c'
((u, + u),)' —(v~2

As in Sec. IVA, when any one of the near-reso-
nant conditions (2.22) and (2.23) is satisfied, the
relativistic effects become insignificant. For
(2.22) we get the two frequency shifts

In this case, the threshold values of I', and P,
should be such that

v 7te (P P ) (1+I/26)~ (2+I/O)' '
2(dz&d2 m C (d3(d4

~
(d&C02

~

2m c (d~ 474((ch &d~)

U (2.26) is used, their numerical values are

~ = 8.6 x 10'(~, 1) sec ' .

(4.8)

(4.9)

where v is defined in Sec. II.

(4.6)
When (2.23) holds, (4.7) yields two growth rates
y, which are numerically identical to the co of
(4.8) and (4.9). The corresponding threshold value
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of the geometric mean (P,P,)' ' of the pump-field
intensities is given by

C. Pump fields oscillating in two mutually perpendicular planes

Using (2.26) we get

(P3P~) =5X10 &&v erg/cm2sec.

(4.10)
When the two driver waves are in two mutually

perpendicular planes of polarization passing
through the common direction of propagation, we
can put a~ = 0, and b, = 0 into (2.17)-(2.20) and get
two equations connecting a, to b„and a, to 5,.
These yield for co the two quadratic equations

2 2

C 1
1 (k, + k, )'c'

1 (k, + k,)'c'
(4.11)

where

The near-resonant condition (2.22) yields the
growth rate

e' aP~a, b~(1 + 1/2 5)
4Bl C (03(d4(2(0&M2)

the condition (2.23) gives the frequency shift

e' H&a, b~(1+ 1/26)
4tB e C03 (d&(2

~
(d& (dz

~
)

(4.12)

(4.13)

co~. For example, such types of interactions occur
when

((d4 —(d2) = (M3+ (d&) =
(cP& . (5.1)

Using this relation and retaining only the secularly
growing terms, we get

te'(k, +k, ) a,a, —b, b, a,a~ b+b

and another, numerically very small, shift.

V. RESONANT SECULAR INTERACTIONS

Resonant interaction leading to secular temporal
growth of the nonlinear sources is effected when
the difference between the magnitudes of the fre-
quencies of two of the four waves exactly equals

(5.2)

With the help of the third and fourth relations of
(2.8) and (5.2), the secular terms of S, and n, are
determined. Then such terms of the nonlinear
third-order sources (v, ~ V)v„—(e/mc)(v, & H, ), and
—1/n, (s/st)(n, v, ) are evaluated. Using these results
in (2.11) and retaining only the secularly growing
parts, we have

te2tcP(k~+@3)2 a~a, —b, b~ a2a4+b2b4 sr~,

1 3 2 4 — 3

——'(e~, sin8, +e b, cosg, )
4)4

(5.3)

Using on the left-hand side the solution (2.5) and
considering only the plane-polarized waves, the
equations connecting g, and a2 are

8 a, , 8'a, te &u~(k, + k, )'a',

te'~~&a, (k,, +)'t, )'a,a,
8m CO, (u3~4

te'&u, (u, (k, +k,)'a,a, (5.5)

(5.4)
A solution of the mutually connected equations is
sought in the form
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(a, , a,) = (A„A,)exp[i(n, t + n, t' + n, t' + ~ ~ ~ )]

(5.6)

where A„A, are independent of time. Eliminating

a, and a, between (5.4) and (5.5), a polynomial in
t, containing as coefficients of different powers of
t some functions of the parameters Qy Q„.. .
are obtained,

2(u, n, i —ig —2n + 2&@, x2ni —3x2n, 2n x2ni+ e ~~(k~+k~) a3

+ (2cu, x 3n,i —4x 3 x n4 2n, x 3 n, i)t2+. . .

2 ~, Q,s —s Q,'- 2 Q, + 2 (o, x 2 Q,i —3 && 2 x Q, —2 Q, x 2 Q,i+-e'&o~(k, + k, )'a',
8m 4

+(2+, x 3n, i —4 x 3 x n, 2n, x 3 n, i)t'+ ~ ~ ~ =t' —'
3 4 l

(5.7)

The coefficients of t and t in the left-hand side
of (5.7) vanish if

j. ~ 2 ~ j. ~

Q = 2 CO) Q —2 'L + = Z (02 Q~ —g 2 + .
Since (d, Wco„ the solutions are

(5.8)

e'&u~(k, +k, )2 a,'a',
(5.10)

Similarly, coefficients of t' yield

2 Q4 =i Q3(d~ . (5.11)

Since n, of (5.10) is real, it is an increment to
periodicity in time. For the same reason, Q4 of
(5.11) being an imaginary quantity, gives a growth
rate in time.

