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The rate of energy absorption by inverse bremsstrahlung of a plasma in an oscillating electric field is

calculated. An expression for this rate is obtained that is valid for all ranges of the electron-plasma tem-

perature and density and the electric field flux intensity and polarization, Analytical formulas are obtained

for high-flux intensities where the rate is independent of the electron-velocity-distribution function.

I. INTRODUCTION

One of the methods used in heating a plasma to
high temperatures is the application of electro-
magnetic (e.m. ) radiation (laser light). In the
first stages of this process, when the plasma
density is relatively low, e~( tu (where urp is the
plasma frequency, &u~ =(4mn, e'/m)'", and &u is the
laser frequency), the main mechanism of heating
is inverse bremsstrahlung, where electrons ab-
sorb energy from the e.m. field when they collide
with the ions. The energy thus absorbed per unit
volume, per unit time, dW/dt, is a function of the
following parameters: e.m. flux intensity and po-
larization, laser frequency, electron tempera-
ture T, and electron plasma density &, .

The energy absorption rate by inverse brems-
strahl. ung has al.ready been calculated for low

ftuxes, ' ' where the main process is one-photon
absorption and the result is given by a simple
analytical formula. ' The calcul. ation at high
fluxes, where the main contribution to the ab-
sorption is from multiphoton processes, is more
difficult and was considered by several authors. ' '

We shall see in what follows that at low fluxes
the absorption rate does not depend on the polar-
ization of the laser light but may depend on the
velocity distribution of the electrons. At high
fluxes the situation is reversed. The absorption
rate depends strongly on whether the light is lin-
early or circularly polarized but is quite indepen-
dent of the electron-velocity distribution.

There are two approaches to the calculation of
the absorption rate: classical and quantum-me-
chanical. methods. In the classical approach""
the Vlasov equation is used to calculate the in-
duced current and the resulting absorbed energy.
The electrons are taken to have a Maxwellian dis-
tribution and the ions are assumed to be at rest
and to be either randomly or nonrandomly distri-
buted. In these calculations there appear diver-
gent integrals which can be avoided by introducing,
ad Aoc, cutting-off limits of the integration.

In the quantum-mechanical approach" "one

first calc,ulates the transition probabil. ity for the
elementary process of inverse bremsstrahlung
(photon emission or absorption) in an electron-ion
collision in an oscillating e.m. field and then takes
an appropriate statistical average over all the
electron momenta. There is no need for cutting
off the integrals and Planck's constant@ appears
explicitly in the results in the dimensionless pa-
rameter q, q=8'~/2kT. Both approaches give the
same result when q is extremely small, if h is in-
troduced explicitly in one of the cutting-off limits
in the classical calculation, by taking the minimum
distance of closest approach in electron-ion colli-
sions to be 5/(mkT)'" instead of the usual
Ze'/kT. " When q is not extremely small the clas-
sical theory breaks down. Because of interest in
laser fusion experiments it is necessary to deter-
mine dW/df for all ranges of electron tempera-
tures and flux intensities in the plasma. To our
knowledge this has not been done in a complete,
exhaustive manner.

In Sec. II we discuss the quantum-mechanical
theory of the elementary process of inverse
bremsstrahlung. In. Sec. III we calculate the sta-
tistical average and obtain an expression for the
rate of energy absorption dW/dt valid for all
ranges of the parameters, for different distribu-
tion functions of the electrons, and also for lin-
early and circularly polarized light. In Sec. IV
we evaluate the rate of energy absorption for
three different distribution functions of the elec-
trons, namely, Maxwell-Boltzmann, Fermi-
Dirac, and ~-shaped. We give analytical expres-
sions which cover quite accurately almost al. l

ranges of the parameters and show graphically
the dependence of dW/dt on flux intensities.

II. TRANSITION PROBABILITY

We shall here calculate, in the first Born ap-
proximation, the transition probability per unit
time for a specific momentum change in a colli-
sion between two free charged particles with
masses m, and m, and charges Z, e and Z, e in the
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presence of an electric field oscillating with a
given frequency +. It is assumed that during this
process the internal structure of the two particles
remains unchanged. This means that if the plasma
is not fully ionized we do not take into account
possible excitations or ionizations of the ions.
We also assume that the particles are nonrelativ-
istic and we neglect the effects due to magnetic
fields.

