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near the critical point*

W. T. Estler, ~ R. Hocken, ~ T. Charlton, and L. R. Wilcox
Physics Department, S.U.N. Y. at Stony Brook, Stony Brook, New York 11790

(Received 26 February 1975)

Optical interferometric measurements which determine the equation of state of xenon in the
neighborhood of the critical point are described. Analysis of Fraunhofer interference patterns
from a thin slab of Quid yields data pairs: optical phase P+ =p —K&p, and isothermal compres-
sibility &z, along isotherms in the temperature range —10 & c &10, where ~= (T —T,)/T, .
Experimental data are analyzed in terms of a new parametric transformation of thermodynam-
ic variables, based on the static scaling hypothesis of Widom, which requires that d in/+/d lnKz
=—(p/y) W(&), where 0= e~zl&. On the critical isotherm, e =0, we expect that lug+ ——const-(p/
p) in~+. This accords with observation and yields a sharp determination of T, which is de-
coupled from other parameters. The data are well represented by the bilinear form W(H)
= (1—H/H„)/(1 —H/H, ) where H =Ho on the critical isochore and H„on the coexistence boundary.
This is integrated to yield the parametric equation of state P+ = Y 80RB(1—0/Ho) 8, where R
=&z ~&. A six-parameter fit to 1200 data points yields T, = T, (lab) +0.0001'C, p =0.3583
+0.0002, y=1.2296+0.0005, 80 =0.1101+0.0003, Y &~=0.4203+0.0004, and b, =3.869+0.001.
This implies p4 =1.386 + 0.001, which differs significantly from the value pE =~~ implied by
a five-parameter transformation suggested by Ho and Litster. The coexistence curve
is measured in the range 10 ' &

~ s~ & 5 x10 2, and fitted by the power law (ps —po)/p,
=B (~)~, with the result P =0.344 + 0.003 and B =3.51+0.05. Systematic deviations indicate
that p increases for large

~
e

~
. A fit with the form (p ~ —po) /p, =B (—e) s + A (- s) s yields

significant improvement, with P =0.332 + 0.001, 8=3.042 + 0.03, P' =0.61+ 0.02, and A
=0.93 +0.04. The disagreement between this P and the P obtained from fitting the Fraunhofer
data will be discussed in the text. The coefficient of isothermal compressibility on the criti-
cal isochore I',Kz is measured in the range 2.7x 10 5 & e &4x 10 ', and fitted by the equation
~,=~,K, = r~ ~. Over the measured range, the data indicate y =1.260 +0.002 and I'=0.056
+0.001. There is evidence that y depends on the range of fit, and we find y=1.232+0.006 for
~ &10, which agrees well with the y determined from the near-critical Fraunhofer data.

I. INTRODUCTION

The behavior of a simple fluid in the neighbor-
hood of a liquid-gas phase transition has been the
subject of considerable theoretical and experimen-
tal interest, due primarily to the remarkable sim-
ilarity of a condensing fluid to such diverse sys-
tems as ferromagnets, ferroelectrics, and binary
fluid mixtures. ' While a complete description of
fluid thermodynamic properties requires knowledge
of the Helmholtz free energy A(p, T) as a function
of its variables, recent studies have come to focus
upon the fluid equation of state, of the form
f(p, p, T) =0, where the chemical potential is given
by p, = (BA/sp)r. An obvious requirement upon the
function f is the description of the various anoma-
lies which serve to define the critical point, and
which have come to be described by asymptotic
power laws. Of direct interest in the present work
are the following:

Coexistence curve: (p~ —po)/p, = B( e)—

Critical isotherm:

p —p, =Dl p —p, I sgn(p —p, )

Isothermal compressibility on the

critical isochore: mr=P+r = 1'e &,
'

where c = (T —T,)/'E, (The subscr. ipt c indicates
the critical value. )

There has been little progress toward derivation
of an adequate equation of state from first princi-
ples. With the introduction of the static scaling
hypothesis, ' 4 however, considerable progress has
been made at the level of phenomenological de-
scription. One of us' has recently introduced a
new scaled representation of the fluid equation of
state, based upon the general parametric trans-
formation of state variables introduced by Scho-
field and Josephson. ' The new formulation ex-
presses thermodynamic variables in terms of the
isothermal compressibility, a stationary optical
phase, and the temperature. These quantities are
directly measured using an interferometric tech-
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nique developed by Wilcox and Balzarini. ' '
In Sec. II, we review the new parametric repre-

sentation, with particular emphasis on a function
W(eg'r~&} which, if known, determines the equation
of state up to an integration constant. In Sec. III
we describe the interferometrie experiment, and
show the connection between experimentally de-
termined quantities and the variables employed
in the scaling formulation. In Sec. IV we present
results of optical experiments in xenon, analyzed
in terms of the parametric representation of Sec.
II. In particular, a new operational definition of
the critical temperature, suggested by the phe-
nomenology, is applied to optical data and shown
to yield a very precise determination of T„ona
laboratory scale. Knowledge of T, and the expo-
nent y allows a direct test of the static scaling
hypothesis, which appears to hold remarkably well.
for xenon. The scaled equation of state resulting
from a, simple choice for W(ez~r~&) is shown to well
represent experimental data. In Sec. V are dis-
cussed experimental details, and a discussion of
experimental results is presented in Sec. VI.

II. THE PARAMETRIC REPRESENTATION

Following customary convention in studies of
critical phenomena, we introduce the reduced,
dimensionless variables

~" = —'
Cu -M(T) 1,

where M(T) is the chemical potential on the criti-
cal isochore for T &T„andalong the coexistence
boundary for T &T, . For notational simplicity, we
henceforth drop (*) from reduced quantities, unless
otherwise noted.

We choose to write the parametric transforma-
tion of thermodynamic variables in the form'

(1)

(2)

e =RO,

where

u/p
W+ 5 —1 (8 p, /sp}, ' (6)

where we have made use of the scaling relation
5 —1 =y/P. As will be shown in Sec. III, the func-
tion Y (R, e) is directly determined by optical in-
terferometric experiments, it being equal to a
stationary optical phase. We therefore refer to
Y~ as the "phase function. "

Differentiating Eq. (5) with respect to R =zz'~ &

yields

(a Ines)
= (7)

Making use of the homogeneity of F, i.e., Y(R, e)
=RF(1, 8), Eq. (7) may be readily integrated to
yield F when W(8) is known:

e1 —W(e')
lnF(R, e) =lnF, +lnR+, dg',8' (8)

e=o

Coexistenc
Boundory

re

where Y, = Y(1, 0) is an independent constant. Ex-
pression (8) is the central result of the present
parametric representation. Knowledge of the func-
tion W(6) determines the scaled equation of state
up to an integration constant.

We are thus led to consider thermodynamic func-
tions on the R-e plane, the geometry of which is
depicted in Fig. 1. The physical region lies above
straight lines which define the minimum inverse
compressibility above and below T„andwhich are
loci of p, =0. The lines are e =88„the critical
isochore, and e =R8„,the boundary of coexisting
phases. The critical point is mapped into the ver-
tex, and straight lines radiating from the vertex
are loci of constant 8. The critical isotherm is
thus also an iso-8, i.e. , 8=0.

(4)

In these expressions, Y= F(R, e) is a homogeneous
function of degree 1, while W is homogeneous of
degree 0, i.e., a function of 6= e/R only. Evident-
ly,

and

FIG. 1. R-e plane, where R=&z & and e=(T —T )/T~.
The physical region lies between the coexistence bound-
ary (0= 0„)and the critical isochore (0= 00). Scaling im-
plies that thermodynamic quantities are smooth functions
of 8 for fixed R, with critical singularities being mani-
fest as R —0.
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Coexistence boundary: W(8, ) =0;
Critical isotherm: W(0) = 1;
Critical isochore: W(8,)- ~.

(9a)

(9b)

(9c)

An obvious choice, which we call the "5'hypothe-
sis, " is the bilinear form

Based upon quite general properties of p. vs p
along isotherms near T„and making use of the de-
fining relation Eq. (6), necessary properties of the
function W(8) may be derived':

bound to fail when p(z, T) varies appreciably over
the height of the sample.

