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We study the kinetics of photons coupled to an electron gas by Compton collisions. We show that, for the
limiting cases of linear and nonlinear evolutions, an initial narrow spectrum exhibits the same tendency of
shifting towards the red frequencies. Concerning the Bose condensation of the photon gas which is predicted
by standard thermodynamic arguments when the total number A of photons exceeds some critical value A„
we show that the nonlinear kinetic evolution leads to a condensationlike phenomena. This condensation, which
always appears when A & A„can also occur when A & A, for sufficiently large and sharply peaked initial
photon distributions. Such long-lived quasi-equilibrium states can be called "metastably condensed. "

I. INTRODUCTION

Many papers have already been devoted to the
kinetjcs of a photon gas interacting with electrons
(or with an ionized gas) via Compton scattering,
and its physical applications (mainly astrophysi-
cal). ' ' It is certainly a rich subject, including
phase-transition processes. However, the ap-
proach is made difficult by the complex nonlinear
structure of the kinetic equations, and only par-
tial information has been obtained, or conjec-
tured, on the behavior of the solutions.

Our purpose in this paper is to add to previous
results some rather qualitative considerations on
the various types of evolutions (either linear or
nonlinear) which may be expected in this problem,
and on the mechanism of Bose condensation.

As is well known, the kinetic equation for pho-
tons contains both linear and nonlinear terms, and
the resulting evolution can be mainly linear or
nonlinear according to the physical situation we
consider.

The nonlinearity of the kinetic equation tends to
shift an initial photon distribution towards lower
frequencies, and to steepen the red side of the
distribution curve, ending with a vertical front
after a finite time lapse. The subsequent evolu-
tion has been studied in some detail by Reinisch':
The existence of the diffusion term (however small
it is) in the Compton-Fokker-Planck equation des-
cribing the photons' kinetics prevents the solution
from being multivalued and causes the vertical
"shock front" to move towards lower frequencies.
We will show that this shock front collides with
the zero-frequency mall after a finite time inter-
val, and then the spectrum begins to pile up into a
very small frequency domain near v=O. Such an
evolution occurs when considering intense initial
spectrums localized around an average frequency
v, (laser or maser radiations for instance).

Linear evolutions are associated mith small oc-
cupation numbers (such as those which usually

pertain to a hard-x-ray spectrum). In this case,
if the total number of photons and electrons is
conserved, we obtain the unexpected result that
the linearized kinetic equation is also character-
ized (in the limit of vanishing diffusion coefficient)
by a global red shift of the initial spectrum, ac-
companied by a narrowing of the photon distribu-
tion. In this last case, however, the approach to
the low-frequency domain is gently progressive,
in contradistinction with the sudden catastrophe
which appears in the nonlinear evolution.

This "catastrophe" has been related to the phe-
nomena of Bose condensation of the photon gas. In
the case where the temperature T of the electron
scatterers is maintained fixed, the condensation
is predicted to occur on the basis of standard
thermodynamic arguments, when the total number
of photon A exceeds the critical value A, corres-
ponding to the equilibrium Planck distribution at
temperature T. (Remember that, in this problem,
A is conserved. ) In this case the equilibrium state
would contain a "condensed phase" of photons of
quasizero energy coexisting with a Planckian dis-
tribution of uncondensed photons associated mith a
zero value of the chemical potential. We show
that, for appropriate initial conditions, in the
course of the nonlinear evolution the system can
reach a quasi-equilibrium where a condensed phase
(of nearly zero energy) may coexist together with
a noncondensed phase whose chemical potential is
different from zero. Of particular interest is the
case where the condensation occurs for A. &A, ,
that is, for subcritical thermodynamic conditions.
The existence of such quasi-stationary states,
which may be ca11ed "metastably condensed, " is
peculiar to the photon system because of the zero
rest mass of these boson particles.

II. SOME CHARACTERISTIC FEATURES OF VARIOUS
TYPES OF EVOLUTION (LINEAR AND NONLINEAR)

We consider the evolution of an initial ensemble
of photons and electrons interacting via only
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Compton interactions (dilute media). Therefore,
the total number of particles of each species is
conserved in time, and their distributions func-
tions [N( v) for photons, f(p) for electrons] obey

the following kinetic equations (assuming spatial
homogeneity and assuming low electronic densities
so that electrons can be considered as bare parti-
cles):

s,N( v) = v" dv' I &Q' dpi' ( v- v')JN(v')[1+N( v)]f(p') N(-v)[1+N( v')]f(p)j,

s~f(P) = v'dv dQcPp'0 N v' 1+N v p' -N v 1+N v' (2)

where v stands for vQ, 0 being the unit vector of
the v photon, and o(v- v ) is the Klein-Nishina
cross section (in the frame where the electron is
at rest).