The perturbation U(r») which is responsible for
the momentum change is the electrostatic interac-
tion which depends onthe distance r» =

~ r, —r~~ only.
The oscillating electric field E is treated' ' clas-
sically and the dipole approximation is used. E is
a (periodic) function of time only. The last ap-
proximation is valid if the electric field wave-
length is large compared with the range of the
effective interaction.

An unperturbed state of the two particles with
momenta p, and p, is described by a wave function

which is a product of two one-particle wave
functions g~ and (& .

(r r t)=0-'"'"'(r, t)x4-'2'2'(r t) (1)

g~ is given by"

~'A

p
++2A =0 . (4)

The transition probability per unit time P(p„p,
-p'„p,') from an initial state characterized by

p„p, to a final state characterized by p» p,
' under

the perturbation U(r») will be evaluated for two
kinds of polarization of the electric field E, name-
ly, for linear polarization and for circular polar-
ization:

(a) linear polarization (l.p. ),

E =Ee„sin&et;

(b) circular polarization (c.p. ),

E = „2E(e„sinvt+e, cosset),—2l/2 (6)

where e„,e, are unit vectors perpendicular to the
propagation direction (z direction).

In the first Born approximation we obtain for P

t Z~ 2
= exp —ih p r — p — A(t')—

2mb „c
(2)

where the vector potential A(t) satisfies

1 ~AE+———0c Bt

(Pg~ P2 Pi~ P2)

——R~ ~ ~ ~ I TT (2

x Q J '(X )5(W' + W' —~ - & —~&)

where

(&P,) =(p'-P )'e, f» I P. (8)

=2 i.~~(pl-p )'e.1'+Npl-p, ) e,]9'"
for c.p.

4„ is the usual Bessel function of order n and
U

p p
is the F our ier trans for m of the interac-P2

tion U(r),

U- -.= d'r U(r)eP P

Positive n corresponds to absorption of n pho-
tons whereas negative n corresponds to the emis-
sion of

~
n

~
photons. J'„ is a measure of the

strength of these processes and includes all or-
ders of perturbation in the electric field intensity.
Both absorption and emission of n photons have
the same probability (detailed balance). It is
evident that P is symmetrical with respect to the
interchange of particles j. and 2, and satisfies the
requirement of energy and momentum conserva-
tion.

For particles with the same Z/m ratio, X» --0,
the field intensity E disappears from the equation
and I' corresponds to the transition probability
for elastic collisions. This means that there is
no exchange of energy with the oscillating electric
field during collisions between particles that have
the same Z /m ratio (electron-electron collisions).
Consider now electron-ion collisions where m, =m,
m, =M, Z, = —1, Z2=Z, I/m» Z/M. X» depends
on electron parameters only if we neglect Z/M
compared with 1/m. We can also show that one
can neglect the difference between the kinetic en-
ergies of the ion compared with the difference be-
tween the kinetic energies of the electron in the
energy-conservation factor. It then follows that
the only place in Eg. (7) where the ion momenta
appears is in the 6p +p. p +p. factor. SummingPl Pl 'P2 P2
Eq. (7) over all the ion momenta we get the usu-
al' ' transition probability per unit time for one
electron from state p to state p' by collision with
the ions in a unit volume,
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x g J'„(X)5(W'- W- niter),
w 00

(10)

where

III. STATISTICAL AVERAGE

The energy absorbed by the electrons per unit
time per unit volume, dW/dt, is given by

dt =Q f(p, t) Q &(p-P)(I-f(p', t))(W'-W)
P P

= ~ Q If(p t) -f(p', t)](W'- W)&(p-p'),

where f(p, t) is the electron-distribution function,
satisfying

g f(p, t)=~. ,

and n; is the number of ions per unit volume. We
have assumed in Eq. (10) only one kind of ion with
a charge distribution that enters through the poten-
tial U. For more than one kind of ion, we would
have to take an appropriate average.

p - (p' —p)/2p„o = (p'+p)/2p, ,

where P, is a characteristic momentum of the
plasma, f=f(p2/po). In the new coordinates the
Fourier transform of the potential Up p

can be
written

Up p
= —(vZe'5'/p')p(p) .