Of the several methods which have been devised
to circumvent this difficulty, optical techniques
appear to be the simplest and most precise. In
the present work we have employed an optical in-
terferometric technique developed by Wilcox and
Balzarini. "A quite similar method was original-
ly proposed by Gouy" and subsequently applied by
several experiments" "to the study of diffusion
rates in binary mixtures.

W(8) = (10) B. The interferometric technique

This function satisfies the physical constraints,
Eqs. (9), and contains no other obvious features.
Integration of this expression according to Eq.
(8) yields the phase function

Y(R, e) = Y,R(1 —8/8, )~,

where

b, =1 8,/8„, (12)

Expression (11) is the parametric equation of state
resulting from the W hypothesis. All thermody-
namic functions may be expressed in terms of
Y(R, e) and W(8), according to Eqs. (1)-(3). The
phase function, Eq. (11), relates (as will be shown)
stationary optical phase, isothermal compressi-
bility, and temperature in a form involving six
parameters: P, y, T Yp 6, and 6p. The closest
contact with this representation is provided by the
work of Ho and Litster, "who have proposed a
five-parameter transformation in which magnetic
susceptibility is independent of the scaled vari-
able 8. If the parameter combination PA is fixed
at the value —,', the S'-hypothesis identically re-
produces the Ho-Litster representation (see Ap-
pendix B). We know of no a Priori reason why Ph
should be so fixed, and therefore prefer to allow
6 to be a free parameter.

We consider a sample of single-component di-
electric fluid compressed in a vessel with plane-
parallel optical windows, such that the average
density p closely approximates the critical density.
If the sample temperature is held constant, then
due to gravity an equilibrium density distribution,
p(z, T), is formed. The general shape of this dis-
tribution for T &T, and T & T, is depicted in Fig. 2.
The discontinuity for T &T, indicates the liquid-
gas interface (meniscus) characteristic of coex-
isting phases.

In thermal equilibrium, the chemical potential
everywhere in the fluid must be constant. At any
point, the total chemical potential consists of the
local chemical potential [SA(p, T)/8 p]r, plus a term
gz, the potential energy per unit mass due to gra-
vity. Thus the difference in local chemical poten-
tial between points of different densities is propor-
tional to the height difference hz. Denoting by
zp the height at which the critical density occurs,
we have for the reduced chemical potential dif-
ference (g* = p, )

u = -(z-z.)/&, (13)
where h = P, /p, g = 5.412 x10' cm for xenon. Thus,
height and chemical potential are proportional
quantities in fluid experiments, and a knowledge

III. THE INTERFEROMETRIC EXPERIMENT

A. Introduction

As the critical point is approached in a pure
fluid, the isothermal compressibility increases
rapidly, so that in a typical experiment a~ may be
a million times larger than the compressibility
of a corresponding ideal gas. In a gravitational
field, this effect is manifested by a noticeable
compression of the fluid under its own weight, and
in equilibrium the fluid is characterized by an in-
homogeneous density distribution p(z, T), where z
denotes height in the fluid. Conventional PVT
measurements, which determine average density
and pressure in a macroscopic volume, are thus

Zo

FIG. 2. Schematic illustration of the equilibrium den-
sity distribution p(z, T) for T & T~ and T & T~. The dis-
continuity for T & T, indicates the meniscus which char-
acterizes the two-phase region.
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FORMATION OF THE FRAUNHOFER PATTERN
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of the distribution p(z, T) for all temperatures
would amount to a determination of the equation
of state.

The optical cell is illuminated by a suitably ex-
panded beam of monochromatic plane-wave light
from a laser (He-Ne, A. =6328 a.u.). In the focal
plane of an objective lens placed after the cell, a
Fraunhofer interference pattern is observed,
characteristic of the density distribution p(z, T)
of the fluid phase object. In Fig. 3 we illustrate
the formation of the Fraunhofer pattern, based on
a simple ray picture. A ray bundle traversing the
fluid at height z is refracted downward through an
angle proportional to the density gradient sp/Bz
The ray labeled (0), which is most strongly re-

FIG. 3. Simple ray diagram illustrating formation of
the Fraunhofer interference pattern from a vertical slab
of fluid. Such a diagram is a geometric means of visual-
izing the stationary-phase approximation to the Fraun-
hofer integral.

fracted, passes through the region where the cri-
tical density occurs, and is focused at the point
k, in the I' plane. Above and below the maximum
gradient are shown a general ray pair (+) and (-)
which are refracted through equal angles and
hence focused to a common point k in the I' plane.
These rays are in general out of phase, having
passed through different fluid densities, so that a
series of interference fringes is formed.

Placing a photographic film in the E plane and
slowly transporting it past the pattern (perpendicu-
lar to the plane of Fig. 3) while simultaneously
sweeping the sample temperature, results in a
photograph such as that shown in Fig. 4, which
displays the Fraunhofer pattern from a sample
of xenon, as a function of temperature. This par-
ticular record spans a range of -0.02 K around
T„sweeping temperature at a rate of -0.8 mK/h.
As will be argued in the remainder of this section,
such an intensity distribution I(k, e) is determined
by the equation of state in the near-critical region.

Several qualitative features of Fig. 4 may be
noted. Any narrow vertical slice represents
I(k, c) at a particular temperature. The critical
temperature is associated with no particular fea-
ture of the pattern, which proceeds smoothly
through T, with no apparent discontinuity. For
T &T„the most refracted maximum, correspond-
ing to the ray bundle (0) in Fig. 3, is a measure
of the density gradient B p/Bz land hence the iso-
thermal compressibility, by Eq. (13)j on the criti-
cal isochore.

For subcritical temperatures the pattern is ob-
served to disappear, beginning with the lowest-

FIG. 4. F'-plane inten-
sity distribution I(k, T)
from a sample of xenon.
This sweep took about 24
h. Divergence of fringes
for T T,+reflects the di-
verging isothermal com-
pressibility; disappearance
of fringes for T & T, indi-
cates a density discontin-
uity, i.e., the coexistence
boundary. Any fringe,
maximum, or minimum,
is a locus of constant opti-
cal phase.
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C. The Fraunhofer integral

Upon traversing the fluid slab, the incident plane
wave is phase shifted. The field immediately after
transmission is given by

(14)

The real factor f(z) accounts for attenuation of
the beam due to opalescent scattering, the strength
of which depends on density and hence on height in
the fluid. In the ensuing discussion, f(z) will be
assumed to be slowly varying, since we shall be
concerned only with zeros of the Fraunhofer pat-
tern.

The phase factor i))(z), relative to z, =0, de-
pends upon the refractive index n(z), according to

y(z) = (2iid/~) [n(z) n, ], — (15)

where d is the window spacing and n, the refractive
index at p = p, . The fluid density and refractive
index are related by the Lorentz-Lorenz formula:

(n' —1)/(n'+2) =Ap, (16)

where A = constant. (In this expression, p refers
to the true number density, not the reduced den-
sity p*.) Expanding Eq. (16) in a Taylor series
around p = p„weobtain

n(z) —n, =(n, —1)a,[p+a, p'] + ~ ~ ~ (p= p*) (17)

where

a, = (n, + 1)(n', + 2)/6n, ,

a =(n2 —1)(3rP, —2)/12n2 .

For xenon these constants have the values: a,
=1.03, a~ =0.04, using n, =1.1379." Thus, to
first order in reduced density, we have

0(z) = i).p(z),

with

(18a)

order fringes. This effect is associated with the
formation of a discontinuity, pL, —pG, in the density
distribution for T &T„andhence a discontinuity
hQ in optical phase. Thus, hP is the minimum
phase difference between rays passing just above
and just below the meniscus, and fringes corres-
ponding to a pha, se difference less than hQ must
have passed out of the cell. By counting fringes
and noting when they vanish, one obtains a mea-
sure of the discontinuity as a function of tempera-
ture, which is directly related to the fluid coex-
istence curve.

