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Inverse scattering transform for wave-wave scattering*
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An inverse scattering transform method is presented for wave-wave scattering problems such as the Raman
effect, distributed parametric amplifiers, and wave-wave interactions in plasmas. This transform method can be
viewed as a nonlinear generalization of the Fourier-transform technique; and, in the form presented here, it
describes the dynamics of the scattering medium.

I. INTRODUCTION

iI, , =BL —LB (I 2)

when 'JJ satisfies the nonlinear wave equation (1.1).
Suppose also that the eigenvalues A of the operator
L are found from

and that the time evolution of g is given by

(1.3)

(1.4)

It is then easily demonstrated that the eigenvalues
of L are independent of time even though 'JJ(x, t)
evolves as in (1.1). When it is possible to asso-
ciate a scattering problem with the operator
L, 'g(x, t) can in principle be computed from
'JJ(x, 0) through three linear steps.

(a) Direct scattering problem. Scattering pa-
rameters are calculated (such as reflection and
transmission coefficients of L) for g at )xj =~

and t =0 from 'g(x, 0).
(b) Time evolution of the scattering data. Equa-

tion (1.4) is used together with the asymptotic
form of B at )x~ = ~ to calculate the time evolution
of the scattering data.

The inverse scattering transform method for
finding a solution of a nonlinear wave equation
through a succession of linear computations was
introduced in 1967 by Gardner, Greene, Kruskal,
and Miura' as a special calculation adapted to
the initial-value problem for the Korteweg-de-
Vries equation. This method was generalized by
Lax' in the following way: Consider a nonlinear
wave equation represented abstractly by

Jg = &('JJ)

where N denotes a nonlinear operator on some
suitable space of functions. Suppose it is possible
to find linear operators L and B which depend
upon 'JJ and which satisfy the operator equation

(c) Inverse scattering problem. 'JJ (x, t) is con-
structed from a knowledge of the scattering data
of L as a function of time.

Although the conditions expressed in Eqs. (1.2)-
(1.4) appear rather special, they are satisfied for
a rather large class of nonlinear wave equations
which are of independent physical interest. ' In
each of these cases, the (constant) eigenvalues in
(1.3) correspond to the fixed velocities of "soli-
tons" or localized traveling-wave solutions which
can undergo nondestructive collisions among them-
selves. As Ablowitz, Kaup, Newell, and Segur
(AKNS) have emphasized, ' the inverse scattering
transform method can be viewed as a generaliza-
tion of the Fourier-transform method for solving
a linear wave equation. In the linear case step (a) is
a decomposition of the initial condition into spa-
tial harmonic components, step (b) is a calcula-
tion of time evolution for these components, and
step (c) is their Fourier reconstruction. In the
nonlinear calculation, solitons play a role anal-
ogous to that of Fourier components in a linear
cale ulation.

During an independent investigation, Lamb'
developed an inverse scattering transform tech-
nique for the self-induced-transparency (SIT)
problem of nonlinear optics. In SIT a classical
plane wave interacts with a resonant two-level
atomic medium, and the appropriate inverse
scattering calculation was obtained by Lamb di-
rectly from the underlying physical problem.
Following a suggestion of Steudel, ' we consider
here a problem which is roughly the "dual" of SIT.
As is indicated in Fig. 1, we treat the resonant
interaction of two plane waves (anincident wave
of amplitude A, and radian frequency co„ascat-
tered wave of amplitude A, and frequency &u, )
with a medium which can propagate a classical
scattering wave (of amplitude 'Q and frequency &u,).
We show how an inverse scattering transform
method can be developed to calculate the time
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evolution for '"9 (x, t), and we indicate how this
method is related to the physical problem.

Note carefully that the term "scattering" is used
in two senses in the above paragraph: first, as the
physical scattering which is the key aspect of the
phenomena under investigation, and second, as
the abstract scattering of g in (1.3). These two
uses are unrelated.

