
PHYSICAL R EVIE W A VOLUME 12, NUMBER 5 NOVEMBER 1975
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We discuss from first principles the cooperative decay of a system of two-level atoms, initially prepared
jn an uncorrelated excited state with population inversion X, and we give the conditions under which the
superfluorescence effect occurs. Describing the atomic system in terms of collective variables, we derive a
master equation for the reduced atomic density operator, which gives rise both to a damping and to a time-
dependent frequency shift in the dynamics of collective modes. The coupled equations of motion are solved
with a self-consistent approach. It is found that the system goes through a nonexponential decay if the
maximum length of the active volume is smaller than a "cooperation range" and larger than a "threshold
length, " in agreement with the one-mode theory. The radiation burst has a time width proportional to N
and its intensity is proportional to N . Specializing to a pencil-shaped volume, we find that only two atomic
modes need to be considered; in this case, the average emitted radiation is all condensed in the two diffraction
patterns of the opposite axial modes.

I. INTRODUCTION

The first description of the cooperative phe-
nomena which occur when N excited atoms radiate
was made by Dicke, ' who showed that a radiated
intensity proportional to N' takes place under the
following assumptions: (a) The atoms are confined
to a volume much smaller than one wavelength;
(b) the two-level atoms of the system are coherent-
ly prepared in an initial correlated state with
macroscopic polarization (superradiance). The
first assumption was later removed by Eberly
and Rehler, ' who generalized Dicke's description
to a large system.

We shall call "superfluorescence" the effect
which takes place, under certain conditions, start-
ing from an uncorrelated state (incoherent pump-
ing). While the radiation process in superradiance
is essentially classical, cooperative spontaneous
emission (CSE), insuperfluorescence it is intrin-
sically a quantum process. In fact, the system
starts radiating by ordinary fluorescence, and
then eventually evolves spontaneously toward a
correlated state, in which it radiates propor-
tionally to N .

Superfluorescence has been treated by Bonifacio,
Schwendimann, and Haake, assuming strong cou-
pling with only one e.m. mode, "the Dicke end fire
mode. "'4 Emission of radiation into other modes,
and escape of radiation from the active volume V~,
where atoms are enclosed, were taken into account
phenomenologically, inserting relaxation terms
into the equations of motion for the density operator.

In this paper' we report a derivation from first
principles of a many-mode theory of cooperative
decay and superfluorescence effect. The central
ideas are as follows:

(i) The e.m. field is quantized in a volume V,
much greater than V~. Irreversibility is ootained
by 1etting V- at the end of calculations.

(ii) The dynamics of the atomic system are
studied through the collective atomic modes of V~.

In this way, we are able to arrive at a m. e. (master
equation) for the reduced density operator of the
atomic variables. We evaluate the coefficients of
the m.e. in the Markoffian approximation and for
a simple geometry of V&. We give the equation for
the emitted radiation and the conditions under which
superfluorescence occurs.

Furthermore, we find that the frequency of the
collective modes presents a time-dependent co-
operative shift (frequency chirping) proportional
to N, which is added to the single-atom Lamb
shift. This frequency chirping has been described
up to now in the framework of semiclassical theory
for a single atom' or for N atoms confined to a
small volume' (Vc«&'). We show that in a quantum

theory chirping does not arise for a single atom, '
while it is present for many atoms and also for
V~» ~' whenever certain conditions about the ex-
citation and the geometry of V~ are met.

Finally, we specialize to a pencil-shaped volume.
We then find that, if the conditions of Ref. 3 are
satisfied, superfluorescence takes place into the
diffraction patterns of the "end fire modes" and
the results of Ref. 3 are correct.
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II. PHYSICAL MODEL

We assume that the system is constituted of N
two-level atoms, interacting among themselves and
with the external world only through the e.m. field.
Unless otherwise specified, we disregard any
interaction via phonons, collisions, etc. It is con-
venient, for mathematical reasons, to assume that
the atoms are placed in a regular cubic lattice,
one at each vertex, with spacing d. We shall see
that this assumption does not imply any physical
restrictive condition, as there are many atoms in

a wavelength. W'e denote with I„ i =x, y, z, the
dimensions of the parallelepiped occupied by the
atoms, and with Vc its volume: Vc=Nd'= g, Z, .

Let 0 be the frequency difference between atomic
levels, and ~ and &0 the corresponding radiation
wavelength and wave vector in vacuo, respectively.
We quantize the e.m. field in a box of volume V,
V» V~. The quantization is made on the free field
in the Coulomb gauge, and the modes k are trans-
verse. We neglect the electrostatic dipole inter-
action. In the dipole approximation we have the
Hamiltonian

H =H~+H~ +H~F

=50+r, , +Kg~-„a-„aT, +IV "g g-„([a-„r;exp(ik x, )+H c ]+[.a.-„r,'exp(-ik x&)+H.c.]f,
kgb

where a k and ak are the creation and annihilation
operators of the field mode k, [aq, a&i] =&& &,.
&&' and &~ &

are the spin operators referring to
atom i,

[r. . .r,'] = m,'5, „[r,', r, ] = 2r, ,5, ,;

-nd-'& n, &wd-', i =x, y, z.
Obviously, the number of modes n is N; so Eqs.

(2a) are simply a linear transformation from the
N operators &; to the N operators R~. Using the
fact that

x; is the space position of atom i; g& is the cou-
pling constant between the field mode k and one

atom, g-„=Q(25(o-) ~'[g' —(k p, „)']~', with p„
the dipole matrix element.

exp i n —n' 'x& =&-„,~~,

N 'Q exp[i n (x, —x, )] = &;, ,

(2b}

A. Collective operators

We could now describe the dynamics of the sys-
tem in terms of single-atom operators, as it is
expressed in Hamiltonian (I }. However, with this
approach, we have complicated coupled equations'
in the single-dipole operators from which we can-
not clearly see the "phasing" of the atoms due to
field emission on a wavelength ~. These difficul-
ties are partially overcome if one goes to collec-
tive dipole operators. ' We define

R~= r,'exp(+in'xg),
=I

(2a)

transformation (2a) can be easily inverted to ex-
press single-atom operators in terms of the col-
lective ones, i.e.,

&, ,, =N ' R, , ~exp +in'x&,

R-exp +in'x, .

The commutation relations for R are easily ob-
tained from the definition (2a) and the commutators
for the r, as follows:

r, ~, exp(-in x, ),
=I [R„,R„i] = [RI, R„]= [Rs „,R, „]= 0.