The limit of low-energy photons and low-energy
electrons is defined by the conditions

h v/mc'«1,

T./mc'«1,
(2)

(4)

T, being the average electron energy [condition
(3) expresses the fact that &v/v«1 in a Compton
collision].

In this limit, and making the additional assump-
tion of isotropy in velocity space (we recall that
the anisotropies usually relax on shorter times
than the isotropic part of the distributions), the
kinetic equations reduce to

e, N =(~/v')s, [y(NiN'+l s„N)], (5)

8, T, =cyh, u'%+X'+p, &,N dv,

where

p, =r, /h,

c. =h(n, cc)/mc'

(where n, is the electronic density and v is the
square of the classical electron radius). We post-
pone the study of the stationary solutions of the
above equations to Sec. III, and we now focus on
the kinetics of a photon gas interacting with elec-
trons in thermal equilibrium at the constant tem-
perature T. The evolution is then only described
by the "Compton-Fokker-Planck" equation (5), in
which n and p, are given coefficients.

The radiation spectra produced by nonequilibri-
um sources are characterized by occupation num-
bers N(v) which may vary in an enormous range,
when passing from radio to x-ray frequencies.
When N» 1(which is easily realized in the radio-
frequency range) the evolution is frequently of the
nonlinear type (which means that the N' term in
Eq (5) is very . important). However, when N«1
(x-ray range), the evolution is usually of the lin-

ear type. %e shall briefly consider these two
cases.

A. Nonhnear type of evolution

As was already shown by Zeldovich and Levich, '
a striking feature of the nonlinear evolution is the
appearance of a condensation-like phenomenon
after a finite time interval. Since the behavior of
the photon distribution may be pathological near
v=0, it is advisable to consider an initial spec-
trum N'(v) which does not extend up to the very
low frequencies. We choose N, (v) to be a peaked
function around v„with a finite characteristic
width 4v. Such an initial condition, which is pic-
tured in Fig. 1, is of course of interest in the
case of maser or laser sources.

Let us first rewrite Eq. (5) in terms of the den-
sity of occupation numbers in v space, u = v'N,

s,u = (s'+x'u)'+ p, (x'~" —2h'),

where x stands for the frequency and 7=at. As-
suming that, for large enoughu, the right-hand
side of Eq. (9) reduces to its nonlinear term
[s,u = (u')'], the solution is known (cf. Ref. 2) and
is given by the implicit relation

(10)

Starting with the above No(v), this solution is char-
acterized by a progressive steepening of the red
side of the initial distribution, and after a time in-
terval v, of the order of &v/u', „-&v/vP'„a

FIG. 1. Inital spectrum of photons.
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if one excludes a very small domain near v =0 (of
the order of the shock width at T=7, ). As a result
the major part of the distribution still remains
linear, with a slope which still decreases as I/v.
Since the norm A is conserved in the course of the
process, we therefore expect that the whole photon
distribution progressively piles up in the vicinity
of v=0. This is the condensation phenomenon. It
is worth noting that the width of the condensed dis-
tribution may eventually become so small that the
condition of small momentum transfer

VAer,

FIG. 2. Burgers' type evolution. Dotted curves
correspond to the solution in the absence of diffusion
process.

quasi-vertical slope has been built up. Later on,
multivalued solutions would be obtained. Such an
evolution for 7& v, is not allowed if one takes into
account the linear diffusion term in Eq. (9). It has
been shown by Reinisch' that in the limit p, -0,
Eq. (9) may be approximated on convenient time
scale by

&,u = (u')'+tIu",

with p™.= p, x', being the abscissa of the shock front.
Such an equation, which is of the Burgers type, '
may be integrated, and its solution (for 7 (P. ') has
the triangular form represented in Fig. 2. The
condition of existence of this triangular solution is
known (see Appendix A for an elementary deriva-
tion) and reads

where

Putting x of the order of x„ this condition reads

N»g/b v.