In deriving Eq. (18) we have assumed the Lo-
rentz-Lorenz formula to be valid arbitrarily close
to the critical point. It is evident that this rela-
tionship must fail when the correlation length $
associated with coherent long-range density fluc-
tuations becomes comparable with the optical
wavelength. Using light scattering, Giglio and
Benedek" have found that $ = $,e ', with $o =1.8
a.u. and v =0.57, for xenon. On the basis of this
result, we may expect that )i/$ = 1 when e = 6
x10 '. This temperature is smaller by a factor
of -10 than the temerature resolution attained in
the present work. Measurements by Hocken" of
the phase shift of light passing vertically through
a thin slab of xenon show that the average refrac-
tive index is constant to within -6 parts in 10~, in
the range -10 4 & e &10 4. The effect of such a
variation is smaller than the neglect of the quadra-
tic term in the Taylor expansion, Eq. (17).

The field V(k, T) in the Il plane is related to the
field E(z), Eq. (14), by the Fourier integral

top

V(k 7 )
iLe(s, r)+ ae Id

bottom
(19)

where k is the spatial frequency, given by (see
Fig. 3)

(20)

The F-plane intensity is just I(k, T) =
~ V(k, T) ~'.

In writing Eq. (19), we have omitted the slowly
varying attenuation factor f(z). With expressions
(13) and (18) for the reduced chemical potential
and phase shift, the Fraunhofer integral becomes

Pmax

V(k, T) = —k cos(ng) dpi,
0

(21)

where the optical phase g= ((p. , k, T) is given by

g(p. , k, T) = p —kkp/a . (22)

The form of expression (21) reflects the explicit
assumption of exact antisymmetry of p. vs p along
isotherms, which is inherent in theoretical models
such as the lattice gas, and which is apparently a
property of real fluids as well, for

~ p~ s 30%."
In Fig. 5 we depict the general behavior of the

optical phase g, as a. function of p, , for a particular
(supercritical) temperature T and spatial frequency

The principal contribution to the integral Eq.
(21) comes from the region p, , (k, T) where the
phase is stationary. Accordingly, we calculate

ci = (2nd/x)a, (n, —1) . (18b)

In the present experiments, the fluid density varies
only +10% from p„sothat the quadratic term in
the expansion (17) may be safely neglected.

where iver =(ep/8 p)r is the (ciimensionless) iso-
thermal compressibility. At the stationary point
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k= (n/k)xr . (24)

The value of the phase at the stationary point is
then

p, (k, T), the derivative Eq. (23) vanishes, so that

g,
' = [-,'o'(q, ),]' '= [3w(4s —1)/8]' ', (32)

the F-plane interference minima are associated
with the zeros $,' of the Airy function. These roots
have been tabulated. " For large s (s W 5), they
are given by

0+ = 4(p+ ~ (~/k)~r T}= p+ —&rp+ ~ (25)
so that

V(k, T) (x: coso((]], .
The zeros of the F-plane intensity distribution
I(k, T) would then correspond to the roots

c(g, =(2S —1)m/2, S=1,2, . . . .

(28)

(27)

This is just the elementary stationary-phase ap-
proximation.

D. The cubic approximation

The elementary approximation given by Eq. (26)
may be improved by noting that the phase P(]u, ) in
Fig. 5 resembles a cubic function of p. . Vfith this
suggestion, we introduce a new variable g, de-
fined implicitly for fixed k and T by

(28a)

(28b)

where

(28c)

The cubic polynomial P(q, () is stationary at

q, = Mt (we are concerned only with positive g),
with the stationary value given by

(29)

With the definition (28), the Fraunhofer integral
becomes

where p, = p(i],„T).Then, as a first approximation
to the Fraunhofer integral, one might directly re-
place g by (, in Eq. (21}, so that

n(y, ), = (2s —k)v/2.

(For s = 1, formula (32) errs by only 0.8/0 as com-
pared with the tabulated value. This error de-
creases rapidly with increasing s.)

Vfe have considered" the perturbations of the
Airy-function zeros due to the amplitude factor
(d(L(, /d]7). Corrections are found to be less than
0.2$.

In the interferometric method, then, experi-
mental data are collected according to the following
scheme:

(a) Photograph the Fraunhofer interference
pattern l(k, T}at a fixed supercritical temperature
T, far enough above T, so that the first maximum
is visible.

(b) Assign order slumbers s =1,2, . . . to the in-
terference minima [zeros of I(k, T}], beginning
with the most-refracted minimum.

(c) Measure the refraction angles k, of the
numbered minima, and assign values to the iso-
thermal compressibility according to Eq. (24).

(d) Assign values to the stationary optical phase
g, = p —ere. of each minimum, using tabulated
zeros of the Airy function [or Eq. (33) for large
s].

I
I
I
I
I

I
I

&~(+)

V(k, 7) = —k cos[nP(g, t)] —dq. (30)
dn

This expression is still exact; we have merely
made a change of variable. To the extent that the
factor (dg/d]7) is slowly varying, we may approxi-
mate it by its value at the stationary point. Then,
formally extending the upper limit of integration
to infinity, we obtain

I
II

I
I

I
I
I
I
I
I

hk
a

= const xAi(-&'), (31)

where Ai(-t') is the Airy function' of the variable
$'=n' '$. In the lowest cubic approximation, then,

FIG. 5. Optical phase g(p) for a general supercritical
temperature, T & T,. The similarity of g(p) to a cubic
function leads to the Airy-function approximation to the
Fraunhofer integral.
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(e) Lower the temperature to a new equilibrium
value, photographing continuously so that the mini-
ma may be tracked and order numbers assigned
unambiguously.

(f) Repeat the measurements of (b)-(e}.
The optical experiment thus yields the data pairs

[g, = p —xrp, xr ——(Bp/Bp, )r] for fixed T. In the
language of the parametric representation de-
scribed in Sec. II, we measure Y (8, s), A~, and

T.

I XENON

COEXISTENCE CURVE

IV. RESULTS

A. Coexistence curve

„r
IO-~

I

IO-4
I

IO

In the interferometric experiment, the formation
of a. density discontinuity, p~ —pG, for subcritical
temperatures, is manifested by the disappearance
of interference fringes from the Fraunhofer pat-
tern. We consider an interference minimum la-
beled by an order number S, with S= 1 denoting
the first (most-refracted) minimum. According
to the stationary-phase approximation, this fringe
is formed by two rays which traverse the fluid
above and below the point of maximum gradient,
and arrive at a common point in the E plane with
a phase difference given by

b, P, = (2S —1)m. (34)

b, p, = kdb, n = (2tFd/X)(n~ —no), (35)

where d is the cell thickness. With Eq. (17), we

Tracking this fringe continuously, we observe that
it is refracted out of the cell at a subcritical tem-
perature T„atwhich point the two rays lie just
above and just below the meniscus. The phase dif-
ference AQ, then measures the discontinuity n~ —no
in the refractive index, according to

FIG. 7. Xenon coexistence curve (pz —po)/p, vs e.
Error bars include effects of measurement error and
uncertainty in T, .

then have for the density difference

6p* = (p —p }/p, = (X/0. 284d) (2S —1) . (36)

In the present experiment we have counted fringes
up to S= 1500, over the temperature range 10 '
&)sl&5xlo-'.

In order to determine T„wenumerically dif-
ferentiate the data according to Kouvel and Fish-
er,"and calculate the quantity

(dlnsp
) (37)

In Fig. 6 are plotted experimental values of T*(T)
vs temperature. The points for bT&0.6 K (c &10 ')
are then fitted by a linear least-squares program,
with the critical temperature determined by the
T-axis intercept.

After determination of T„weplot ~p* vs re-
duced temperature c. The results are shown in
Fig. 7. The error bars reflect an estimated un-
certainty of +0.0005 K in T, . The data are then
fitted by the asymptotic form

50
I I I I I I

&p* = (p& —po)/p. = &(-s) '
40-
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10-
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FIG. 6. T* = —(dlnAp*/dT) ~ vs T from numerically
differentiated coexistence-curve data. The critical tem-
perature is determined from the extrapolated T-axis
intercept.

FIG. 8. Deviation plot resulting from fit of coexistence
data to 4p* = B(- e) ~. Strongly systematic behavior is
clearly evident, suggesting corrections to asymptotic be-
havior.
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while varying the range of e. The results are

(a) All data, 10 ' &
~

e
~

& 5 x 10 ':
chore. From Eq. (24}, we have

zr =P,Kr=kk, /n, p=p, , (41)

P =0.344 + 0.003,
&=3.51+0 05 '

(b) Range
~
e

(
& 10 '.