(4)

where n labels the modes of volume V~, and each
component n, verifies n& =2nL&'n;, n, integer,

Hamiltonian (I) can now be expressed in terms of
the collective operators obtaining

H =H~+H~ +H~

=kg g&a &ta k +SAR, +O'V ~2$ g& {[a &R„f(k- n)+H c ]+[a&tR„.f. (k+ n}+H.c.]},
k k, a
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where R, stays for R~,oe and f(k —o') is given by

f(k —n) =N 'g exp[i(k —n) x,]. (6a)

3.
f(k —n) = g sine([R —(n +g)]( L, /2),

)

where since =x 'sim.
In the optical domain, more precisely when

»&d, we shall consider for the sake of simplicity
only the g = 0 term in (6c), i.e. ,

(6c)

f(k- n) = [sine[(k- o), L,/2]. (6d)

Indeed, it can be easily seen that the g+ 0 terms
of (6c) give to the a-„R-„f(k+o.) terms of the inter-
action Hamiltonian a time behavior characterized
by frequencies larger than cd ', so the g & 0 terms
can be disregarded for d «~, i.e., when one has
many atoms in a wavelength. In this limit the re-
sults we obtain are independent of the lattice as-
sumption of our model.

III. MASTER EQUATION

The motion of the total system, atoms and field,
is governed by the Liouville equation for the den-
sity operator 8':

Since the atoms are placed at the vertices of a
cubic lattice with spacing d, if we place the coordi-
nate origin in the center of Vc, f(k —o.) becomes a
real function, i.e.,

f(- -) N-, -' ' [(k- ) L /2]
(6b)

s in[(k —o(); &/2]

Inspection of Eq. (6b) will show that the function f
is nothing but the diffraction pattern of a cubic
grating. For a fixed c(, f(k —o.) reaches its maxi-
ma for k=n+g, where g is a vector of the recipro-
cal lattice: g& =2nd 'm&, m& integer. The k range
around the maxima (where f=1) is given by &&,
-2'&'. One can see that whenever I &»d, i.e.,
when N»1, the maxima are very well separated
one from another and one can replace Eq. (6b)
with

w (o) =l»(01 (10)

With the initial conditions (9) and (10) we calculate
in Appendix A the evolution of W&. To arrive at
the m.e. (12), we have to apply the Born approxi-
mation, i.e., a second-order perturbation in the
interaction Hamiltonian which amounts to disre-
garding the reaction of the field back on the atoms.

A discussion of the Born approximation is given
in Ref. 3, and the considerations made there are
fully valid in our case as well. The limit of validi-
ty of the Born approximation can be shown to be

L,„«l, = (cV,/4'&'y, )' ', (11)

with l, the cooperative length of the atomic sys-
tem" and y, ' the single-atom fluorescence decay
time.

In the interaction representation given by the
unitary operator U(&) =exp[-it '(H„+Hz)&], the
evolution of W„, W„=US'„U, is given by

t

WA(i) = Z (f~(Aa. n (e)r[ Rn, WA(t —'r)Rnel+H c ]
m n'

t
+ Q dT/Add „e(v)[R„,W„(t —~)R„e]+H.c.},

n, a'

(12)

where

A- -„(e)= (pe) ' fd ie d„f()ee e)'f(ke e')eep(eie-„e),

starting from the initial condition W(0), it is pos-
sible, through the projector technique introduced
by Zwanzig, "to obtain a closed non-Markoffian
equation for 8'„or W~. Once one of the reduced
density operators is known, it is easy to derive
the other with some calculation. In our case it is
suitable to write the m.e. in terms of S'„, i.e.,
to trace out the field in deriving the atomic dy-
namics and to calculate the field properties later.

For the initial conditions we assume that W(0)
can be factorized,

W(0) = W~(0)(aw~(0),

and that the field is in the vacuum state, so that

w=izw, z=n-'[H, ].
If one needs to evaluate the mean values of quan-
tities referring to only one subsystem (i.e., atoms
or field), he can trace away from W everything not
referring to the particular subsystem, obtaining
in this way a reduced density operator. We shall
use the reduced density operators of the atoms and
of the field, denoted, respectively, by W„and W~,

with q„=Q + u &.
Equation (12) is the non-Markoffian m. e. govern-

ing the dynamics of the atoms. The time lag to be
considered in integration (12), i.e., the range of
the memory of the system, depends on A-„-„(7).

In general, we can say that A„,-„(v) is different
from 0 in a time interval &&-„-„such that

l.e.,
~max C L'max q (14)

H„= tr~W, S~ = tr~R'. (6) i.e., the maximum time interval to take into ac-
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count in Eq. (11}is of the order of the maximum
transit time of radiation in V~. This can be seen
by substituting Eq. (6d} into Eq. (13) and going to
polar coordinates in k space. We have for A-„,-„
(and similarly for A } such integrals as

3 (+

U dQj fgl)! s)nc(().k —a) Lg/2)

& sine [(Itk —n')&L;/2] exp(iq&t) dk,

where dD~ is the differential solid angle around
the unit vector k. Integration over k modulus, for a
fixed k, is nothingbut a Fourier transform that can
be done by making the convolution in time domain
of the transforms of the sine functions. Since

sine[(kk —n), L,/2]exp(icky)dk =0

for
~
r~& (2c) '0& L, , the convolution will be zero

for w&c 'Q, k, I;, i.e., for &&c 'Lm~. Because
this property is not changed by the integration in
dQ-„, we can make the statement (13).

Furthermore, we can explicitly evaluate
A-„-„(r}(or A ), with n= n', whenever we can as-
sume it is possible to replace ~k~ in Eq. (13)with

The choice of this approximation stems from the
fact that f'(k —n) is strongly peaked at k = n. In
Appendix B we give the discussion of the conditions
of validity of Eq. (15), and all the calculations. We
state here only the result

the terms with n& n' to the atomic decay is very
small with respect to the ones with n = e', and it
goes to zero in the Markoffian limit. Furthermore,
since the role of the n n' terms can be neglected
also for what concerns the unitary part of the
atomic evolution (see Appendix B and the discus-
sion on the spin pseudo-Hamiltonian), we are led
to disregard in the following the terms with e& n'
in our master equation.