The slope of the nonvertical side of the triangle is
inversely proportional to time, and the actual
"width" of the vertical front is of the order of
(P't/A)' ' (see Appendix A). A remarkable feature
is that the kinetics of the shock front is indepen-
dent of p. At time

the front reaches the origin with a vanishing width.
Then the x dependence of p can no longer be ig-
nored in Eq. (9), and all the terms of Eq. (1) would
be needed in order to describe the subsequent evo-
lution. However, solution (10) still remains valid,

&NN(v+5v)-N(v)+5v—

on which Eq. (5) is based may be invalidated, and
that the ultimate evolution could only be described
by Eq. (1). It is also important to note that, with-
out the knowledge of the solution of the kinetic
equation, we can neither predict which fraction of
the initial spectrum will be condensed, nor answer
the question: would an appreciable amount of en-
ergy be stored in the very-low-frequency domain
in the presence of a constant source of photons?
A last remark concerns the characteristic times
and light paths which are needed in order to ob-
serve the condensation of a nonequilibrium radia-
tion spectrum. Coming back to the original time
scale, we have

t, -(o.v, ) '[(v, /&v)N] '. (12)

It is interesting to note that, in the case of a
Planckian initial distribution (cf. Chapline, Cooper,
Slutz') (owing to the large width of this distribu-
tion), the characteristic time for the onset of the
condensation is not given by expression (12). It
has been estimated in Ref. 7 as the time at which,
according to the nonlinear solution (10), particles
appear at v=0. It is easily verified that, at this
time, all the derivatives of N with respect to v are
infinite. Therefore, we recover the notion that the
condensation sets up when a vertical distribution
reaches the origin. Here t, is of the order of
(o.v, ) ', where v, is the average frequency of the
initial value. Such a value, expressed in terms of
the corresponding initial number of photons, may
be much larger than the above value associated
with a sharp initial spectrum provided the occupa-
tion numbers are large enough. It is also worth
noting that the light path I; corresponding to the
above characteristic times must be evaluated by
taking into account the Brownian motion of the
photons with the nonlinear Compton mean free
path l» -1/N(n, o). Therefore, I,, is of the order
of

I; - l~~(ct, /l„~)'t' = (l~~ct,')'t'-(ct, /n, oN)'t'.
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B. Linear evolution

&,u = (x'u) ' . (14)

Its solution is easily obtained by the method of
characteristics, and reads (see Appendix B)

The term associated with spontaneous emission
in the kinetic equation [vs)t term in Eq. (5) or
(x'u)' term in Eq. (9)] has been neglected in the
above nonlinear model. It is easily seen that the
above triangular profile is compatible with this
approximation if N» v, /&v. In the opposite case
the evolution is governed (on convenient time
scale) by the linear terms. Roughly speaking it
may be said that linear evolutions are of interest
in the case of nonequilibrium radiation where the
occupation numbers are very small (as in the case
of x-ray spectra). I,et us make the additional as-
sumption that the diffusion term in Eq. (9) is neg-
ligible, which amounts to considering situations
where t), /&v«1 (Av being the width of the photon
spectrum at any time). The kinetic equation then
reduces to

energy stored in the electromagnetic field in the
low-frequency domain in the presence of a time-
independent photon source S(x)? Solving the equa-
tion

a,u = (W)'+S(x)

is easily done in terms of the Green's function of
Eq. (14) (see Appendix A):

1 x
C(x, x', ~) =,I —xT) I —x7

Dropping the initial condition term, we obtain

In the case of a localized source function S(x)
=5(x —x,), we obtain

u(x, t) =x 'Y[t (-x, -x-)/x, x],

where F(x) is the Heaviside step function. The
time evolution of u(x, t) is pictured on Fig. 4.

At time t (and for t » x, ') the spectrum grows
like x ' up to

u (x, 7) = [1/(1 —xv)']u'x/(I —xv) . (15) x =x,/(1+x, t)-1/t.
Here also the evolution is characterized by a glob-
al red shift of the initial spectrum.

Starting from a rectangular profile around x =x„
the evolution is pictured on Fig. 3. When v~ I/xo,
an asymptotic behavior is reached in whichu is
growing like 7', while the spectrum width narrows
like t)X/x'7'. Since the coherence time of the
electromagnetic field inside the wave packet in-
crease like v ', such an evolution produces a more
and more organized structure. We also remark
that the displacement towards lower frequencies
is here quite regular, in contradistinction with the
sudden condensation which appears in the nonlinear
process.