P =0.337 a 0.003,

B=3.30 +0.02;
(c) Range

~
e~&10 '.

P =0.353 a 0.001,
B=3.66 +0.004;

(d} Range ( e(»0 ':
P =0.357+0.001,
B= 3.713+0.002 .

The quoted standard deviations result almost en-
tirely from uncertainty in T,. The tendency of the
exponent P to increase with increasing

~
e

~
is

strikingly revealed by the deviation plot, Fig. 8,
where we display the deviations (b p* —&p~~„)/4p~„
vs 6 using

(39)

The marked systematic behavior of the devia-
tions in Fig. 8 indicates that the simple power law,
Eq. (38), is not sufficient to describe the coexis-
tence boundary over an extended range in e. Wil-
cox and Balzarini'' have considered the effect of
the slope of the rectilinear diameter and a non-
constant Lorentz-Lorenz function (n' —I)/(rP + 2),
and have concluded that the resultant uncertainty
in the exponent P is +0.001 due to these correc-
tions.

We then fit experimental data to the form

P~K~ = I'E (42)

using a weighted least-squares program. Each
point is weighted according to the variance

0~ p (Pp
total k2 (~T)2

'

Temperature errors are estimated to be 0~ =0.001
K, while errors in angle measurement are indi-
vidually assigned to each point, depending on the
magnification of the optical system. We again
perform the fit while varying the range of e, with
the result:

(a) All data, 10 '&a&10 ': y=1.26+0.002,

(b) Range e &10 '.
F = 0.056 + 0.001;

y = 1.232+ 0.006,
I'= 0.073 +0.005 .

The observed tendency of the exponent y to in-
crease for large e is reflected in the deviation
plot, Fig. 11, where we display the deviations

where n =(2w/A. )(1.03)(n, —1), k= P,/p, g, and Kr
is the unreduced compressibility. In writing this
expression we have explicitly inserted a factor P,
which makes the left-hand side dimensionless.

In the present work we have measured the super-
critical compressibility over the temperature
range 2.7X10 '&e&4x10 '. The data are shown
in Fig. 10. Employing holographic techniques to
cancel window distortions (see Sec. VD), refrac-
tion angles are measured down to the diffraction
limit defined by the cell aperture (2 cm).

The data are fitted by the power law

&p* = B(—e) ~+A(-c) 8

with the result

(40) as a function of e. In analogy with the treatment
of coexistence-curve data, we then assume a cor-

B=3.042 +0.03, P = 0.332 +0.001,

A = 0.93 + 0.04, P' = 0.61 + 0.02 .
The resultant deviation plot is shown in Fig. 9.
Systematic errors are significantly reduced by
addition of the correction term. Both fits of co-
existence data are unweighted (I/o' = 1 for each
point); addition of the correction term in Eq.
(40) reduces the weight =1 y' by a factor of 2.1,
for 161 points.

B. Supercritical compressibility

5i
4~

I v-

p
~ ~ ~ ~ « ~

~ ~ ~ « ~ «««
««« ~ ~

~«
~ ~

~ ~
~««s «440«~

I

lo'

Fit to' hp~B»+A»
I I

In the interferometric experiment, the maximum
spatial frequency k, (see Fig. 3) is a measure of
the isothermal compressibility on the critical iso-

I'IG. 9. Deviation plot resulting from fit of coexistence
data to a modified power law. Systematic deviations are
greatly reduced, with P' surprisingly close to 2P.
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a ={p~) '
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FIG. 10. Supercritical
compressibility P,Kz vs E'

along the critical isochore
of xenon. Holographic tech-
niques allow cancellation
of optical distortions, so
that refraction angles may
be measured down to the
diffraction limit.

IO
IO IO' 10'

rection term to the asymptotic power law, fitting
data by the form

P~K~ = I'e &+Ca ~ (43)

holding y =1.230. [Allowing both y and y' to be
free parameters causes no end of confusion for
the computer. ] With Eq. (43) for the fitting func-
tion, the result is:

All data, 10 ' & e & 10 ': I' = 0.0503 + 0.009,

y = 1.230, fixed,

C = 0.0079 +0.007,

y' = 1.35 + 0.07 .

In traversing the fluid sample, light which forms
the most refracted fringe necessarily passes
through a range of densities around p, . As T -T, ,
this effect causes the spatial frequency k, to differ
from the result predicted by the stationary-phase
approximation. Wilcox and Balzarini' ' have cal-
culated the effect on experimental data of a break-
down of this "thin-cell approximation. " We are

XENON COMPRESSIBILITY
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FIG. 11. Deviation plot for isothermal compressibility
data, indicating a slight tendency for y to decrease with

decreasing e. A fit to a modified power law yields a re-
sult which is not statistically significant.

FIG. 12. Plot of in/+ vs ln(1/~z) along isotherms of
xenon. According to the static hypothesis, supercritical
isotherms should curve downward and approach infinite
slope as 0 00 (lnFB —~). Subcritical isotherms curve
upward and approach zero slope at the coexistence bound-
ary, 0= 0„.The critical isotherm is characterized by a
constant slope P/y. Visual inspection reveals T, to lie
somewhere between isotherms No. 8 and No. 9, which
are 0.0008 K apart.
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thus led to reject compressibility data from cell
4 for e&4x10 ' and from cell H for a&10 '.

Io-
Z

-IO-
4J

+g
-20-

I I I I I I I I

IA~~~

j Tg* Tc,(LAB)%.0001'C
Itl

48~
XENON RUN 3H

ISOTHERM CURVATURE
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FIG. 13. "Curvature coefficient" -Par vs e for xenon
isotherms. The critical temperature is signalled by the
zero crossing of the curvature coefficient.

C. The equation of state

The critical temperature

In experimental studies of critical phenomena,
a precise determination of the critical temperature
on a laboratory scale is essential. This is par-
ticularly true in an interferometric experiment,
since equation-of -state data from the F raunhofer
pattern are generally confined to the temperature
range -10 &e &10 . Hence even small errors
in T, may readily affect experimental conclusions.
The scaling formulation described in Sec. II sug-
gests a new operational definition of T„assuming
the validity of the static scaling hypothesis. In
this section we apply this scheme to interferome-
tric data from near-critical isotherms in xenon.

The optical data consists of typically 75 pairs
g, = Y (R, e) and zr =R & for each isotherm both
above and below T, From .Eq. (7) we derive, in
terms of measured quantities,

-"'"~ =I'W(8), (44)d inc~ y

with 8=e/R=ezr1 &. Equation (44) suggests plotting
experimental data in(+ vs jn(1/gr). The isotherm
slope on this plot is (P/y)W(ear~&), and thus is in-
dependent of z~ only when a=0, i.e. , T =T,. In
Fig. 12 we display experimental isotherms plotted
in this manner. This particular data run (3H) con-
sists of some 1200 points from 27 isotherms; for
the sake of clarity, only 13 isotherms are plotted
in Fig. 12.

For supercritical temperatures, the isotherms
curve downward, approaching infinite slope as
8- 8, (1n1{1,- -~). Subcritical isotherms curve up-
ward, tending toward zero slope at an indefinite
locus 6)- 6)„. Close inspection reveals that the cri-
tical isotherm, defined according to Eq. (44}, lies
between the isotherms labeled No. 8 and 9, which

differ in temperature by 0.8 mK.
To obtain a better estimate of T„weexpand the

function W(8) in a Taylor series around 8=0:

W(8) = 1+a8+ O(8') = 1+a(e/R), (45)

Once the critical temperature is known, a know-
ledge of the parameter y is sufficient to completely
specify the scaled variable 8, and hence to exam-
ine directly the validity of the scaling hypothesis

where u = constant. [With the W hypothesis, a
=6/80. The present analysis, however, is inde-
pendent of the choice of W(8). ] Integration of Eq.
(45} according to Eq. (8) yields for the phase func-
tion near 6)=0

ln Y (R, e) = ln Y' + (P/y) lnR~ —Par exp[(-1/y) 1nR&],

(46)

or, in terms of measured quantities,

in(+ = ln Yo + (P/y) in(l/Kr) —Par exp [(-1/y) in(1/ Kr) ] .
(47)

Experimental data pairs [in', , ln(1/zr)] along iso-
therms are then fitted by the form

in'+ ——A+ Bln(1/zr)+ Cexp[(-1/y) ln(l/Kr)],

(46)

using a nonlinear least-squares program. We as-
sume y=1.23, but the resultant fit is insensitive
to the value of y. In Fig. 13 we plot the coefficient
C=-Bar, which is a direct indicator of the loca-
tion of the critical temperature. This "curvature
coefficient" is negative for T & T, and positive for
T &T,. Figure 13 clearly indicates that T, is
bracketed by isotherms No. 8 and 9 of Fig. 12, and
interpolation yields T,(lab) = 16.6028 +0.0001 K.