Using Eqs. (10)-(14), the expression for dW/dt
becomes

(14)

'f" -'= Q [f(p, t) -f(p, t)]~(p'-p) . (»)Bt
P

To evaluate Eq. (11)we approximate f(p, t) by a
time-independent initial isotropic distribution
f(p) T.his approximation is valid when the ener-
gy imparted to the electrons is small compared to
the initial energy of the electrons. This is the
case for the usual short pulses used in laser
plasma experiments and low-flux lasers. For
high-flux lasers, which are required for the
initiation of thermonuclear reactions, the elec-
tron temperature rises by several orders of mag-
nitude and the validity of the approximation might
be in doubt. However, as mentioned in the Intro-
duction, we shal. l see in what fol.lows that for high
fluxes the absorption rate is independent of the as-
sumed initial distribution function and depends
only on the flux intensity, the mean electron ener-
gy, and the electron density. We replace the sums
over the momenta in Eq. (11) by integrals accord-
ing to P - (I/2ah)~J d'P and make the transfor-
mations

where

=C q d p p nZ„— E d 0 +0 —2nq — p+v +2nq 5p o —nq
n=g

(16)

for l.p.

= I~z(p„+p„)] for c.p. ,

and I is the flux intensity, I=cE'/8m, with c the
light velocity.

The main dimensionless parameters of the prob-
lem are s and q. s is the ratio of two momenta:
eE/&u and po. eE/&u is a characteristic momentum
which an electron acquires in the oscil. lating ex-
ternal field. 4q is the ratio of two energies, the
photon energy S~ and the characteristic energy

2' PlO'
5(p o —nq)dQ, =—8 1 ——

PO PO'

where 8(x) is the step function. 8(x) =0 when
x& 0; 8(x) = 1 when x& 0.

(17)

Wo of an electron in the plasma, where Wo =pg2pyg.
f is a dimensionless distribution function and de-
pends only on the squares (p+ o)'. The integration
fdQ, over the angles of o in Eq. (15) can be per-
formed readily, because the angles appear in p cr

only. It can be easily shown that



12 IN VERSE BREMSSTRAH LUNG ENERGY ABSORB TION RATE

Putting Eq. (17) in Eq. (15) we obtain

g~q3/2 2 ~g 2
p

n=1

da p. p +0 2+q p +0 +2pzq
nq/ p

(18)

fore, the integration J dip will give two different
forms depending on whether the light is polarized
linearly or circularly. The result is

g(2&)l/2 q
3/2 d I ~(p) ~

2

0

nsinh nq e ~p ' "'p'~/2D
n P

n=1

We shall evaluate Eq. (18) for three types of dis-
tribution functions: Max()veil-Boltzmann (hot plas-
ma), where the electron temperature T is large
compared with the degenerate electron-gas tem-
perature T, (T& T,); Fermi-Dirac (cold plasma),
where T & T; and &-shaped functions.

A. Hot plasma

D„(t) = J 2(t cos8) sin8d8

t
42(y)dy for l.p.

0

where D„has the following two forms:

(21)

For a hot plasma the distribution function can
be taken to be Maxwellian,

1 P2/2P2f (2 )3/2 t

P3 =mt/T, q =ti~/2kT .

(j n 1/2 I sin(9 sin6d 0
~ ~

0

t/21/2

0
~tt(y) 2 2 x/2 for c p.2

(22)

The expression (18) becomes, after integrating
over o,'

(p) I'
dt (2)/)"2 q

p

p nsttttt(ttt) e t '"' ' "J'„(-(tt)
)n=1

(20)

The angular dependence of p enters only in the
argument of the Bessel functions s(p)s/q. There-

8. Cold plasma

For a cold plasma we take a Fermi-Dirac dis-
tribution function and the corresponding f is

(23)

The characteristic momentum Pp is now P~. If we
substitute P~ for Pp in the parameters s and q and
introduce f from Eq. (23) in Eq. (18), the result
for the energy absorption rate becomes

dS" an S

dt
=C(3)//4)q"' g dp p I p(p) I'[1 —(p -nq/p)']D„—p

- n=1 an

where

l:1/4 a]-Pn
n =1

ds tt)((rt) I
'() —(t t~t/tt)'Itt. (-tt) (24)

a'„=—,'[(1+4nq)""+ 1], t)
'„=—,'[1+ (1 —4nq)'"],

and [1/4q] is the largest integer smaller than 1/4q. The &„'s are defined in Eq. (22).