We can also ask the question: What could be the

The total photon energy E grows like logt and
concentrates near the lower bound x of the spec-
trum.

In the initial value problem an appreciable nar-
rowing and relative red shift of the initial distribu-
tion is achieved for times of the order of (o, v, )

'
(in the original time scale).

In actual physical situations the above type of
evolution ends when the neglected diffusion term
starts acting. This happens when the width of the
spectrum becomes of the same order as the char-
acteristic diffusion frequency p. , then the diffusion
process enlarges the spectrum towards higher fre-

U

0
c t+)

xo

FIG. 3. Linear evolution of an initial condition.
FIG. 4. Linear evolution in thepresence of a source

term at xo.
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quencies. [This can be seen with the help of the
Green function of the diffusion operator of Eq. (9),
already obtained by Zeldovich and Syunyaev. '] In
astrophysical situations the linear evolution could
be eventually responsible of a large red shift of a
hard x-ray radiations. The interacting length must
be here expressed in terms of the linear Compton
mean free path, and reads L-10 "(N', v)

' '. As a
numerical application of the astrophysical type, if
the photon energies are of the order of 10 keV and
the electronic density N, -10 cm ', we find I
-10"m. In the case of higher photon energy, we
may reasonably expect shorter interaction length,
but the kinetics is then governed by the integral
Eq. (1).

N(v) (eh(u+VP)/T 1) (16)

where h v, plays the role of a chemical potential
and is determined by the initial conditions of the
problem. Equation (16) is the general solution of

N+N +p B„N=O,

which ensures the vanishing of the collision term
of the photon kinetic equation. The coupled kinet-
ics of electrons and photons conserve three con-
stants of the motion, namely: the total energy E,
(photon+electron), the number X of electrons,
and the number of photons A. These invariants,
together with the Bose-Einstein statistics of the
photons, impose strong constraints on the pos-
sible stationary states. We see that, in order to
ensure that the general stationary solution (16) be
positive definite, we must satisfy the condition
v, ~ 0. This condition is easily formulated in
terms of initial conditions in the case of the non-
self-consistent problem (T, =C"). It amounts to
saying that the total number of photons associated
with distribution (16) is necessarily smaller than
the corresponding number pertaining to the Planck
distribution (that is for v, =0):

v dvA=A( &4)=44 J«„&„,„,&&„) &A(0, 7;).

Since

A(OT, ) = (V/c') r5))'(T/h )' = cpm'p, 'V/c',

III. STATIONARY SOLUTIONS: CONDENSED AND

METASTABLY CONDENSED STATES

Up to now we restrict ourselves to study some
particular types of evolutions, only relevant on
limited time scales. Therefore, the problem of
stationary solutions of the kinetic equations is still
open. It is known that coupled equations (5, 6) for
photons and electrons are satisfied by a Maxwellian
distribution at temperature T for electrons and for
the photons, by the Planckian-like distribution

E,~ (15/4m')' 'h(c/v)'~'

x [3A' ~'K; + 2.404 (15/4)) 4)A«'] (18)

The nonexistence of stationary solutions of type
(16) has been related' to the condensation process
of a Bose gas. Considering for simplicity the
non-self-consistent problem, the thermodynamics
indeed predicts that the equilibrium state must
contain a condensed phase when the thermal wave-
length A.» of the bosons becomes of the order or
larger than their interparticle distance P

' '.
In the case of photons A»-hc/T, and we see that
condition (17) coincides with the thermodynamic
condition of noncondensation. It is important to
study the physics of the condensation from the
point of view of kinetic theory. First of all, we
remark that the very notion of a photon loses its
meaning when v-O. Indeed, to analyze the elec-
tromagnetic field as a photon ensemble is an ap-
propriate picture only if the characteristic time
57 of the kinetic evolution is much larger than
v ' (v being the average frequency of the condensed
photons). Assuming the nonlinear term of the ki-
netic equation to be dominant, 57 (No. v) '. T-he

photon description is appropriate as long as Nn v

&v or

N&N, „=mc'/h(noc) =Z(nr'p) ',

where Z =~3'7 is the fine structure constant. Since
the total number of photons is conserved in the
course of the evolution, the above condition gives
a lower bound of the accessible frequencies:
indeed,