We emphasize that this new operational definition
of T, involves no parameters, no divergences of
thermodynamic quantities, and very short inter-
polations of experimental data. Our closest ap-
proach in this work (isotherm No. 8) is AT= 0.3 mK.
One may in principle go as close to T, as thermo-
stat stability and thermometer resolution allow.
The new technique appears capable of yielding an
especially precise determination of T, in a pure
fluid.

As a check we add that the value of T, obtained
from scaling agrees within error with an indepen-
dent determination by extrapolation of supercritical
compressibility in the standard manner. This in-
dicates that the assumption of static scaling in-
herent in this new formulation is valid. A more
general test of scaling is presented in the follow-
ing section.

2. Test of the static scaling hypothesis
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3. The phase f'I netion

In Sec. II we introduced the W hypothesis,
1 —e/e„
1 —6/8 (49)

a simple bilinear form which possesses the obvious
and necessary properties for a phenomenological

10—
XENON RUN 3H

TEST OF STATIC SCALING HYPOTHESIS

e=efc' "
T

y = 1.2245
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FIG. 14. Quantity [din/+din(1/Kr)] vs 8=ed&~~ for
inter ferometric data from xenon. The approximately
2000 points may well be imagined to lie on a single
curve, which is predicted by the scaling hypothesis.
The error bars include the effect of numerically dif-
ferentiating the data, as well as temperature and angle
variances. Tc was determined from Fig. 13, while the
exponent y=1.2245 resulted from a later computer analy-
sis,

through the relation

dlntrI, p W( }d lnzT y

The function W(6) is not specified apart from the
requirements (see Sec. ll}

w(6)„=0; w(0) =1; w(e, )-
To this end, experimental data pairs [in)+, in(l/Kr)]
are numerically differentiated and the quantity
[ding, /din(1/gr)] plotted against 8= ear &, for a
particular choice of y. The results are displayed
in Fig. 14. The data consist of approximately
1200 points from 27 isotherms in the range -10 4

&&&10 4. The choice y =1.2245 is the result of a
later computer fit.

It is apparent from Fig. 14 that the static scaling
hypothesis is well verified for xenon. The experi-
mentally determined function W(ewer &) fulfills our
qualitative expectations, and all data points may be
imagined to lie on a single curve. The error bars
in the figure represent estimated temperature and
refraction-angle variances and errors introduced
in the numerical differentiation.

TABLE I. Equation-of-state parameters for xenon.
Run 3H: 1176 points.

Parameter Best-fit value

(a) All parameters free: g, =1.14; p6=1.386 +0.001

0()
y8

P
'y

Tc

0.1101+0.0003
0.4203 +0.0004
3.869 + 0.001
0.3583 + 0.0002
1.2296 + 0.0005

16.60301+ 0.00004 'C

(b) Fix Tc =16.6028'C; p/p=0. 2826; g~=1.22;

Pb, =1.384 ~0.001

0()
y8

P

Tc

0.1014+ 0.0003
0.3939+ 0.0001
3.933 + 0.001
0.3519+0.0002
1.2453 +0.0002

16.6028 'C (fixed)

(c) Ho and Litster: PA=3/2; g, =1.71

80
y8

P

Tc

0.1378 +0.001
0.424 + 0.004
4.261 +0.001
0.3520 + 0.0006
1.203 +0.002

16.60304 +0.00002 'C

description of the gas-liquid transition. The re-
sultant phase function, upon integration of W(8)
according to Eq. (8), is given by

1' (R, e) = YoBR (1 —8/eo) 8

with

~ =1 —e,/6„.

(50a)

(50b)

In terms of experimentally measured quantities
g„vr, and T, Eq. (50} becomes

rely 8~( -T.)
Y'+ 0 T T 6c 0

(51)

(52)

If experimental variances are properly assigned,

This expression contains six parameters: Yo, P,
y, T„O„andA. Experimental data are fitted to
Eq. (51) and the parameter set determined. The
fitting program is a modified general nonlinear
least-squares routine known as CuRFZT, which has
been adapted from Bevington. " Temperature and
angle measurement errors, 0 T and cr~, are es-
timated and used in the fitting program to ca,lcu-
late the statistical variance of each data point,
according to
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P/y and T, fixed at values determined by the tech-
nique of Sec. IV C 1, and (c) Ph fixed at 1.50,
which is equivalent to the representation of Ho and
Litster" (see Appendix). The standard deviations
of the best-fit parameters are remarkably small
and are typical for least-squares fits involving
a large number of data points. In view of the dif-
ferences in parameter values in Table I(a) and
I(b), these standard deviations should not be con-
sidered to be the most accurate indicators of the
true uncertainties.

Once the equation-of-state parameters are de-
termined, we may calculate the function

P P 1- 8/8„
y

~" y 1 —8/80'

FIG. 15. Deviation plot resulting from a fit of the data
of Fig. 14 to the bilinear form introduced in the text.
Errors are remarkably small, considering that the data
have been differentiated. One can imagine systematic
deviations near the endpoints 0 = O„and 0 = op These
presumably result from higher-order terms contributing
to W(0).

the value of y'„=[I/(N —v —1)]Q(g, —g„,,)' for a
suitable fitting function should be near unity.
(Here N is the number of points and v the number
of free parameters. )

The experimental data (run SH) consist of ap-
proximately 1200 pairs (g+, «r) from 27 isotherms
in the range -10 ~ & e & 10 4. The results of com-
puter analysis are shown in Table I for three
modes of fit: (a.) all parameters are free, (b)

which contains five parameters: P, y, T„8o,
and 6 =1 —80/8„. In Fig. 15 we display the resul-
tant deviations [(P/y) W —(P/y) W~„]/(P/y) W~„, using
the parameter set of Table III(a). Most scatter is
due to the numerical differentiation of the data ac-
cording to ding, /din(1/«r) =(P/y)W(8). The W

hypothesis appears adequate to account for the
data. There are possibly systematic deviations
near O„and 00 which could be due to higher-order
terms in W(8). We have not investigated the ef-
fects of such corrections.

An attractive means of displaying the data is
suggested by rewriting Eq. (51) in the form

For a suitable parameter set, a plot of the left-
hand side of this expression vs K~ & should map
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FIG. 16. "Fan plot" of
xenon isotherms. Gonstruc-
tion of this plot is described
in the text. Scaling predicts
that isotherms should map
into straight lines with slope
proportional to -e, which is
clearly suggested by the
data. The fan plot requires
five parameters, and is
best constructed after fit-
ting the data to an equation
of state. The dashed curves
are loci of constant p and
hence constant height in the
gravitational field. Such a
locus for a=1 cm defines
the minimum compressi-
bility which can be mea-
sured in this experiment.
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experimental isotherms into straight lines whose
slopes are proportional to -e. In Fig. 16 are shown
43 xenon isotherms plotted in this manner. This
resultant "fan plot" indicates in a striking manner
the validity of the scaling hypothesis and in par-
ticular the utility of the bilinear 8' function, Eq.
(49). The dashed curves in Fig. 16 are loci of
constant cell height (and hence constant p) for lg

=0.1 and 1.0 cm. The latter defines the minimum
compressibility v~ &;„which can be measured in
these experiments, determined by the density
gradient at the limits of the cell aperture.