C. 5-shaped distribution

Here we consider an extreme case of a 5-shaped isotropic distribution function. The corresPonding f is

(26)

From Eq. (18) we obtain, with the same notation as in Eqs, (22) and (25),
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00 an tl/4a] b

G( =/2)q'" P f d~~l ((p)l'& (-.v)- P I dphil((~))l'D
an n=1 n

IV. RESULTS AND DISCUSSION

As the potential Q was not specified explicitly
the results of Sec. III are quite general and can,
therefore, be applied to different cases. In what
follows we shall use a pure Coulomb potential,
Q(p) = 1/p'. This is valid at high fluxes (many-
photon processes) and also at low fluxes and high
electron temperatures. One has to take into ac-
count the Debye screening and the possible charge
distribution of the ions only when both the flux and
electron temperature are not high. This will not
be done here because one-photon processes were
discussed extensively and correctly in the litera-
ture.

In addition to the flux intensity, the other im-
portant physical. parameter is q, which is a mea-
sure of the ratio of the one-photon energy to the
mean electron kinetic energy. For neodymium
and CO, lasers, at the usual temperatures of in-
terest in laser fusion experiments, this ratio is
very smal, l. Neverthel. ess, it is very instructive
to consider, al.so, the case q»1, which applies
to x-ray and y-ray lasers. In what follows we
shall consider the two extreme cases separately.

1. q»j

In general dW/dt is determined by the excess of
absorbed to emitted photons. In the assumed case
q» 1, the photon energy is large compared to the
energy of a great majority of the plasma electrons.
Thus there is very little induced emission since
there are very few high-energy electrons which
can emit quanta nk&, with the result that only ab-
sorption takes place. Moreover, the rate is in-
dependent of the distribution and temperature of
the electrons. It depends only on the electron
density and electric flux intensity in the plasma.
We can see this mathematically from the formulas
of Sec. III. All the expressions for the absorption
rate for the three distribution functions, Eqs. (21),
(24), and (27), reduce, at q» 1, to the same ex-
pression (Appendix A):

dW = C()T/12)o. ' (30)

for both l.p. and c.p.
In the other extreme case, n» 1, high flux,

many-photon processes contribute to the absorp-
tion. In fact, all n values from n =1 up to approx-
imately n = o(' in the l.p. case and n = a'/2 in the
c.p. case have to be taken into account and the re-
sult is given by the approximate asymptotic for-
mulas (Appendix A)

=C —[in (2n)+y ln2o. ——'))'] for I.p. (31a)dt n 12

2 1/2&
, =C lno( —2(ln2 —y)] for c.p. ,

where y = 0.5772 is Euler's constant.
We see that at low fluxes the energy absorption

rate is independent of the polarization of the inci-
dent light. At very high fluxes the energy absorp-
tion rate is much stronger for linearly polarized
light than for circularly pol.arized light. In Fig. 1

0.5

0.2

O. I

where n» is the number of photons per unit volume
(photon density), I is the flux intensity, and I
=mhc(d /16ve'. n is the main dimensionless pa-
rameter of this case. It is a measure of the flux
intensity, independent of the plasma temperature.
When o. & 1 (low flux), the main contribution in Eq.
(28) comes from n=1 (one-photon processes).
Moreover, we can expand in power series and ob-
tain

"„=G (tr/2) P —,'„D„('s("-) (28) 0

8 28E &p ~nh

q mh(d' (u +e
(29)

The only parameter in the last equation which de-
pends on the flux intensity is s'/q,

FIG. 1, Inverse bremsstrahlung energy absorption
rate dS'/dt as a function of G. at large q for linearly
polarized electric field E, Eq. (28). dS"/dt = CmP(n),
C = 4+ p 4Z(2/~Q) f z &E(2/~I' 3~1/2 q S~ /2P T.
Dashed curve, asymptotic approximation, Eq. (31a).
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we plot results of computer calculations of Eq.
(28) for the l.p. case. For o. & 4 the asymptotic
formula, Eil. (31), fits the numerical calculations
within less than 1%. The rate of absorption in-
creases l.inearly with the flux I at small fluxes
and decreases slowly at high fluxes. It has a
maximum at about n = 3.2 or I/I = 10.