(v',„/c')N, „-(v'p/c')A v~
(assuming that v- 5v in the condensed phase).
The ref ore,

v;„-(N /N, „)vp(&v p/vp),

from which we could also deduce an upper bound

the above condition reads

A & yp. ', y = r45v'V/c',

which reads approximately for a sharply peaked
N(v) with width Av

N &y((U/»)(V/v)'

(in the case of a localized distribution of the type
pictured on Fig. 1). Starting from an initial
Planckian distribution with temperature T„ the
above condition would imply that T, & T, . In the
case of the general self-consistent problem [where
N and T, evolve simultaneously according to Eqs.
(5) and (6)], the existence criterion of a station-
ary solution may be written in the form (cf. Appen-
dix C)



KINE TICS OF THE COM PTON SCATTERING AND THE BOSE. . . 2149

of the "condensable" electromagnetic energy,
starting from a given initial photon spectrum. It
is worth remarking that, in realistic physical
problems, other phenomena like the existence of
a cutoff frequency (plasma frequency) for the pho-
tons, the inverse bremsstrahlung, the multiphoton
scattering, or the multiple scattering of a photon
(when the Compton mean free path and the inter-
particle lengths become comparable) may limit
the condensation process.

Let us now look for the stationary solution of the
original integral equation (1). A distribution con-

taining a condensed part must be defined with some
care in a system with continuous energy levels,
owing to the fact that the negative frequency domain
is strictly forbidden. A convenient form is the
following:

N(v)=limff5(v —e)+[e"~"+ o~~ —1] '}, (19)

where f is a coefficient having the dimension of a
frequency, and representing the amount of con-
densed particles. Replacing N(v) by the above ex-
pression in the collision term of Eq. (1) we obtain

where we put h/T = 1 and o(v, v') is the Compton cross section averaged over the angle variable,
whose expression is (see Appendix D)

n, o 2mC2
2 2 AC V V

o(v, v')= du[1 -u'(1 -u')] exp
V HATT p TQ v

Clearly the f' term gives no contribution. The second term may be written
Vp+ gf(e""'—()(](de' „,„„.,„e"'[()(e' —e) —e(e —e)]ie(e, e')}.

(20)

The integral in the bracketed term is always
finite. We therefore conclude that, whatever be
the particular form of V(v, v'), distribution (19)
with zero chemical potential (v, = 0) is a stationary
solution of the kinetic equation; this distribution
is nothing but the thermodynamic one, which max-
imizes the entropy. However, in the present pho-
ton problem, we find that distribution (18) is a
stationary solution for any value of vp. Indeed, it
is easily seen in expression (20) that o'(v, e) be-
haves like 5(v —e) in the limit T/mc' 0, and also
o(e, v')-5(v' —e). As a result the bracketed inte-
gral in Eq. (20) vanishes. The fact that we find
stationary solutions which do not maximize the

entropy, is simply due to the fact that the evolu-
tion of our photon system only proceeds via Comp-
ton interactions, and the peculiar behavior of the
cross sections at low energy which comes from
the zero mass of the photons.

Now what kind of evolution can we predict to-
wards the stationary state'P As was shown in
Sec. II, the condensation begins suddenly at some
critical time, building up a sharp peak near v = 0
of "condensed photons. " This peak will be very
weakly coupled to the uncondensed distribution,
owing to the very small values of the Compton
collision term in the low-energy domain. Physi-
cally the energy transfer in a Compton collision
is very small and the redistribution of condensed
particles towards higher energies is a very slow

process as soon as the uncondensed particles have
reached a quasi-stationary distribution of the form
(16).

A first possible situation is the one where the
thermodynamic criterium of condensation is sat-
isfied [N&(p, /4v)(p, /v, ) in the case of an initial
peaked distribution around frequency v,]. Then,
too many photons are present at the initial time,
and the spectrum cannot reach its stationary
state without condensation. If ]j,/v, & 1, the former
criterion (ll) of nonlinear evolution is also satis-
fied and we know that, after a finite time interval,
a quasi-vertical distribution collides with the
zero-frequency wall, starting on the condensation
phenomenon. One may expect that, at least, all
the photons in excess with respect to A& (A~ being
the number of photons corresponding to the Planck
distribution) will condense into the low-frequency
peak. Later on, the uncondensed photons will re-
distribute themselves according to the Planck-like
distribution. This second stage will proceed along
a larger time scale (at least the inverse diffusion
time ]j. '). In this second stage, the chemical po-
tential of the uncondensed distribution may or may
not have a zero value. In the latter case the total
distribution is not the equilibrium one, and, since
the condensed phase have a finite energy spread
in the course of the evolution, a slow evolution
may still go on until the final equilibrium state
(with v, = 0) is reached.
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More unusual is the case where

p/&~&& & (pl»)(V/u)'.