In Pig. 17 are shown the slopes of the isotherms
in the fan plot, Fig. 16, vs temperature, as de-
termined by least-squares fits. The critical tem-
perature is determined by the zero crossing of the
locus of isotherm slopes. We do not advocate this
procedure as a means of determining T, since
construction of the fan plot requires knowledge of
three parameters P, y, and b. . Also plotted in Fig.
17 are the percentage deviations of the extrapolated
intercepts of straight-Line fits from the best-fit
value Fo ~. These are used only to check experi-
mental data for possible systematic errors.

D. Consequences of the scaled equation of state

l. Exponents

Critical exponents play a central role in the
phenomenological description of phase transitions.
Within the framework of the scaling hypothesis,
a knowledge of two critical exponents is sufficient
to determine the rest. In the present parametric
representation of the scaled equation of state, the
exponents P and y occur in a natural way and are
directly determined as phenomenological param-

25,

TABLE II. Critical exponents resulting from the
scaled equation of state. (a) All parameters free. (b)
T~=16.6028, ph'=0. 2826, fixed. (c) p6=1.50, fixed
(Ho and Litster).

Exponent (c)

797

0!, 0!

V, V

fl

0.3583+0.0002
1.2296 + 0.0005
4.432 + 0.001
0.054 + 0.001
0.649 + 0.001
0.105 + 0.01

0.3519+ 0.0002
1.2453 + 0.0002
4.539 + 0.001
0.051 + 0.001
0.650 +0.001
0.083 + 0.01

0.3520 + 0.0006
1.203 + 0.002
4.418 +0.002
0.093 + 0.002
0.636 + 0.002
0.11 + 0.01

eters. In Table II we tabulate the values of several
critical exponents resulting from the best-fit P and
y for each of the three fits of the phase function,
Table I.

In the present work, we place particular empha-
sis on the parameter b in the form pn = p(l —6,/6„).
In the cubic model of Ho and Litster, ' this corn-
bination takes the value &. We prefer to allow Ph
to be a free parameter and the result (Table I) PA
=1.386 indicates a significant departure from Ho
and Litster's restriction.

The compressibility ratio I'/I" is given by

(54)

(55)

2. Critical coefficients

When the near-critical equation of state is ex-
pressed in parametric form, the critical coef-
ficients of thermodynamic anomalies are directly
determined once the parameter set is known. '4

If the supercritical compressibility on the critical
isochore and the subcritical compressibility along
the coexistence boundary are represented, respec-
tively, by the asymptotic power laws, a~=I'e ~

and ar'=I"'(-e) ~ (with y=y'), then evidently

SLOPE

('105 )

—25—

10—

—10—

~QX2P 0 0 0 0

XENON

CELL H

RUN H —EOS

(56)

Along the coexistence boundary, 6I= 6„,the re-
duced density is described by the power law p
=1/2G(-e), whence it follows from Eq. (50) that

1/2G = Fo (1 —6„/6O) (-1/6„) (57

-50—
~ ISDTHERM SLOPE

0 ISOTHERM INTERCEPT DEVIATION (%)

The critical isotherm, 6) =0, is described by
p, = C~ pj ~, which together with Eqs. (1)-(3) im-
plies

I

. 59

l

.60

I

.61

(T-16.0) C

i

.62

I

.63 .64

(58)

FIG. 17. Isotherm slopes and intercept deviations
from the "fan plot" of Fig. 16. These results are used
only for consistency checks of experimental data.

In Table III we tabulate the critical coefficients
calculated from the fitted parameter sets, Table I.
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Coefficient (a) (b) (c)

r= e~
0r -( g)Y

r/r'= (a- 1)~

lG2

C

0.0663
0.0182
3.654
1.823
1.837

0.0578
0.0151
3.819
1.726
2.468

0.0922
0.0222
4.145
1.687
1.767

TABLE IIL Critical coefficients calculated from equa-
tion-of-state parameters. (a) All parameters free. (b)
T, =16.6028, P/y=0. 2826, fixed. (c) PA=1.50, fixed
(Ho and Litster).

hours, to ensure the absence of organic contami-
nants, the cells were flushed to 1 atm with xenon,
flushed again to & atm, and finally filled in a
water bath at 16.2 +0.1'C to the half-way mark.
One of the cells (If) was slightly overfilled, so that
the critical density occurred somewhat above the
center of the cell. Since the Fraunhofer pattern is
invariant under vertical translations in the object
plane, the only result of this slight overfilling is a
narrow region of uncanceled light in the small-
angle portion of the pattern.

V. EXPERIMENTAL DETAILS

A. The xenon sample cells

The high-pressure optical cells used in this ex-
periment were constructed on special order by the
EIMAC division of Varian Associates. Each con-
sists of a Kovar body, into which sapphire windows
of —,'-in. thickness and 4-in. diameter are copper
brazed. Although the windows were specified flat
to II./4, distortions are evidently introduced in the
brazing process. Further small deformations re-
sulting from high stress (-57 atm) are unavoidable.
The subsequent deterioration in optical quality
may be remedied through the use of holograms.
This technique will be described later in this chap-
ter. Two cells, labeled A and Il, were employed;
the respective window spacings are 2.50 and 0.501
cm.

The cells were filled with xenon (Matheson Re-
search Grade: Specified Analysis, N, 3 ppm, Kr
15 ppm, and 0, 2 ppm) at Columbia University.
After baking on a vacuum station at 450 K for eight

B. The temperature controller

Precise regulation of the sample temperature is
required. This is accomplished through the use of
a two-stage thermostat. The first stage consists
of a cylindrical brass cavity, 12 in. in diameter.
Copper cooling coils wound about the cavity carry
water thermostatted to +0.02 K by a commerical
refrigerated and heated water circulator. Brass
face plates, containing optical windows, are fitted
to the ends of the cylinder, effecting isolation of
the interior from changes in ambient environment.
A sensor crystal from a quartz thermometer is
embedded in one of the face plates so that the first-
stage temperature may be monitored. The entire
outer enclosure is insulated with a combination of
foam rubber and styrofoam.

The inner thermostat is also cylindrical, and is
centered inside the brass cavity, insulated on all
surfaces by 2 in. of styrofoam. This stage consists
of a massive copper block, 7 in. in diameter, in-
side of which are clamped the xenon cells and a
Ronchi ruling used in angle calibration. This
block is accurately machined to accommodate the
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FIG. 18. Schematic dia-
gram of the sample tem-
perature controller. Feed-
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cells, which are in firm mechanical contact with the
copper. Several thermistors, used for temperature
monitoring and control, are sealed into &-20 Allen
screws with dental amalgam. These screws are
embedded near the center of the copper block,
which also contains a quartz- crystal thermometer
probe for temperature measurement. The outside
of the block is wound with heating wire, used for
regulation of the sample temperature.

In Fig. 18 is shown the circuit diagram for the
inner temperature controller. One of the thermis-
tors served as an arm of a dc Wheatstone bridge.
The error signal from the bridge is amplified by
a high-gain dc amplifier, whose output serves as
the control input to an operational power amplifier,
with combined proportional and integral feedback.
The power amplifier supplies current to the heating
coils. A precision resistance box (0.01 0/step)
allows selection of the desired temperature. It is
important to replace the 1.35-V mercury cell in the
bridge periodically, in order that the current in
the control thermistor be constant. Due to Joule
heating, the thermistor rides approximately 30
mK above its environment. A 1.5% change in
bridge EMF causes a change in set temperature of
about 1 mK.

A beat frequency derived from the quartz cry-
stals in the inner and outer thermostats is counted
by a pulse-rate meter, thus providing an analog
voltage proportional to the temperature difference,
Ty T2 This voltage is compared to a set voltage
by a high-gain differential amplifier, whose output
controls a mechanical sweep on the water circula-
tor in on-off fashion, the direction of sweep de-
pending on the polarity of the differential ampli-
fier. With this arrangement, the temperature dif-
ference between the two stages is held constant
(+0.2 K) as the set temperature is changed. This
keeps the required heater power constant, typical-
ly less than 50 mW.

It is very important in work of this type to mini-
mize temperature gradients within the sample
volume. Although such gradients are nearly im-
possible to measure accurately to the required
sensitivity, they are readily estimated in a con-
ductivity thermostat using the simple expression

4Q ET
~t L

As a worst-case estimate, assuming all heater
power (50 mW) applied to one face of the central
copper block and exiting through the opposite face,
the resultant gradient is 50 IuK/cm for our experi-
mental geometry. With the cylindrical symmetry
actually employed in heating, the gradients must
be much smaller than this.