A. Markoffian master equation

If we assume that the atomic system has a dy-
namics with a characteristic time much larger
than v of Eq. (14), i.e. , W„ is approximately
constant during the time 7 in which the quantities
A-„- are different from zero, we can take the
commutators evaluated at ~ =0 out of the time in-
tegral of m.e. (12). We have

W„(t) =-iQ[R„W„(t)]+—g (I'„[R-„,W„(t)R„]+H.c.j

&„B„,S~ t ~ +H.c.

where we have gone back from 5'„of the interac-
tion representation to 8&. The coefficients I'„of
Eq. (17}are given by

&-„=2 A-„-„(r)dr
~0

= (2 w)
' J))'-„))(clic(l &)))f'(k n)d'k—

A-„,-„(~}™V ' g-„exp[(+iq-„—lt-„)~), (16a) xi (2 n) ' P. Jt g-„+f'(k - n) d'k, (18)

where
3

C (16b)

where P. means to take the principal part. Let
us write I' as

I'„=y „+iQ„OL

We see that the damping is given by the inverse
of the transit time of radiation in Vc along the dig ec-
tion of the mode considered. Let us now make some
remarks on A„-„(7)with n& n' These c.oeffi-
cients arise from the fact that in V~ there are no
pure e.m. modes n, but rather quasimodes n.
Various orders of diffraction of the e.m. quasi-
mode a interact with the atomic modes n', giving
rise to a coupling among the atomic modes them-
selves when one traces away the field variables.
We stress the fact that this kind of mode coupling,
represented by the terms with n4 n' in m. e. (12),
does not depend on the nonlinearity of the phenom-
ena assoc iated with a spin system; in fact, one
can see that it is also present for a system of
harmonic oscillators (which can, in principle, be
exactly solved with a diagonalization). However,
as we discuss in Appendix B, the contribution of

S-„=Jr,'r, exp[in (x, -x,)].
f Aj

Remembering that &, &, =&, + 2, one can verify
from Eq. (20a) and definition (2} that

S„=R-„R„—(—,'N+R, ).

(20a)

(20b)

S~ represents the degree of "phasing" between the

where we have defined y-„and &&-„, respectively,
as the real and imaginary parts of I'„. Note that
y- =0. The evaluation of y-„and 0-„can be done
substituting Eqs. (16) in Eq. (18) and performing
the time integral, or it can be evaluated directly
from Eq. (18). This second way seems to us eas-
ier for evaluating y- in a pencil-shaped geometry.

Let us now make some substitutions which will
demonstrate the cooperative effect in m. e. (17}.
We define a cooperative polarization S- as
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polarization of different atoms. For a completely
random situation, typical of a group of uncorre-
lated atoms, one has (S-„)=0 for all n

As we shall see later, the superfluorescence
effect is linked to the buiMup of such correlation;
i.e. , (S„)for some resonating o. becomes different
from 0, even if they were so at the initial time.

Substituting Eqs. (19) and (20b) into m.e. (17),
we have

W„= 2 (n+f1')[R„W„]+2 ,' g a-„[S-„,W„]

(R=„)=-2Q, (R-„)- 2 Q Q-„.(R, -„-„R-„)
a'

+(damping terms), (24)

where we have confined in 0& the n-independent
coefficients. An analogous expression holds for

~ +(R„). The second term on the right-hand side of
Eq. (24) in the self-consistent-field approxima-
tion, becomes

To get an insight into the effects of this term
let us calculate the dynamics of R„with m. e. (21).
We have

+-: &~ Rn ~~Ra +H c. ,

where we have set

(21)
i Q„i R3 „.„R„.=-&Q„R3 R„

n'
(25)

(22)

f
A'=(2lr) 'P. .

J gj( + d'k, (22')0 —(d] 0+(0p

where we have made use of the fact that
g„f'(k —c.) =1, as can be proved from definition
(6a). &' given by (22') is simply the Bethe part of
the Lamb shift of a two-level atom.

A completely different role is played by the
second term; in fact, the frequency shift caused
by 0-„comes from cooperative effects, as can be
seen in the extreme situation of only one atom
present, when S- disappears. Under condition
(15), 0-„can be calculated immediately from Eqs.
(16) and (18); we have

O-=2 '-V-'
tX 8 )2 C

( -)2 2
( +)2 2 (23')

(23)

Equation (21) represents the generalization of the
one in Ref. (3) to a many-mode case, and it is the
starting point for solving the dynamics of C.S.E.,
whenever the Markoffian approximation holds.

Let us now consider the meaning of the different
terms in Eq. (21) and the value of their coeffi-
cients. The quantity 0' in the first term of Eq.
(21) gives a constant frequency shift to the naked
frequency Q, giving rise to the usual frequency
renormalization of a single atom. In fact, sub-
stitution of Eq. (18) in Eq. (23) gives

where we have disregarded (R, ,-„-„)with nW n',
which amounts to the assumption that all (&2;) are
equal. We can then define an instantaneous fre-
quency shift given by 0 (R,). From Eqs. (24) and

(25), one can see that the Q-„ term in Eq. (17) gives
rise to a time-dependent frequency shift (chirping)
when (R,) goes from the initial value 2N Ifor
,'(N+N) ex—cited atoms] to ,N. The -to-tal frequency
sweep during emission is of the order of Q-„N.

The last term in m. e. (17) gives a nonunitary
time evolution. In the equation of motion, as will
be shown below, it gives rise to the decay of exci-
tation and is comprehensive of both the Wigner-
Weisskopf exponential decay and the cooperative
superradiant decay.

From Eqs. (16a), (18), and (19), we have

r- =g-V c' X-/[(n-)'+ X~].

One can verify from definition (19), or from the
particular form (26), that

(27)

where y, is the Wigner-Weisskopf decay constant,
and (g2 ) is the average over all directions of the
coupling constant evaluated at resonance.

Let us note that the results obtained for a uni-
form dipole orientation are valid also for a ran-
domly distributed dipole orientation, provided we
make the replacement g), =g2= (g22) ', where
& =~k~. For resonant modes, Eq. (26) gives W
=g~„V~'g-„„, which, for a random dipole orienta-
tion, can be written with the help of Eq. (27) as

In Eq. (23') we have omitted the o.-independent
constant, for the calculation of which we have to
put a cutoff in the frequency.

From Eq. (23') we see that 0-„goes to zero for
resonant modes, and reaches the maximum posi-
tive and the minimum negative values for the
modes jue~ below and just above resonance.

y~ 0 j2 ~ I-l (2&)

Since Vc/(g; o.; L, ') ' represents the transverse
section seen by mode n, &2(Q; c2; Lp) '/Vc is the
diffraction solid angle of mode e. Then, relation
(28) has a simple interpretation: the damping
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B. Interaction pseudo-Hamiltonian

It is useful to see from Eq. (21) the pseudo-
Hamiltonian which gives the coupling between
atoms induced by the field. If we write Eq. (21)
as

W„(t) =2 fy „[R„,W„(t)R-„]+ H.c.)

+ I [Hp, &~(t)], (2&a)

where

H~=h (Q+Q')R, —h Q Q-„S„,

we can identify H~ with the pseudo-Hamiltonian
of the coupled spin system. B~ is a regular Her-
mitian operator, since the losses of the spin sys-
tem induced by the field emission are contained
in the first term of Eq. (29a}. If we go back from
the collective variables to the single-atom spin
operators, we have

Hp -—h(Q ~Q')Qr +3h QQ„.r,+ , r, (2&b)

where the second quantity on the right-hand side
arises from the Q terms of Eq. (21) and repre-

coefficient y „is given by the product of &0 with
the ratio between the diffraction and the total solid
angle.