2. q«j

0.2

O. I

The case q«1 applies to infrared lasers and elec-
tron temperaturesof more than 1 eV. In this case the
parameter s as defined in (16) is a measure of the
flux intensity. If s«1 the main contribution to
the absorption rate is determined by one-photon
processes and if s» 1 many-photon processes
contribute to the rate. In this case, however,
the absorption rate may also depend on the elec-
tron temperature as well as the distribution func-
tion.

For s«1, the results for the three distribution
functions are (Appendix B)

dt
=C[(2x)'"/6] s'q'"[ln(2/q) —y] (hot plasma)

(32a)

= C(s/2) s'q '" ln(1/q) (cold plasma)

(32b)

—C(p/3)s q
"~ (5-shaped distribution) . (32c)

For s not small. there are no simple analytical
approximations. Only when s» 1, i.e. , when the
oscillating electron energy in the electric field is
large compared to the characteristic electron en-
ergy, is the absorption rate approximately inde-
pendent of the distribution function. However it
does depend on the mean electron energy, as dis-
cussed in Appendix B. The result is

00 IO

FIG. 2. Function A(s) for a Maxwell-Boltzmann dis-
tribution function, Eg. (813a), for linearly and circu-
larly polarized Light. s =eE/cu (mk T)~~2. Dashed curves,
asymptotic approximations, Kqs. (B11a}and {B12a).

0.3—

ically evaluated and the asymptotic values.
In Figs. 4 and 5 we plot the absorption rate in

the l..p. case for a Maxwell-Boltzmann distribu-
tion as a function of s for two values of the param-
eter q, 0.0'7 and 0.0007, which correspond, in the
case of a neodymium laser, to el.ectron tempera-
tures of 10' and 10' K. The absorption rate is
initially proportional to the flux intensity I. As
s increases, the slope decreases and eventually
the rate decreases slowly. At very large s, which
implies very high flux intensity, the rate is pro-
portional to Ln'I/I'~ (in the c.p. case the rate is
proportionaL to lnI/I'"). The absorption rate at-
tains a maximum at a value of s = 3.2 and the value
at the maximum can be approximated by dW/dt

dw =C [Lns(2s)+2 ln2s Ln(1/q) J for l.p.dt s

ql/2
= C2'"s [lns+ ln(l/q)] for c.p.s

(33a)

(33b)
u 0,2—

The results [Egs. (33)] for linear and for circular
polarization are essentially different from the ex-
pressions given in Refs. 9 and 10.

There is no general formula for the different
distributions when s is of the order of unity.
In Appendix B we see that for a Boltzmann distri-
bution we obtain the form (B10) for dW/dt; the
functions A(s) and B(s) are plotted in Figs. 2 and

3. We see that for s & 4 there is, at most, a dif-
ference of only a few percent between the numer-

'0 6
S

I

IO

FIG. 3. Function B(s) for a Maxwell-Boltzmann dis-
tribution function, Eq. (B13b), for linearly and circu-
Larly polarized light. s =eE/co (mk T)~~2. Dashed curves,
asymptotic approximations, Eqs. (Bllb) and (B12b}.
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FIG. 4. Energy absorp-
tion rate dW/dt for a
Maxwe1. l-Boltzmann distrib-
ution function and a linear-
ly pol.arized electric field
as a function of s, Eq.
(B10). q =0.07 (T =10' K
for a neodymium laser)
and s =eE/co(mk T)~~

=2x 10 I ~~ (for a neo-
dymium laser), where I
is the flux in W/cm~.
Dashed curve (1), low-flux
limit, Eq. (32a); dashed
curve (2), asymptotic limit
at high fluxes, Eq. (B11).