Using (5.9) the relation (5.6) can be written as

(a„a,) = (A„A,}exp[i(u&t)' - (yt)' + ~ ~ ~ ] . (5.12)

As seen below, the quantities e and y are the
closest equivalents of a frequency shift and a
growth rate, respectively, for an equation like
(5.3).

Q~ =0~ Q =0. (5.9)

Equating coefficients of t' from both sides of (5.7)
and using in them (5.8) and (5.9), we get

break in a time much shorter than 2m/&u„and the
theory of resonant secular interaction will fail
even much before this time is attained.

VI. CONCLUDING REMARKS

The parametric interactions involving four elec-
tromagnetic waves in a cold plasma are quite
powerful effects when two of these waves are avail-
able as powerful pump waves and a linear phase-
matching condition is satisfied. When any one of
the beat frequencies does not either equal the elec-
tron plasma frequency +~ or lie in its neighbor-
hood, the relativistic corrections give a large con-
tribution to the frequency shift.

Ignoring the relativistic effects, the parametric
frequency shift co for plane-polarized fields is
given by a relation of the type

(6.1)

where Q is a function of a„a„a„a4
(d3, and ~„and the frequenc ie s are restric ted by
the relation (2.12). But when relativistic effects
are also included, the equation for co can be ex-
pressed as

e'&o~(k, +k,)' a', a&

e'(o, (k, +k, )'(o, a', a',

Using (2.26) their numerical estimates are

(5.13)

(5.14)

(6.2)

where p, and p, depend purely on the relativistic
effect and n't n. If uF, »aP, &u, &0, i =1,2, 3, 4,
that is, when the conditions (2.24) and (3.1) are
fulfilled

&v=1.9 x10"sec ' y=l.6x10" sec '. (5.15)
&= —p„—p„n' = 0, n 00. (6.3)

Hence the growth due to the factor exp(y t } is about
exp(10~) times in a time period 2ml&u„and more

exp (104~) times in 1 sec. So the system should

So two different shifts are obtained.
Using the more general set of equation (2.12)-

(2.20) the equation for v can be expressed as
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0 u&+p y, 52
—0

p& M+y 0 (6.4)

jf the relativistic terms are ignored, a=0, p=0,
y =0, and 5=0, and some parts of the other ele-
ments of (6.4) also disappear. Then the coefficients
of &u and ~ become zero and the biquadratic (6.4)
reduces to an equation of the type

((u +Ptu+q)(uF —p&u+v) = 0. (6.5)

But, on the other hand, if the conditions (2.24) and
(3.1) are fulfilled, except for o., P, y, and 5, all
the coefficients of (6.4) vanish and so Eqs. (2.1V)-
(2.20) are not mutually connected.

The physical implication of the appearance of
several frequency shifts and growth rates of signal
waves is that a combination of several different
colors is developed by the interaction of other
types of colors with a plasma medium. The ques-
tion of the choice of any one of them to the exclu-
sion of the others does not arise, because, natural-
ly, that color which has the largest growth rate
will be most prominent.

When the difference between two of the four fre-
quencies is close to the characteristic plasma fre-
quency m~, the relativistic contribution to the fre-
quency shift is negligible. When the frequency dif-
ference exactly equals ~~, moreover, the equations
for the parametric effects contain secularly grow-
ing sources.

The physical processes responsible for the ap-
pearance of frequency shifts in some cases and
temporal growths in the other cases are not yet
clear to us. We also do not know the physical rea-
son why the "resonant" case behaves so differently

from the "nonresonant" cases. Side- scattering ef-
fects are important in the artificial glow when
created in the atmosphere by powerful signals sent
from man- made instruments. So, if an investiga-
tion is made of the two-dimensional propagation,
in which the direction of propagation of all the four
waves are different but coplanar, then, the side-
scattering effects can be studied; moreover, then
other peculiarities of the four-waves interactions,
some of which we have noted but could not explain,
may become clear.

All waves in plasmas in the absence of a static
magnetic field must have frequencies greater than
the characteristic plasma frequency co~. When the
frequencies of two of the waves differ by co~, a
resonance caused by sources containing secular
terms occurs. In the near-resonance cases in
which this frequency difference is close to (d~,
some of the sources producing the parametric in-
teraction become very powerful and others negligi-
ble. A satisfactory study of the physical reason
for the behavior of the medium subject to the reso-
nant and near-resonant parametric interactions
has not yet been attempted. For these studies it
seems advisable to start with model equations of
the Klein-Gordon type having simple cubic non-
linearities; for example, the model of Chandra"
may be used for that purpose.

Wang"' has studied the energy-transfer prob-
lems for three-wave interactions involving ordi-
nary nonlinear differential equations and the ques-
tion of bounds of solutions of these equations.
Witham" has investigated the energy- transfer
process and its slow variation for a single wave in
nonlinear dispersive media. These references
should be useful in future works on the analysis of
energy transfer from the pump fields to the signal
fields in parametric four-wave interactions of the
type studied here.
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