For a pencil-shaped volume (length L and diam-
eter d}, y-„„reaches its maxima for axial modes
n„with y,„=(yo/4v)&'d ', and its minima for per-
pendicular modes n~, with y„~„=(yo/4v)~'(dL) '.
Approximation (15) is certainly valid if the Fresnel
number is such that 5 &1, as discussed in Appen-
dix B. However, we have performed the calcula-
tion for any F, finding for the two resonant axial
modes

y A,~

4v d' I+(I+S ')~' '

This expression shows that the previous result
(28) is valid for F ~ 1, whereas for 8' « I we get
y = (yo/4v)~/L, in agreement with the computer
calculation of Ref. 2." Furthermore, we have
also performed the calculation, for 5 -1, for the
first nonaxial resonant mode n,„, finding y „

1
Zr s f}fear

--,y,„, in good agreement with Eq. (2&) special-
ized for this case.

We conclude then that Eqs. (28) and (26) are sub-
stantially valid if 5 is not too small with respect
to 1. The strong dependence of y~ on the n„
orientation for a pencil-shaped volume is the main
mechanism which determines the direction of the
emission of the superfluorescence burst.

sents the interaction among the atoms induced by
the field.

Let us now perform the computation for 'U, j ..

g f'(k+ n) exp(inx„) =h(x„)exp(+ikx„), (30)

where h(x, &) has a maximum, h =1, for x„=x,-x,.
=0, and decreases linearly to dL, ' = 0 for (x„),
=L, , i =x, y, z. [h(x„)= Q; A(x»);/I &, where the
triangle functions are defined in Appendix B.] Sub-
stituting Eq. (30) into the expression for g,„, and
performing the relative calculations, we have

(~ )
cosQc ixl

'Uljcc XI j [~
(

~ (31)

One can see that our pseudo-Hamiltonian II~ is the
same as the one derived in Refs. 14 and 15, apart
from the quantity h(x»}, which is 1 in the refer
ences mentioned above. In our theory, the factor
h(x, ,) comes in because we have neglected the
imaginary part of I'„„=fdrA-„„, with n4 n',
in Eq. (17). It is easy to verify that if we leave in

(17) the I'-„-„coefficients, n& n', we have h(x) =1.
However, the change brought in by having h(x, &)

instead of 1 is very small, since it gives a sensi-
tive reduction only to the interaction coefficients
between the spins which are at the opposite edges
of V~. As it is well known, a small change in the
direct interaction range should not play any role
in a cooperative phenomenon, since it changes
very little the cooperative range. This argument
should confirm the considerations made in Ap-
pendix B about neglecting the imaginary part of
A „„(7').

IV. EMITTED RADIATION

To link the property of the radiated field to W„,
we have to go back to the formulation of the prob-
lem in terms of projector technique. We must
obtain S~ and then calculate the field quantities.
In Appendix C we give all the lengthy but straight-
forward mathematical calculations necessary to
arrive at the field quantities.

We state here the formula for the average number
of photons emitted per unit time, per unit solid
angle in the & direction. The average number of
photons released per unit time by the atomic sys-
tem to the field mode k is given by (d(a &

ta &)/dt),
so that the number of photons delivered per unit

'U
g j = — + exp & QK) j

f2(k —n) f2(k+n)= P ~i
d'k g & Z —,exp i n' x, z .

n ~k

Furthermore,
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time in the solid angle &0 is given by:
+ +3 = constant.

k
(38)

where the sum is limited to the k vectors whose
directions are inside &A. Replacing the summa-
tion with integrals, we have that the emitted pho-
tons per unit time per unit solid angle in direction
&, are given by:

l(k)=(ka) 'V ' I( dk (akyay))k'.dt (32)
A

As we deduce in Appendix C, I(&) can be written
as

l(k)=gy(S)f'(k k —a)(S )+y(k) —+&R,)),2

(34)

The total emitted photon rate, obtained by inte-
grating Eq. (33) over all directions, is given by

I, = Jl(k) SR+y (S„)+y, —+&R,)),

which compared with Eq. (34) gives

C, =-(R,). (35)

We can write Eq. (35) as a conservation equation
for the total number of excitations:

where y(&) [y(k) =y, /4))' for a random dipole orien-
tation] is the normal radiation fluorescence rate
per unit solid angle.

Equation (33) can be simply interpreted The.
second term is nothing other than the normal emis-
sion of Ã uncorrelated atoms, and it is isotropic
for a random dipole orientation. The first term
gives rise to the coherent superfluorescence
burst, provided (S-„) is different from 0 (i.e.,
the superfluorescence conditions are met). The
coefficients f'(kP —n) represent the fraction of
the contribution to radiation in the & direction of
the collective variable S-„. We can see that most
of the ~ radiation comes from the S„which are
resonant and have n close to ~ (inside a diffrac-
tion angle).

Let us now link the emitted radiation to the dy-
namics of (R,). Applying m. e. (21) and perform-
ing the commutation according to Eq. (4), we have
for (R,):

(R,(0))= N/2,

(S-„(0))=0 for every n.
(37)

The dynamics of (R,) is given by Eq. (34), while
the evolution of (S-„) can be easily derived from
m.e. (21) with the help of commutators (4} and def-
initions (20a} and (20b). We obtain

(()-„)=-(R,)+Q y=„((R-„R,-„-„.R-„) +H. c.}
n'

+i A„R„B,„-~B~ -H. c. .
a'

We can rewrite Eq. (38) as

(S„)=-(Rs)+2y„(R„R,R„)+G„,
with

(38a)

(38b)

G„= y„' R~rB, „-~&„+H.c
(y,
' sion

+i g Q„((R„aR,, „„yR„)-H. c.}. (38c)
a' vs@

In Eq. (38b) we have put in evidence the role of
R„ the population difference, and we have con-
fined in G„ the terms giving rise to the mode-
mode coupling. Like all nonlinear phenomena
where mode coupling is present, the full dynamics
of G~ can be expressed through the fourth-order
correlation functions, and so on. To solve the
problem one has to approximate the equations
of motion with a suitable decoupling proceeding.
To this end, let us consider the term
(R-„lR, „-„R„)in Eq. (38c), and rewrite it as

A similar relation would have held for the opera-
tors themselves if we had not introduced the anti-
resonant terms a~r', ar in Hamiltonian (1). In
fact, antiresonant terms allow virtual processes
of double excitation and deexcitation which make
the conservation law no longer valid for Q), a(, &(,
+R„ i.e., [Q), a-„a-„+R„H]s-'0. However, as we
have proved in Appendix C, the antiresonant terms
give no contribution to the average emitted inten-
sity in the Markoffian approximation.