=Cq'" ln(I/q). As q is inversely proportional to
the temperature we obtain the result that the max-
imum absorption rate is proportional to Ln(aT)/T'",
where a = 2k/Kw.

As in the case where q is large, the asymptotic
formulas (33a) and (33b) give good approximations
to the numerical. ly evaluated values for s& 4. We
also see that the low-flux approximation, Eq. (32),
which is used extensively in computer codes"'"
is valid only for s& 0.7. At large s the absorption
rate depends only logarithmically on the tempera-
ture.

In Fig. 6 we show for the neodymium-laser case
the regions, in flux and temperature, where the
different approximation formulas are valid. In
the "low" region the low-flux (one-photon process-
es) approximation, Eq. (32), is good. In the "high"
region Eq. (33) gives an agreement within a few
percent with numerical. ly calculated values. In
the "intermediate" region the rate has to be eval-

becomes

8Zn, em co~
v= ', —ln2s ln(2s/q ) for l.p.

8Z2'"zn, em u'
ln(s/q) for c.p. (34)

APPENDIX A

We consider here the formulas for the absorp-
tion rate dW/dt at q» I for the distribution func-

uated numerically.
We note again that in the high region dW/dt does

not depend on the assumed velocity-distribution
function and also in this region the result is es-
sentially different from that of Ref. 10. The ef-
fective collision rate v, defined as

2m+~ d 5'
V=

n, e~E~ dt

I. O

0.5

0 I

lo
I

l4

FIG. 5. Energy absorp-
tion rate d W/d t for a
Maxwell. -Boltzmann dis-
tribution function and a
linearl. y polarized electric
field as a function of s, Eq.
(B10). q =0.0007 (T =107
K for a neodymium l.aser)
s = e&/~(mp T)1/2 2x 10-8
X I ~ (for a neodymium
laser), where I is the flux
in W/cm~. Dashed curve
(1), low-flux limit, Eq.
(32a); dashed curve (2),
asymptotic limit at high
fluxes, Eq. (B11).
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tions considered in Sec. III.

1. Hot plasma

We start with Eq. (21) and use a pure Coulomb
potential Q(p) = I/p'. We change the variable from
p to z, z =p/(nq)"'~, and obtain for the absorption
rate

0
O

16

——C(2wq)'" g sinh(nq)
n =].

(A1)

14

12
5

LOW REGION Eqs.(32)

10g!OT

Since sinh(nq) = —,e"' we obtain

]/2nq z
dt 2

(A2)

FIG. 6. Regions in the log&0 T-log&OI plane where the
different analytic expressions for the energy absorption
rate for a neodymium laser are valid. T is the electron
temperature in K and I is the flux in W/cm2. In the
"intermediate" region there are no simple analytic ex-
pressions and the absorption rate has to be evaluated
numerically. For a CO2 laser the log&OI scale has to be
lowered by two units.

The exponential term in the integral varies more
rapidly than all. other factors and the method of
deepest descent can be applied to evaluate the z
integration. The main contribution comes from
z = 1 and we obtain

where

"Z ( ) (~+n)!(W-n)! '
n=1 (A5)

(A3)

(A4)

and integrating term by term. The result is

oo

=C( /2) P D.( "'),
n =].

where n =s/qii2. o. is the only parameter which
appears in the last equation.

Another form is obtained by expanding in a pow-
er series the squares of Bessel functions" of or-
der n that appear in the definition of D„[Eq. (22)j,

2M
C =— fo 1 p.

for c.p. (Ae)

For small o., dW/dt =Cwo.'/l2. For large o.'we
can obtain an asymptotic expansion from Eq. (A3).
Z'„(y) is very small if y& n. It behaves like I/wy
for y» n. Thus, for n& u' in the l.p. case and for
+) a'/2 in the c.p. case, the nth-term contribution
to the sum (A3) is extremely small. For n& u' in
the !.p. case and for n& o.'/2 in the c.p. case, a
good approximation for integration purposes is
J „(y)= I/n(y' —rP)''i and we obtain for the D„ func-
tions

~ (~nj/2)—
2 n2 il/2 n1/2 n1/2ln + ——1

n

for l.p.