With this thermostat, a set temperature is main-

tained to within 100 p,K almost indefinitely. Per-
haps the most sensitive indicator of thermostat
stability is the Fraunhofer pattern from the fluid
itself. The most- refracted maximum measures
compressibility on the critical isochore, so that
the angle k, (see Fig. 8) may be expected to diverge
as T-T, according to

ho=A& ", A= constant.

From this expression we derive

(59)

y
ko T- T

which expresses the fractional angle shift resulting
from a temperature fluctuation T- T+4T. With
the precision film-scanning apparatus employed in
these experiments, a change in LS,/0, of (2-8)%
is readily measured. Assuming a set temperature
1 mK from critical, with y=1.25, then Eq. 60 in-
dicates a temperature sensitivity of about 20 p,K.
Long-term observation of the Fraunhofer pattern
at constant temperature indicates the thermostat
stability quoted above.

C. Temperature measurement

The sample temperature within the inner thermo-
stat is measured by a quartz-crystal thermometer
(Hewlett-Packard Model No. 2108-A), which has
been extensively modifed for our purposes. The
instrument as received was not suited to the re-
quired precision, due to (a) large temperature co-
efficients (-0.001-K/K change in ambient tempera-
ture) of both the sensor and reference oscillators,
and (b) a maximum sampling period of 10 sec,
which for a 1-kHz/K sensor crystal leads to tem-
perature roundoff errors of +100 pK. These limi-
tations were circumvented as follows.

(a) The 28.208-MHz internal-reference oscillator
was replaced with an oscillator of the same fre-
quency, but of much better thermal stability. This
consists of a General Radio Type-1164 frequency
synthesizer, referenced to a 5-MHz output of a
Hewlett-Packard Model No. 10'7BR quartz oscilla-
tor. The frequency stability of this combination is
better than 1 part in 10" /K change in ambient tem-
perature, or thermal stability of (5 pK/K ambient.
Thermally related fluctuations in the frequency of
the sensor oscillator were reduced by enclosure of
the oscillator and its probe cable into the inner
section of a two- stage cylindrical brass thermo-
stat, where its temperature is controlled to +0.01
K by a thermistor-controlled heater. With this
arrangement, observed temperature fluctuations
due to the sensor oscillator are reduced to &10J(LK.

(b) Round-off errors are reduced by increasing
the thermometer sampling period to 1000 sec,
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BEAM EXPANDING TELESCOPES

FILM

F-PLANE

LIQUID GATE

XENON SAMPLE

rp

IP
JT

DOUBLE
THERMOSTAT

IMAGE PLANE HOLOGRAM

W~ VARIABLE RATIO

BEAM SPLITTER

F-PLANE
L2

He-Ne
LASER

FIG. 19. Schematic diagram of the optical experiment.
The "folded" arrangement allows equalizing path lengths
when using holograms. For most purposes, the Fraun-
hofer pattern is photographed directly, in the E plane
behind L&.

D. The optical layout

A diagram of the experimental setup is depicted
in Fig. 19. The folded optical arrangement allows
for matching of path lengths when holographic
techniques are employed. For most purposes it
suffices to photograph the Fraunhofer pattern di-
rectly, placing the film in the F plane behind lens
L,. Typical film speeds of 1 in. /day are obtained
using a modified time-lapse camera (Grass Model
No. C4), which is converted to a slow continuous
drive.

When measuring very small refraction angles,
one becomes limited by the window distortions
mentioned in Sec. A above. In these experiments
this limitation is avoided using a holographic
technique as follows. A photographic plate im-
mersed in a li|luid gate (see Fig. 19) is simul-
taneously illuminated by a focused image of the
field after transmission through the cell and a co-
herent-plane reference beam.

which is accomplished by inserting a two-decade
sealer in the clock circuitry. After each sampling
period, the temperature is recorded by photo-
graphing the digital output on the film above the
interference pattern. In this manner the thermal
history of the xenon sample is monitored.

During the course of the equation-of-state run,
this modified quartz thermometer aged at a rate
of 2 parts in 10' /h as referenced to both the fluid
and to the resistance thermometer. " Such fre-
quency aging is always observed in quartz resona-
tors and has been shown to be an exponential func-
tion of time. " In this experiment, a.simple linear
correction of 6 pK/h sufficed to bring the crystal
in correspondence with the other thermometers.

The field at the plate due to the cell beam may be
written

V (z) =f(z}expfi[P (z)+ Es(z)]j, (61)

where T is the sample temperature during the re-
cording process. The function n(z) accounts for
constant phase distortions introduced by the cell
windows and other intervening optics. After de-
velopment, the resulting hologram is replaced and
illuminated by the cell beam alone, keeping the
sample temperature fixed. The original plane- re-
ference wave is then reconstructed, and one ob-
serves a diffraction-limited spot in the F plane
behind lens I, If the sample temperature is now
changed to T WT, then the field in the reference
direction will no longer be a plane wave, but will
be modulated by a factor exp[i(EtT r, —fr) ]. In this
reconstruction, the constant phase distortions are
canceled. In practice, the hologram is recorded
with the fluid at high temperature (T T, -60'-C},
so that the density distribution is essentially homo-
geneous and @r= EtE„=constant. The resulting re-
construction then synthesizes a "cell" with perfect
windows. Employing this technique, refraction
angles are measured down to the diffraction limit
defined by the cell aperture. (See supercritical
compressibility, Fig. 10).

E. Angle calibration and measurement

The zero reference for angle measurement is
determined with the cell in place, at a high tem-
perature where the density gradient is negligible.
A plane-wave reference is inserted collinear with
the cell beam after transmission, and adjusted to
form a diffraction spot at zero angle, thus re-
cording a fixed point on the film records. Angle
calibration is accomplished by replacing the cell
with a Ronchi ruling of known line spacing, typical-
ly 150 lines/in.

The refraction angles k, of the intereference
minima are measured using a precision film-
scanning machine (Vanguard Model No. G/J 7039)
normally employed in the collection of data from
bubble- chamber experiments. For each isotherm,
the temperature, minima order numbers, and

refraction angles are digitized and recorded on

paper tape for subsequent computer analysis.
Variances in the angle measurements are esti-
mated by measuring the minima of a single iso-
therm several times and checking measurement
consistency.

Thermal equilibrium was accessed by measuring
the angle (compressibility) of several minima as
a function of time. The fluid was said to be
equilibrated when the angle change over several
hours was within the measurement noise. (Com-
peting processes are involved in equilibration,
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namely, diffusion and convection. Relaxation
times observed were, in general, about three to
five times shorter than a worst-case thermal dif-
fusivity calculation would yield. Most likely this
is due to the presence of some convection during
a temperature change, which is not surprising due
to the strong divergence of the Rayleigh number
near the critical point. )

VI. DISCUSSION

A. The coexistence curve

In this experiment we have measured the xenon
coexistence curve in the temperature range
10~ &

l
e

l

&10 '. The data are represented by the
asymptotic power law (p~ —p~)/p, =3.51(- e)0 "4,
but significant systematic deviations remain.
Varying the range of fit, we find p =0.37't for

l
&

l

&10~ and p=0.353 for le l
)10 . Similar depar-

tures from the asymptotic form np*=B( e)~-have
been reported. Stacy et al."have observed a
temperature- dependent "effective exponent" for
xenon which decreases from p* =0.365 at

l
e

l

=3 x10 to p*=0.345 at lq l

=3 x10~. Their sam-
ple, however, contained 1% oxygen, and little is
known of the effects of impurities on critical be-
havior. Cornfeld and Carr" have determined that
p=0.37 in the range 3 x10 & le l&3 x10 ', for
xenon. Using a technique identical to ours, Bal-
zarini and Ohrn have measured the coexistence
curve of sulfur hexafluoride (SF,), and found P
=0.339 for le I

&5x10" and p=0.346 for le
l

~10- .
Examination of coexistence-curve data in the review
of Heller" reveals a general tendency for P to in-
crease with increasing

l
c l. Quantitative compari-

son with this older data is difficult, however, and
one rarely encounters a deviation plot.