V. DYNAMICS OF THE ATOMS

From Eq. (33) we see that to obtain the emitted
photon rate we must first calculate (R, (t)) and
(S„(t)). Since we start from an uncorrelated state,
we have the following initial conditions:

(R„R, „„lR„)=—R (S )-—,'(S„)-—,'((R, )+N/2)+ g (r,'t& r, , , ) exp[i(n'x, —o. 'x;)+i (n- n') x, )], (39)
j edol
lv j
l&j
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where we have used the relations &„&,. = -2&, and
Identity (39) can be easily verified

going to single-atom operators through Eqs. (3)
and (20). If we now assume that

&~&3 g exp & Q 'x. —&'x~
fbi

=constant with respect to &,

(40a)

the last term on the right-hand side in (39)gives no

contribution if cyW e, because

exp' n' —a 'x, =N&„~ .

Hence we have the real quantity

(R-„,R, -„-„,R=„)-„„-„.= --.' (s-„)——.
' (s-„,)

——,
' ((R,)+N/2).

Substituting the above expression in (38c), with
the help of Eqs. (27) and (34), we have for G-„

(r, r-)(s-&+ (R-, & . (40b)

Neglecting r-„with respect to ro Eq. (38b) becomes

dominant modes which, after (S-„) has risen to a
small value, become unstable and grow exponen-
tially.

Since (R, ) is always decreasing, we see that a
necessary condition to be met for a mode to be-
come unstable is given by

2r = (R, (o)& r, (43)

N 4a~
c

(44)

and we can define a threshold length lT, that must
necessarily be overcome by L m... to have a super-
fluorescence burst, as

For unstable modes we can neglect in Eq. (42) the
two last terms on the right-hand side, provided
we refer to times shorter than y0', and long
enough to assure that (S„)has reached a value
much larger than N.

For the modes which do not verify Eq. (43), the
damping is stronger than the pumping, and at most
they can increase linearly with time. Starting
from the initial condition (R,)=N/2, Eq. (43) can
be written, for resonant modes, as

(S-„)=2r- (R-'„RSR-„)-ro (S„). (41) 4m Vc
T g2 (48)

To summarize, we have shown that, under con-
dition (40a), the term in Eq. (38b) containing the
mode coupling gives rise to a relaxation in the
equation of motion for (S-„). We note that in a
semiclassical approach, i.e., replacing atomic
variables (single or collective) with c numbers, we

would not have obtained the relaxation term.
N y 4n

Q. (44')

Had we started from a more general model,
including nonradiative atomic relaxation, we would
have found that Eqs. (44) and (45) are replaced,
respectively, by

A. Threshold conditions

Taking (S-„)=0 at the initial time, the problem
is now to see for which modes o. does (S-„(t)) have
an exponential growth during the motion of the
system, and which condition must be met for this
to happen. To this end, we replace in Eq. (41) the
relation (20b), and perform the decoupling

(s-„R,) = (s-„)(R,),
which allows us physical insight, and gives the
order of magnitude of (S-„& during the evolution
process. We have

(S„)=2r „(S„)(R,)- r (S-„)+2r„((R,+N/2)R, & . (42)

The first term on the right-hand side in Eq. (42)
gives rise to an exponential increase for S„, with

a growing time-dependent coefficient given by
2r „(R,(t)). The second term gives a damping.
The last term represents the spontaneous-emis-
sion source, which is important at t =,0, when

(S„)=0, but becomes irrelevant if (S„)becomes
much larger than N. This is the case for some

&~ 4 ~c
T

y g2 ~ P

0
(45')

where y, is the total single-atom decay constant,
including the radiative part y, .

B. Evolution of &R3I

Let us now return to Eq. (34) for (R,) and to Eq.
(41) for (S-„), and look for a procedure for solving
(R,(t)). We proceed in a self-consistent way,
i.e., we assume that for «&y0' only some relevant
modes contribute to the determination of the dy-
namics of (R, (&)&. Once we have solved for (R,(t)),
we can evaluate the amplitude of the modes we
have disregarded to check that they effectively
give no contribution.

The choice of studying the evolution for times t
such that t«y, ' stems from the fact that we are
looking for cooperative effects which force emis-
sion to take place on a time scale much shorter
than the single-atom decay time. We begin by cal-
culating (R', ) by means of the master equation
(21):
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(R2R&=-g 2y„(R~R, R~& (-R, &.

As we have already said, we consider that the
decay of (R', ) and of (R, ) is determined essen-
tially by the relevant modes, which have an ex-
ponential growth. Then, from Eqs. (46) and (41}
we have, labeling with n„ the dominant modes,

(46)

where we have retained only the exponential in-
creasing term for (S„&, according to what we
said before Neg. lecting (R, & because it is N times
smaller with respect to (R', &, we have

N~
R, sst S„)=const=

CXg

(47)

Equation (34), when we take into account only the
dominant modes, can be rewritten as

(34')

Let us now make the following approximation:

y= S- =y.„S:, (48)

where y,„ is the maximum value of the y coeffi-
cients. Statement (48) amounts to assuming that
the dominant modes are very few and all have
about the same y-„. How close their y- must be
to y „will be discussed in the a posteriori verifi-
cation of the self-consistency of our scheme.

Substituting relations (48) and (47) in Eq. (34b)
we have for (R,&

(R, & =-y,„[(N/2)' —(R', &]- y [(N/2)+ (R,&].

(49)

We can easily solve Eq. (49) if we neglect the quan-
tum fluctuation of the total population, i.e., if we
let

in Eq. (49) of N with N does not have physical im-
plications so long as the conditions under which we
look for the solution of (R, & are verified. Further-
more, we are rather confident in the results ob-
tained through the semiclassical approximation
(50) since a detailed analysis, contained in Ref. 3,
has shown that, at least for the one-mode model,
the main features of the solution (51) are not
changed if we perform in Eq. (49) approximation
(50). (In the correct results of Ref. 3, there is a
10% increase in v„and a 20% decrease in
[(N/2)' —(R', (& )&]-)

We must now verify the self consistency of our
approach. First, we must ensure that the assump-
tion of a cooperative dynamics faster than yo is
verified. This means that we must have & «y, ';
i.e., from Eq. (51), that

Ny, „/yo» log (Ny /y ).

One can see that the above inequality coincides,
within a logarithmic factor, with the threshold
conditions (43) or (44), so that r„«y, is verified
whenever the necessary conditions for a mode to
become unstable are satisfied.

Second, for the validity of the Markoffian ap-
proximation, we must require, according to Eq.
(51), that c 'Imsx«v'~, or, more explicitly, that
Lmm« C/Nymxx .

The above condition practically coincides with
the requirement (11}implied by the Born approxi-
mation. This can be easily seen by specializing
Eq. (28b) to the case 8'~1, to which we limit our
consideration.