( / )1/2
ydy ] 2

nun ", Hy2 —n )(o.2n —2y2)] "2 o. n
for c.p. (A7)
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Putting this in (AS) we obtain

j 1 ~2 1/2
=C= —ln - — + ——1 for l.p.dt & n n n

n=1

n =n2

g C(n)=
n =nl

C (x) dx+ -[4'(n, ) + C'(n )]

4)O

+ ~ 2r [c)(2r-1)(n ) c, (2r-( )(n )]~ (22)]
(A9)

[e /2j 17T

21/2 ~ for c.p.

(A8)

where B2„are the Bernoulli numbers and 4'"' is
the Hh derivative of C. This leads to the asymp-
totic formulas Eq. (Sl).

2. Cold plasma

The last expressions can be approximated by an
integral and correction terms, according to the
formula

We start from Eq. (24) and as before use a pure
Coulomb potential. Making the same change of
variables from p to z, 2 = p/(nq)'/', we obtain

oo ]d tl /4~~ +

=('(qz/4)q pe ".—*, I(4;)' —z'][z (4„) ]ZZ„(nn'z'z) g nf "—,((e„')*—z'](z' —(e„)']ZZ„(nn'z'z)),
nA n n-1 en

]

(A10)

where

(1+4nq)1 +1, 1+(1—4nq)1 2

2 2(nq}1/» n 2(nq)1/2

As q is large the second sum does not contribute,
d„'= 1, d„'- d„=1/(nq)' ', and the z integration leads
to Eq. (AS).

1. Hot plasma

Using the expansion formula (A4) for J (y) jn Eq
(Al) and integrating term by term we obta1n

d gtz " (- )]2+' S2 ]2
= C(8)(q)'/2 Q: C„——

M=1

3. 5-shaped distribution

We start from Eq. (27) and obtain after the same
change of variables as before

dW
=C(&/2)q' ' g —,D„(&n1 '8)n dZ

n=1 "n

N

slnh nq +~ 1 nq

(Bl)

where C~ is given in Eq. (A6) and K„(a}is the
modified Bessel function of order x. In obtaining

Eq. (Bl) we used the integral representation of the
modified Bessel functions, "

Ll/4q] ~+ df "—,D„( "' ))nnz
n=1 en

(All�)

The z integration leads again to Eq. (AS}.

A (a) —
]

&2r-1e-a(z +1/z )/2d&2 2

0
(B2)

Expression (Bl) gives dW/dt in a power series
in s'. s is a measure of the flux intensity defined
in Eq. (16). For small fluxes the first term in the
expression gives the usual formula

APPENDIX B

dR' = C[(2v)'"/6]q'/2s2A;(q) ) (BS)

We consider here the formulas for the absorp-
tion rate dW/dt for the distribution functions con-
sidered in Sec. III and pay particular attention to
the case where q is small. Here it is more con-
venient to use the parameters s and q.

which, at small q, leads to Eq. (S2a).
At high flux intensities, i.e., when s is not

small, we have to take many terms in the expan-
sion (Bl). Again, as was done in Appendix A, we

can approximate the D„'s by
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2~ 1/ for c.p. (B4)

Inserting (B4) in (Al) we obtain for the l.p. case

(B5)

where i/r(y) =ln[y+ (y' 1)'~'].
To obtain (B5) we changed variables from z to x, x=(nq)' '/z. The sum over n can be replaced by an

integral according to formula (A9),

(B6)

(B7)

The Euler's constant y is the correction term of (A9) for small q. The y integral leads to a logarithmic
singularity in q and in order to extract it we integrate by parts,

"sinhy
dy = 1+ln(1/q) + —

2 e ' '"
(y lny coshy —sinhy —x' lny sinhy) dy .