We are tempted to believe that the observed be-
havior of the exponent P is due to higher-order
corrections to the power law hp*=B( e)~. Addi-
tion of a term A(- a)~' yields p =0.332, p'= 0.61,
with 2=0.93. The exponent p is surprisingly close
to 2p; whether this may be expected on theoretical
grounds is not clear. Models which display phase
transitions generally yield only asymptotic be-
havior of anomalous properties, with higher-order
terms being difficult, if not impossible, to obtain.
There is now strong theoretical evidence' ~' that
the rectilinear diameter of a simple fluid is singu-
lar, being described as p~+ p~ = 2p, [1+a

l
e l' ].

Experimental verification of such a behavior is
difficult, and results to date have been mixed. "~'
Such a singularity in the diameter could lead to a
correction term proportional to

l
a l' in the ex-

pression describing the coexistence curve. Our
observation that p =0.61 is not consistent with
such a correction, since typically n= 0.1. Explan-

ation of the observed behavior must await further
theoretical and experimental guides.

B. The isothermal compressibility

We have measured the isothermal compressibility
(8 p, */Bp*) =P,Kr of xenon along the critical iso-
chore in the temperature range 10-'&q&10-'. As-
suming an asymptotic power law P,K~= I'E ', the
results imply y = 1.260, I' = 0.056. For & & 10~, the
resultant exponent is y =1.232 + 0.006 with F =0.0'73.
This latter result agrees well with the value of y
obtained in light- scattering experiments. "'" We
observe a slight tendency for y to increase for
large &. This tendency may be noted in the older
work of Habgood and Schneider" who found y=1.4
for & &10~ and y =1.0 for & &10~. Again, theo-
retical guidance as to corrections to asymptotic
behavior is lacking.

C. The equation of state

Based upon Widom's assumption concerning the
homogeneity of thermodynamic functions and the
subsequent work of Schofield and Josephson, we
have formulated a new parametric representation
for the equation of state of a simple fluid (or a
ferromagnet) near the critical point. The new phe-
nomenological transformation is ideally suited to
the analysis of data from optical interferometric
experiments. We feel the optical technique to be
the simplest and most precise means of studying
a condensing fluid in the immediate neighborhood of
the phase transition (-10~&&&10~), and it is
also an ideal complement to conventional PVT
measurements, which become difficult and then
impossible as the critical point is approached.
Previous concerns about the accuracy of informa-
tion obtained in interferometric experiments have,
we believe, been laid to rest by calculations which
show that corrections to the Airy-function (cubic)
approximation are small. "

The new parametric representation suggests a
new interpretation of what is meant by the critical
temperature. Within the scaling hypothesis, ex-
perimentally determined quantities g, and a z are
related to the function W(8) by d 1ng, /d 1n(1/sr)
= (P/y) W(8), with 8= ewz ". When this relation is
applied to experimental isotherms of xenon, we
determine quite readily T, = T,(lab) + 0.0001 K.
This new technique avoids the divergences and ex-
trapolation errors which occur using conventional
definitions. This method appears capable of a
very precise absolute determination of T, in a
fluid. The thermometer used in this work was not
calibrated to an international scale, but is within
0.1 K of absolute accuracy.

The scaling hypothesis appears to be well veri-
fied for xenon. The direct test employed in Sec.
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IV C2 indicates that scaled variables lie on a single
curve. We have placed particular emphasis upon
the bilinear function

w(e) =—1 —8/8„
1 —8 8 (10)

This is the simplest form which satisfies the physi-
cal requirements W(8„)=0, W(0) =1, W(80)-~.
Integration of W(8) yields the equation of state:

I"(ff, e) = Z~'(I e/e—,)",
which introduces the new parameter b, = 1 —8,/8„.
The resultant value ph = 1.38 is in disagreement
with the parametric transformation of Ho and co-
workers, "'"which implies PE=1.50. We see a
positive advantage in allowing 6 to be a free pa-
rameter unless and until its value can be deduced
from fundamental theory.

The equation of state resulting from the bilinear
form Eq. (10) well represents the experimental
data. for xenon, as indicated by the deviation plot,
Fig. 15. Future work will include investigations
into the effect of higher-order terms in an expan-
sion of W(8).

Of the exponents determined by equation- of- state
data, the value P =0.352 is somewhat larger than
direct coexistence- curve measurements allow. The
reason. for this behavior is not known. Also of in-
terest is the value of the exponent g, which was
introduced by Fisher to account for departure of
the pair-correlation function from the Ornstein-
Zernike result. From the sealing law g=2
—3(5 —I)/(5+1), the present work indicates (see
Table II) that q = 0.101, which is within the q
range from the refractive-index measurements of
Hocken. " From turbidity measurements on the
binary mixture cyclohexane, Calmettes and co-
workers" find g = 0.08 + 0.5. The large uncertainty
reQeets the difficulty involved in direct measure-
ments of g.

The compressibility exponent y is found to be
1.230 from equation-of-state data. This is consis-
tent with the direct supercritical compressibility
measurements, which indicate y=1.232 for & &10~.

Throughout this paper we have used the statisti-
cal estimates for our parameter uncertainties.
The choice of the model clearly alters these best-
fit parameters by more than the statistics would
allow (see Table I). This model dependency is not
unexpected; in fact, we display the statistical un-
certainties only to make this point more graphic.
Since we have no a priori knowledge of the truth
of any model, we might rely entirely on our sta-
tistics. If we do this the model of Table I(a) is
the favorite due to the low g and large data set.
On the other hand, the P obtained from fits of
Fraunhofer data to this equation is in clear contra-

APPENDIX: EQUIVALENCE OF THE 8' HYPOTHESIS AND
THE HO-LITSTER REPRESENTATION FOR J36=3/2

Ho and Litster' have introduced the following
parametric representation:

0 =+0(l —0 )+
p =kg(1 —cQ')r~,

e = (1—b'Q')r,

c = (3 - 2P5)/(3 - 2P) .
When the parameter b' takes on the value

b' = 3/(3 —2P),

(Ala)

(Alb}

(Alc)

(Ald)

(Ale)

lines of constant x correspond to paths of constant
compressibility (susceptibility), so that (Sg/ep),
is independent of Q. The critical isochore is /=0,
the critical isotherm P = ab ', and the coexistence
boundary g =+1. The transformation involves
five parameters: P, y, T„a,and k. In this Ap-
pendixwe demonstrate the equivalence of Eqs. (Al)
and the parametric equations resulting from the 8'hy-
pothesis, constraining the parameter combination
Ph to the value ~.

Equating Eqs. (Alc) and (3}for equal values of
6, we have

e = (1—b'@')~ =Re . (A2)

On the critical isochore, g =0 and 8= 80, whence

thus

y =88, (A3)

I b2y2 = 8/8 (A4)

diction to the limiting P obtained from the more
direct coexistence- curve measurements. Even if
we do not trust the statistics and assume all models
are equivalent, we must stretch our errors more
than we would readily believe in order to make all
three experiments (coexistence curve, compressi-
bility, and equation-of-state) yield overlapping pa-
rameters within the same region. We consciously
chose not to do this because we believe that this
difference is outside our errors and thus yields
information about either the choice of model or
residual systematic errors in the experiments.
We are still working on this problem.
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At the coexistence boundary, /=+1 and 8=8„,so
that Egs. (A2) and (A3) imply

which requires

PA= —'. (A9)

Then, using Eg. (A4), we have

1- e/e,
e„/e,'

(A5)

(A6)

Thus, the TV hypothesis identically reproduces
the Ho-Litster representation when Ph is con-
strained to satisfy relation (A9). The parameters
in the two models are related according to the
following translation:

The ratio 8„/8,in the Ho-Litster model becomes,
from Eq. (A5) and the definition Eg. (Ale),

W hypothesis Ho- Litster

8„/eo= 1 —5' = —2P/(3 —2P), (A7) 1- e/e,
1- 8„/8,

so that with the definition b. =1—8,/e„ofthe W hy-
pothesis [Eg. (12)], we obtain

1 —8„/8

1/(1 —6) = —2P/(3 —2P), (A8) 80 a/k
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