Finally, we must verify that only a few collec-
tive atomic modes, all having about the same y-„,
determine the dynamics of the superfluorescence
process. To this end, let us evaluate the ratio
(S-„&/(S„&during the buildup, i.e., for t & t —t~,
where (S-„)refers to the modes with y-„=y
Taking into account that during this time (R,&

= const. =N/2, we can derive from Eq. (42) that

(R', &- &R, &'=0 (50)
&S- (t)& r 2r &R,&- r, .

&S- „(t)& r,. 2r=„,&R,&- r,
and if we assume in Eq. (49) that N=N. In this
case, as is well known in the literature, the solu-
tion of Eq. (49) is given by

„exp[2(r~ (R,&- r.)t] —1

exp[2 (r,„&R,& —r, )t] —1 ' (52a)

(R,& =-(N/2)tanh[(t —v )/7~],

with

(51) Specializing Eq. (52a) for t = v. (the extension of
Eq. (52a) to T is sufficiently correct for our esti-
mate), we have

w~ = 2/Ny, „; T„='7'~ log (Ny—,„/y ).
We then have found that the total population stays
.almost constant, and suddenly drops, for t =&,
in a time interval of order &~.

In regard to the assumption made in going from
Eq. (49) to Eq. (51), we note that the replacement

(S„s(V )&
—y,„&&&xs &max&~&max

(52b)

When the threshold condition is well verified, we
have Ny /yo» 1, and we see from (52b) that only
those c&' such that y —y-„,«y log '(Ny, „/y, )
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need to be considered.
To summarize, we can say that the superfluores-

cence process is characterized by the instability
of some collective polarization modes and by the
consequent mode competition. A few strongly self-
excited modes will grow much faster than the
others, and will in turn determine a fast decrease
of the total population, preventing the growth of
other modes. " The conditions for this to happen
are given by

(53)

where the left-hand side guarantees that the co-
operative decay mechanism prevails on the in-
coherent one, while the right-hand side ensures
that the decay always takes place in a vacuum of
photons, so that stimulated processes do not play
any role.

The results we obtained are in qualitative agree-
ment with the general discussion of Ernst and
Stehle. " However, we have found it useful, when

dealing with a system of excited atoms, to sepa-
rate clearly the problems according to the value of
l,/L ... Here, the condition contained in the right-
hand side of Eq. (53) and the choice of collective
variables for the atomic system have allowed us
to arrive at more explicit results, with respect
to Ref. 17, about the threshold conditions, the
shape, and the time behavior of the radiated in-
tensity for what concerns the Markoffian super-
fluorescence. The problem of the non-Markoffian
fluorescence has been studied by Bonifacio and
Lugiato. " Relaxing the condition I~««&„ they
obtained oscillations in the emitted intensity for
I ~.,—l, , and the disappearance of superfluores-
cence for I- » l, . The different physical be-
havior of non-Markoffian superfluorescence rela-
tive to the Markoffian type is due to the relevance
of stimulated emission and absorption processes
when L,„» &, .

VI. PENCIL-SHAPED VOLUME

We now specialize to the particularly interest-
ing case of a pencil-shaped volume (i.e. , the length
L and the diameter d of Vc are such that P =d2/AL

-I), which will clearly show the role of the mode
competition in determining the shape of the emitted
radiation. I et us suppose a random dipole orien-
tation. We label with eo and —ao the two opposite
axial modes. For simplicity, we take these modes
to be resonant, i.e., 0 =&~ no~, so that the damping
coefficient of the other axial modes is zero, as
can be seen from Appendix B. As we already said,
the +no modes have the maximum value of the
damping coefficient, i.e. , y,-„=(y~/4n')&'/tf', while
the first off-axis modes, labeled n„ if resonant,

FIG. 1. Radiation pattern of the average emitted in-
tensity from a pencil-shaped volume (5 =d 2/A2 - 1) .

have at most a y nl such that y n1 2y no. The y of
the second and third off-axis modes become ob-
viously progressively smaller.

I et us make an estimate, with the help of (52b)
of the ratio (S„,)/(S-„); we have

(54)

When the threshold conditions are well verified,
i.e., Ny- »y„we notice that only the +no modes
practically survive. It does not matter if for in-
creasing N the modes e, also fully satisfy Eq.
(43); the mode competition will act in such a way
as to progressively reduce their relative impor-
tance with respect to the axial modes. Since in the
literature particular attention has been devoted to
emission from a pencil-shaped active volume, let
us look to the explicit formula for the radiated
intensity. Taking into account that there are only
the two dominant modes +e„we have from Eqs.
(4V) and (5l) ~

N'
(S,-„,) = sech

Replacing (S,-„) in Eq. (35), we obtain for the
average number of emitted photons per unit time
per unit solid angle in the & direction:

y N2 0 t-7
I(k) = ' f' —k —o.o sech

4m 8 c 7p

y, N2, 0- t —rf' —k+ o., sech
4m 8 c 7 p

+(fluorescence radiation).

As we can see in Fig. 1, the average emission
of the superfluorescence burst takes place in the
tw'o "end fire modes. " The radiation is all con-
densed around the +no directions& and has a space
distribution given by f [(0&/c) +no], which implies
a diffraction angle &/d. The maximum average
intensity is emitted for t=&, when (B,)=0. The
average value of the maxima of I(&) is propor-
tional to N', i.e., to the square of the initial popu-
lation difference, while the time in w'hich the burst
occurs is given by ~~ ~ N '.
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APPENDIX A: CALCULATION FOR THE MASTER

EQUATION

To obtain the evolution equation for the reduced
density operator W„, we apply the projector tech-
nique, of which we give a brief outline in the fol-
lowing. Let & be a projector. We can write for the

total density operator 8"

W =PW+(1 -P)W. (A1)

Applying decomposition (Al) to the Liouville equa-
tion W= i Z(t)w, where we let 2 be time dependent,
we have

PW=-iSPW- iPZ[(1-P)W], (A2a)

(1 —P)W = —i (1 —P)Z[(1 —P)W] —i (1 —P)SPW.

(A2b)

Equation (A2b) can now be integrated, treating the
second term on the left-hand side as an inhomo-
geneity:

t t ~- t T

(1-P)W(t) =exp i(1 -P-) Z(r)dr (1-P)W(0)- i dvexp i (1 -P)Z(t')dt' (1 -P)S(t-7')Pw(t —r)
0 0 t-T

(As)

Substitution of Eq. (AS) in (Al) gives a closed non-Markoffian equation for PW:

t T

PW =-iPS(t)PW(t) —i exp -i(1 —P) Z(r)dv (1 -P)W(0)
0

t
-P&(t) dr exp +i(1 -P)

0
$(t')dt' (1 -P)$(t —7')PW(t —7). (A4)

Define P as

P =lO)&0(tr, . (A5)

It is easy to verify that with the initial assumptions
(9) and (10) about W(0)„ i.e., W(0) = ~0)(0~ W„(Q), one
has

(1 -P)W(0) =0, (A8)

so that Eq. (A4) becomes homogeneous.
Starting now from Hamiltonian (5), and going

to the interaction representation through the uni-
tary operator U =exp[-ih '(H„+H~)t], we have
the following equation for 8":

w=-iz(t)w; z(t) =h '[H„„J-
with

(A Va)

H„~ =A+ g& V '[(f(k —o)a-„R-„exp(iqkt)+H. c.)