or
1

y =exp — uB„ (A2)

According to the results of Sec. II, the evolution
is of the nonlinear type and the condensation starts
at t-t„while the thermodynamics does not pre-
dict the condensation of the equilibrium state.
Here we predict that in the first stage, a substan-
tial part of the initial spectrum get "condensed"
into a narrow peak in the low-frequency domain.
Then the remaining photons redistribute them-
selves, along time scale t, , into a Planck-like
distribution with chemical potential u, (associated
with the number of uncondensed particle at the
end of the first stage). Later on the narrow (but
finite width) peak still interacts with the uncon-
densed phase, and we may reasonably expect that
this process goes on (along a much larger time
interval) until all particles escape from the peak,
the final distribution being the Planckian with
chemical potential vp corresponding to the over-all
initial distribution. Such transitory (but long lived)
condensed states which appear for subcritical
value of A may be called "metastably condensed. "

The above evolution takes place only if the ab-
sorptive processes such as bremsstrahlung are
negligible, that is for very low density of matter.
As a consequence, the time evolution of the mat-
ter's temperature would have to be taken into ac-
count. However, as said in Sec. II A, the kinetics
of the condensation does not depend on p (which
is a reduced electron temperature). Moreover,
it is easily shown' that the asymptotic value of
the electronic temperature associated with our
metastably condensed state is the chemical poten-
tial vp of the Planck-like distribution of the uncon-
densed photons. This chemical potential has no
reason to be large and it can be shown there exists
a class of initial conditions where vp is equal to
the initial electronic temperature. In other words,
the condensation mechanism is essentially a re-
distribution of the photon energy inside the pho-
ton's spectrum via the Compton collisions.

y, (x) is pictured in Fig. 5.
If A/t. ' "&1, B„y,(x) beh. :ves like e"/" &(~ x,).

Now y(x, t) obeys the diffusion equation

whose solution is of the form

In the space derivative

Evaluating now y(x, t), we have for t»a'/p
(& +p) /2' t + ~

y-e"~u e ' dy+
~ 00 (x

8
-&p) /'24 Pt

(A3)

For simplicity we consider time evolution smaller
than the diffusion time p '. lt is easily seen that
y takes relatively large values only for x —xp 0
and ~x-xj /VtIt »1. Putting &=(x, -x)/2v'pt,
we have

e ' dy =1- P(&)-e ' (for A. »1),

P(A) being the error function. It is easily seen
that y(x, t ) have quite different values according

g j" -X2to the value of parameter e" "~e "
/A. : If

eA/Pe-k2/~&&1 ~ (
-x /g)eA/P.

x&x,&At,

(P/QP t )e &/P e (& xo) P/4&&& (x 'x)/t

B„y = dy e " 4/"' s„y,(x-y),
tI t

approximating B„y,(x -y) by e ~&(x -xo) is justi-
fied as soon as t»o'/tL. Then we have

t s 9 (Pe"-'"/&Pt )e '" ""'"'

APPENDIX A

Let us consider an initial condition u, (x) of the
form

u, (x) =A&(x-xo) .
(Actually u, (x) must be looked at as a peaked func-
tion around x =xo with the small width o.)

Using the Hopf's change of function, ' we put

(p
8, =P, 9„ in@ =P

e

0

FIG. 5. Sketch of the function p(x).
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The limiting value of ~ separating the two above
regimes is given by e" "e " /&-1 or A. = v'A/(((, ,
which implies xo-x = v'A t . Expressing u(x, t)
in terms of p by Eq. (Al), we obtain: if

x &x, —lA t, u = (x, —x)/t;

x&x, —lA. t,
u =(p, /v'pt )e" o e " "o 4"'«(x, -x)/t .