X p

Putting (B7) in (B6), the expression for the absorption rate can be expressed as an integral over only
one variable,

1/2

(2 )1/2 s x e [[I+ In(1/q) ——,'(ln2 —y) + Inx]!!I(s/x) + —,[g(s/x)]' —~ m' ——R(u')}dx

where u =s/x —(s'/x' —I)'~' and R(y) is the dilogarithm function" (Spence function) defined by
dz

R(y) = —ln(1 —z), R(l) =- /716 .
p

Z

»r the c.p. case we obtain, after similar manipulations, the following expression for dpi/df:

dR 1/2 S/2

dt
= C2v' x'e " '[1+ln(1/q) —2(ln2 —y)+ —,

' ln(s'/2 —x')]dx,
S ()

Both expressions, (B8) and (B9), are of the form

dS'
= C(8vq)'~'(A(s) [ln(2/q) —y]+B(s)], (B1.0)

A(s) = 2,&, (ln2s —0.365),
1

(B11a)

where, at large s, the functions A(s) and B(s) have
the asymptotic forms

(Bl) evaluated at small q. At first glance it seems
that (Bl) is very singular when q is small because,
expanding at small argument the modified Bessel
function, Ku(x) = ~(M —1)!/(~x)", and sinhx =x,
each term becomes of the order 1/(nq)"" ". How-

ever, it can be proved that
2M

i ( )n»lnRR —0(M- n]

B(s)=,&, -[—,'ln'(2s) + 0.826 ln2s —1.307]2

(B11b)

if 1 &4&M. The first significant term in the ex-
pansion of (n/q)" sinh(nq)K„, (nq) which gives a
nonzero contribution to the sum in n is of the form

for the l.p. case and

A(s) = v' "/2s,
&X /2

B(s) = — (jns + 0.48)
2s

(B12a)

(B12b)

ln(2/q) —y+ a(M, n),
where a(M, n) is some function of M and of n, and
therefore, for small q, the expression (B10) for
the absorption rate is valid for all values of s. The
functions A(s) and B(s) have the form

for the c.p. case.
Expressions for A(s) and B(s) which are valid

for all values of s can be obtained from the sum

(—)++1 S2 M

~(2M+1)(M 1)! u 4 (B13a)
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( )Ms& S2+ (2M+1)(M-1). " 4
8&1

where QM is given in Eq. (A6), and &, =0 and

M n2M
n+M

2(n 1) (M+n)! (M- n)!

(n 2)!(M 1)!,„
(2n —1)!(M —n)!

We have computed numerically A(s) and B(s) and
the results are shown in Figs. 2 and 3. For s&4

the asymptotic formulas (All) and (B12) give ex-
cellent agreement with numerically obtained val-
ues.

At very small q and very large s the leading
terms of the asymptotic expansions (Bll) and (B12)
give Eq. (33).

2. Cold plasma

Starting with Eq. (A10) we see that, at small s
(one-photon processes), the main contribution
comes from the n=l terms, and, because
D, (t) = ~I(t' at small f, we obtain for the absorption
rate

—„,=c(mls)s s & ('f'"'";[(d;)—z']I'z—' (d;)*] f"—"*,I(.;)* **II**-(s;)*])
1

= C6,&, [(1+2q) ln(d;/d, ) —(1—2q) ln(e,'/e, ) —(1+4q)' ~'+ (1 —4q) '],I /2 (B14)

A(s) =(,~, (ln2s+-,'),1

B(s)=,&, [—,
' ln'(2s) +0.13 ln2s —0.77]

(B15)

for the l.p. case, -and

A(s) = v'i'/2s,

which, at small q, leads to Eq. (32b).
At large s (many-photon processes) we have to

take many terms in the expression (A10). By con-
siderations similar to those used for hot plasmas,
we obtain for the absorption rate at small q an ex-
pression like (B10), where the functions A(s) and
B(s) have the following forms:

from the n=1 terms

dW m s' ~d'e,-
(B17)

A(s) =(,&, In2s,
1

(B18)

B(s)=,&, -(-,' ln'2s + 0.46 ln2s —0.59)

which, at small q, leads to Eq. (32c).
As in the hot- and cold-plasma cases, we again

get, in the limit of large s and small q, an expres-
sion similar to (B10). The functions A(s) and
B(s) now have the forms

m'"
B(s) = — — -(lns —0.22)

2s

(B16) for the l.p. case and

A(s) =]I'"/2s,
for the c.p. case.

The leading terms of (B15) and (B16) again give
Eq. (33).

3. 6-shaped distribution

We start with Eq. (A11) and obtain, for small s,

&X /2
B(s) = — —(lns+0. 11)2s

for the c.p. case.
Again, the leading terms give Eq. (33).

(B19)
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