+ (f(k+ n)a& ~R-„exp(iq qt)+ H.c.)],
(A Vb)

where g k =0 +~k. The tilde which denotes in
(AVa) and (A7b) that the operators are in the inter-
action representation will be dropped from now on
for simplicity of notation.

Substituting Eqs. (A5) and (A7a) into Eq. (A4), we
have

(t t
tr, &(t) exp i(l -P) Z(t') dt'

0 t T

x 8 (t —r)~ 0)(0~ W„(t —T) dv,

where we have made use of definition (12) and of
the relation I'ZI' =0, which can be easily proven
from Eqs. (A5) and (A7).

In the Born approximation, which is equivalent
to a second-order perturbation theory, we can
neglect in the integrand of (A8) the exponential
factor exp[i(1 P) f, „Z(t')dt'J.—We must now
perform the lengthy calculations to arrive to an
explicit form for W„. Substituting Eqs. (A7) in Eq.
(A8) we have

g(t —v)~0)(Q~W„(t —7) =g gkV '(f(k — )(oRexp[- qft(t —r)](1„)(0[w„(t—T) —H.c.].
k, n

+ f(k+ o)(R-„exp[i'-„(t—~)] (1-„&(O~W„(t—7) —H.c.}),
where ~1-„) is the field state characterized by a photon in the k mode. Applying tr~Z(t) to the above ex-
pression; we must retain only the terms which have the diagonal projectors (0)(0) or )1q)(lk~ on the field
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space, since the trace operator over field variables wipes out all the others. We then have

trz Z(t)2(t —r)l0)(0lW„(t —w) = — g gf V 'ff(k —n) f(k —n') exp( —iq &r)[R-„,Wz(t-v)R„']+H. c.]
k yngn

2 gqV '{f(k+n) f(k+ n') exp(iq-„r)[R-„, W„(t —&)R-„]+H.c.]
k, non'

+ g g-„V '(expi(2Qt —q-„~)f(k —n) f(™k
k ynpn

+ g gf V '(expi(2Qt —q-„r)f(k —n)f(k
k, n, n

Finally, replacing Eq. (A9) in Eq. (A8), one has

+ n')[R„,R„W~(t —r)]+H.c.].

+ n')[R„., W„(t —v)R„]+H.c.].
(A9)

t
W„(t) = Jt 5)„,„i(&)[R„,W~(t —&)R„i]+H.c. + Q I S„„i(v)[R„i,W„(t —v)R„]yH. c.

n, n'

t + +
+exp(i2Qt) X-„-„(r)[R-„,R-„.W„(t —7)]+H.c.

n, n'

+ exp(i2Qt) g X „,„~(T)[R„i,W„(t —r)R„]+ H.c
n n'

(A10a)

where

u „-„(~)= Q gfV ' f(k + n) f(k + n') exp(~iq -„7),

X-„-„(~)=Q g-„f(k —n') f(k+ n') exp(-ig t, ~)

(A10b)

We see that the two last terms on the right-hand
side in (A10), arising from the commutators con-
taining ~'& or R 8, are affected by an intrinsic
time dependence like exp(ai2Qt). Hence for times
larger than 0 ', which is practically zero in our
time scale, we can neglect these rapidly oscil-
lating terms with respect to the others. Further-
more let us remark that the R'8', R R terms
give exactly zero contribution to the equations
of motion of unphased quantities like (R,), (R R ),
and so on. This approximation must not be con-
fused with the so called rotating-wave approxima-
tion, which consists in neglecting the antiresonant
terms, i.e. , a r', a&, in Hamiltonian (1). In
fact, the antiresonant terms give rise in Eq.
(A10a) not only to the disregarded rapidly varying
quantities, but also to the second terms on the
right-hand side with Qn, -n, which contribution is
important for the evaluation of frequency shifts. ""

If we now let V-~, the discrete field modes k
go into a continuum, and we must replace gq
with (2n') 'V f d'k, obtaining from S„~of (A10b)
the coefficients A.-„,-„of relation (13).

APPENDIX B: EVALUATION OF A ~ (r)

=(Q- Inl)T-cn k'T

-[&"-l(n k')'1«/2lnl+" . (B2)

When the condition

clnl-'u", „T«1 (B3)

is satisfied, we can retain in Eq. (B2) only the
first two terms. This amounts to replacing k with
k n in the exponent of (13), as can be easily veri-
fied. Whenever Eq. (B3) holds, we have from Eq.
(Bl}that

We want to prove first thatA. - -, with a=a',
as given by expression (13), can be expressed as
in Eq. (16}whenever we can perform the approxi'-
mation (15}. To this end, let us replace in Eq.
(13}the integration variable k with k' =k - n, ob-
taining

A- -„(7)=(2w) 'Jt g-„,„f'(k'-)exp(-iq-„, &
v)dsk'.

(B1)

The limits of the integration over k' are practical-
ly limited by the f function to the intervals

2vL, ' & &,' &-2vLP, as can be seen from Eq. (6d}.
This allows us to remove from the integral in Eq.
(B1) the coefficient g„,-„, evaluated at k'=0.
Furthermore, we can expand the exponent q-„,k.&

in a power series of k', i.e.,

q-„~k 7 = [Q —c (n' y k" + 2 n k ')~'] v
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A.-„-„(~)= (2v) 'g-„exp(—iq-„7)
3

x II t
sine'(k, 'L, /2) exp(icrk, '. n, )dk,'.

,i=1
(B4)

where we have made use of Eq. (6d) for f(k').
Each integral in Eq. (B4) is a transform of sine',

and it can be easily performed with a convolution
of the transforms of the sine functions. We have:

(2e) 'J eiee'().'/I2)exp(exec, X!)d)!!