We therefore find, if A/(P, )3»1, the quasi-tri-
angular profile which is pictured on Fig. 2 of the
main text. The effective width of the vertical side
is the width of y(x) given by (A3) around x =x,. It
is easily found that it is of the order of (t(,3 t/A)'~ .3

APPENDIX B

Let us put

equations is

G (x, x', T) = [ I/(1 - x3 )3] &[x/(1 - xT )-x' ] .
Considering now the equation

S„u = (x'u)'+S(x),

of the main text, the solution of this equation in
terms of G(x, x', v) reads

u(x, o fd=x'G(x, x', v)v (xl

+ dv dx'G x, x', t-7 S x'
0

Dropping the initial condition term and changing &

for t —&, we are left with

u(x, t) = dv dx' G(x, x', v)S(x')

xd7, — S
(1 x~)3

x'u(x, ~) = v (x, ~) . (B1)
APPENDIX C

Equation (14) reads, in terms of v(x, 3 ),

(8, —x38„}v=0. (B2}

The solution of Eq. (Bl) is immediately obtained
by the method of characteristics and reads

v(x, T) = vox/(1 —x3'),

where vo(x) is the initial condition for v(x) [v (x)
=x'u'(x)] . Expressing now v(x, v) in terms of
u(x, 7') through Eq. (B1), we obtain for u(x, 3 ) ex-
pression (14) of the main text.

The Green's function of Eq. (14) G(x, x', 3) obeys
the equations

s, G(x, x, ~) s„[x'G(x,x', ~)] =0,
G(x, x', 7 =0}=&(x-x') .

It is easily verified that the solution of the above

E =3%'T„+Ac, (C1)

where & is the average energy per photon, defined

V dV
h( V+ Vo) / T

V dV

e fi (V+ Vo)/Q w ~

Condition v, -o ensures that & is a monotonic
growing function of v, . Indeed we may write 0 „&

0
in the form

Let us consider, in the self-consistent problem,
the stationary state

N(v) =(e""'"o'~r 1) '

which is eventually reached when t-~ (T being
the asymptotic temperature). The conservation of
the total energy reads

S, e = dvdv'[(e"''o 1)(e"' '"o 1) (e""'o 1)(e"'"o I)3]-&
0

xf v'v" (e"' "o —1)(e' ' "o 1)[e
' ' "o(e"' o 1)—e"'"o(e"'"o 1)]j

The numerator of the above integrand may be put
after symmetrization (v—v'), in the form

—,
' v'v" (e"' "o —1)(e" "o—1)e"+'o((v —v')[ 1 —e" ']],

which is a positive definite function of v and v .
We therefore conclude that &&&~(T ), where

ev(T ) is the Planck distribution at temperature
T (e3 ——&„=o). Then Eq. (C1) yields the following
inequality:

Eo~ 3Xo T +Ac J (T )

Now we have

A & A(T„)= y, T„',

where

y (v/e3t33) 4 ~ 3

Since &p(T ) = y, T„with y, = 2.404 (15/3') we have
the inequalities

E,o-3X' T„+y,AT„oy'~ (3X A»3+y A4»)
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Therefore

)+I/3(2gP +1/3 + ~ +4/3}.
0 1 0 2

the equal sign being associated with the exact
Planckian distribution, the above condition is
necessary and sufficient for obtaining no condensa-
tion.

APPENDIX D

In the limit of small energies the conservation of

energy and momentum in a Compton collision
(Fig. 6) reads

p P", - h
+hv= +hv', 6p = —(v'Q' —vQ)

2m 2m

from which we obtain (in the limit [P/mc[ « I)
&v/v = (p/mc) ~ (Q —Q') .

Now the Klein Nishina cross section (for unpolar-

FIG. 6. Compton collision.

ized radiation) is

do =-,' t', (I +cos8) dQ,

where &0 is the electron classical radices. There-
fore the transition probability P(v- v') by unit of
time is

P(v v)dpi -fd pf(p=) 'cv (( cc—c C)ll [v —v —( p/' mv)(llc—ll')] dll

Let us consider a Maxweilian distribution for f (p) and integrate over the velocities perpendicular to
(Q —Q'). We obtain

PdQ' =n(m/2)) T)' 'dQ' dv„e """ ' 'rc&'(1+cos'8)&[v' —v- v(v, /c)(2 sin-,'8)J

Integrating over the parallel velocity v„, and over Q', we finally obtain expression (20) of o(v, v')
given in the main text.
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