= L, 'A(c n, ~/. L, ),

(B5)
where the triangle function A is defined as:

A more compact formula for A.„~can be obtained
by replacing A(cn, v/L;) with exp(-cn, v/L, ), which
we consider a good approximation for most cases.
With this substitution, we have

3

A„„(&)= g„exp( ig„7)g-L, 'exp —.
i=1 L]

(B6)

which is equivalent to Eqs. (16a) and (16b). The
proof for A. is analogous. The requirements that
must be met in order to perform the substitution
(15) are contained in the inequality (B3). We note
that the largest k' and 7 to be considered in (B3),
are given by &max 2&Lmm and &m~ -c 'Lm~, where

and L are, respectively, the minimum and
maximum dimensions of V~. Furthermore, one

can see from Eqs. (12) and (16) that the order of
magnitude of the l nl of the significant modes is
given by 2wA. ', so that we can replace Eq. (B3)
with

F=L' /XL, „»1, (B7)

where 5 is the Fresnel number. The requirement
(B7) on 5' can be removed, retaining in Eq. (B2) the
terms in &". One obtains, in this way, integrals
similar to the ones of the Fresnel diffraction that
slightly modify the shape of the triangle function
of Eq. (B5), as it appears from an analysis of the
cumbersome problem. However, this modification
does not play any role as we go toward the Mar-
koffian limit, i.e., when one deals with I'-„
= fo A„„d7 In p. articular, we verified that, for
a cylindrical geometry, ReI'-„calculated through
Eq. (B6) gives a correct result down to 8-I.

We shall now present some arguments to show
that A.-„-„canbe disregarded when e& e'. From
inspection of Eq. (13) we can immediately see that
the overlap of the two functions f(k —n) and

f (k —n') is a condition for A.-„-„W0. We notice
also from Eq. (6d) that the overlap practically
exists only when n and n' are near-neighbor in
the discrete a space. To start, consider e and
n' directed along L (z direction), so that for
near neighbors n'=a+&, & =2' ~~. Let us stay
also around resonance, because a possible mode
coupling, brought in by A. „,„. (nw n') will be more
effective in this case. Since the choice of a mode
being exactly resonant can always be made without
loss of generality on the physical results, we
take lnl =c 'Q. Proceeding as before for A„„,
we have

t
~~ (~

~

~

~

2
~

~
C

1 ~ e sin(L ~,/2l(1 —cv/L
g'„Vc'exp( —icier/2) ' ' " ', 0&a ~c/L

Lmxx&/2
0. , (X+6, ='

I0, ~&c/L
(as)

We plot in Fig. 2 the real and imaginary parts of
A„„+z(v), and A„(7), which is real at reso-
nance. We see from Fig. 2 that the real part of
A„+&has zero area, so when one performs the
time integration in (12), its contribution is strong-
ly reduced, becoming exactly zero in the Markof-
fian limit. Hence these terms can be completely
disregarded in the nonunitary part (damping) of
the atomic evolution. For what concerns the
imaginary part, we notice that it changes sign
going from ~ to -&, giving in this way to the mas-
ter equation contributions of opposite sign which
cancel out.
APPENDIX C: FORMULA FOR THE EMITTED RADIATION

From Eq. (32), for the emitted number of pho-
tons per unit time per unit solid angle in the &

tr (1 —P)W=tr (1 —lo)(ol tr )W

=w, —lo)&ol, (C1)

where the identity tr~tr~ =1 has been used. Let
us now replace on the left-hand side of (Cl) Eq.
(A3) for (1 P)W. Rememb-ering Eq. (A6), we

have the follow'ing expression for S~:

direction, we want to prove here the explicit ex-
pression (33).

The problem we are facing is to link the expec-
tation values of field variables to the atomic ones.
To do this we have first to express S~ in terms of
W„. From definitions (6) and (A5), we can write
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1

2r

FIG. 2. Plots of (a) ReA„„+z,(7.); (b) ImA„„&(7);
(c) An n(7) (in units of ZnV~~).

t t

wz —lo)(ol —i tr„dT exp i (1 P)z(t') -dt'
0 t-7

x (1 P)Z(t ——T )l 0)(01W&(t —T)

(C2)

In Eq. (C2) one can now expand the exponential,
retaining only the first two terms of the expan-
sion. This is because the Born approximation we
made in deriving m. e. (12) for W„amounts to a
second-order perturbation in the interaction Ham-

iltonian, and it would then be of no use going to a
higher-order approximation in the link of W~ with
O'„. Remembering also that in our case PIP =0,
we can rewrite Eq. (C2} as

t
w (t) = lo){ol—i tr„( I'(t —T)lo)(olw„(t —T) dT

0

t t

+tr„~) (1 P) -~t
Z(t')dt'

0 t- 7'

x2(t —T)l 0)(ol W (t —T) dT .

(CS)

Equation (C3) links W~ to W„ in the Born approxi-
mation. Let us use it now to evaluate (a-„a-„)
=trina-„a~W~. Since the first and the second terms
on the right-hand side of Eq. (CS) do not give any
contribution, as one can easily verify, we have

(a- Ta-„)

t t

=tr„ trz a], a], 2(t') dt'
0 t-7

& g(t —T)l o&(ol ~~(» —T) dT,

(c4)
where we have again used the fact that
trina-„a-„l 0)(ol =0. With the help of Eq. (A7), we
can now explicitly write Eq. (C4). The lengthy, but
straightforward calculations are analogous to
those performed in Appendix A. The result is:

t
(a-„Ta-„)=2 dT Q g-V ' f'(k —n) " (R-R ) +f'(k —n) ," (R- R-)

n k

The time derivative of Eq. (C5), in which we are interested, takes the simpler form

~ ~

~

t
(aj aj)) =2 dv'I djV [f (k —a) cos(RcscR ) +f (k —a)coskjc(R R ) ]

0

Substituting Eq. (C6) in Eq. (32), we have for I(k)
f t

j(2):I dv'( f2jf (kk —a)cos(ojc)k dk)(R R )
n

t

+I f dc'( 2, Jdif'( krak)cos(o „)k'dk)(R-„R--„), ,

(C5)

(c&)

(c7}

i(k) =I r(k)f —2 —o)(R-, R' -„),
C

(c&)

Since the k integral is zero for &&c 'L „, we can
apply to Eq. (C7) the same considerations we did
to get the Markoffian master equation, i.e. , the
averages (R-R-„) and (R-„R-„), evaluated at T =0,
can be taken out of the time integrals since they
have a dynamic time scale larger than c 'I
and the limits of the time integration can be ex-
tended from 0 to ~. Performing the time and &

integrations, we find

with y(k) =(2jj) 'c '0'g'„p, . We notice that the
second term on the right-hand side of (C7}dis-
appears, since the emission coefficient coming
from g& is exactly zero, as one can easily verify.
This means that the antiresonanting terms of Ham-
iltonian (1}, which give rise to the second term on
the right-hand side of Eq. (C7), do not give any
contribution to the average number of emitted
photons.

From Eq. (C&} one arrives at once at Eq. (33)
with the help of Eq. (20b) and the relation
Z-. f'(IIklc- n) =1.
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