The results we obtain may be applied to a vari-
ety of physical problems including Raman and
Brillouin scattering of laser light in solids and
liquids, ' wave-wave interactions in plasma, '& '
and the distribution parametric amplifier. "' '
The main assumptions are plane semi-infinite
geometry, lossless medium, and equal group ve-
locity for the incident and scattered waves. We
expect the latter requirement to be satisfied if
e,«~, or cu, . It should perhaps be emphasized
that the inverse scattering transform method out-
lined here is not simply a degenerate form of that
sketched recently by Zakharov and Manakov'":
for three wave interactions when all group veloci-
ties differ; it is more closely related to the
formalism developed by AKNS.'

In Sec. II we indicate how the basic physical
equations may be obtained for the case of Raman
scattering. Our reasons for this didactic excursion
are two-fold: the technique for casting the physical
equations in a form suitable for application of the
inverse scattering transform method is not obvious,
and we intend in Sec. III to suggest a physical in-
terpretation for the inverse scattering transform
equation corresponding ot Eq. (1.3}. Finally, in

Sec. IV we outline the details of the inverse
scattering transform method for the operators in
Sec. III, and we consider some specific properties
of soliton solutions into which the initial conditions
must eventually evolve.

II. RAMAN SCATTERING AS A CONCRETE EXAMPLE

In this section we derive the basic equations to
be analyzed for the special case of one-dimensional
(forward) Haman scattering in an infinite medium.
The incident wave is at frequency u„and the

scattered-wave frequency +, is assumed to be
lower (Stokes) than ~, so &u, = ar, —~,. In this treat-
ment we have ignored higher-order Raman radia-
tion effects, which are important for intense
fields. " Following Yariv, " the molecules in
the Raman medium are represented by classical
harmonic oscillators. Since they are uncoupled,
the group velocity of the scattering (~,) wave is
zero in the laboratory frame. If X is the vibra-
tional coordinate of a molecule, the equation of
motion for a harmonic oscillator is

X„+&~ X= aZ' -qZ, (2.1)

X=-,' ~e'"'-"3"'» +c.c. , y, constant 2.3b

where the 8&'s and y are assumed to be slowly va'rying
amplitudes of space and time. In (2.3a), 8, and 6,
are the slowly varying amplitudes of the incident
and scattered electric fields, respectively.

Under the assumptions that (a) the amplitudes of
the waves are large only at the frequencies u„
&u„and +„(b)ur, /a, and &u,/g„ the phase veloci-
ties of the incident and Stokes wave are equal to
u, the group velocity of the electric field, (c)
z, —z, —v, =Ax, y, —y, —y, =0, and (d) a is a small
quantity, the coefficients of e'"&', j = 1, 2, 3, can
be balanced in Eqs. (2.1) and (2.2). Keeping only
first-order terms, Eq. (2. 1) becomes

where a is a constant. In (2.1), &are is the resonant
vibrational frequency, aE' represents the anhar-
monic character of the molecular bond under the
electric field E, and q is the electronic charge of
the molecule. The one-dimensional wave equation
for the propagation of the electric field is

E„„-E„/u' = 2 boa(~)„, (2 .2)

where u is the group velocity of the electromagnet'
wave, p,, is the magnetic permeability of the med

im, and 2aXE is the nonlinear polarization. S and

X are expanded as

E= —Qg, . (x, t)e" ' ''**'6' +c.c.),2=1

y; constants (2.3a)

Incident wave: A, (~,)

Scattering wave: Y (~ ~)

y, —i&x= —iq, b,S,*e '

and Eq. (2.2) becomes

(1/u)S„+h„=—&e,&,Xe'

(2.4a)

(2.4b)

Scattered wave A&(~&)
In Eqs. (2.4a —c),

(2.4c)

FIG. 1. Diagram of the wave-wave interaction under
s tudor,
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Eqs. (2.4a) —(2.4c) become

~, =i~~-iA,A,*e-'"'

A, ~
= —iA2Ye'

gee -i DK
2g

Then writing

~ e-i6et 8 ~ ei&ec g y&-f& LK

1 1 2 2

Eqs. (2.5a) and (2.5b) become

'9, =i5'JJ —i8,8,*

Q~g = —g EKS~ —Z QQ2,

82' = 26K82 —2 9 8~.

(2.5a)

(2.5b}

(2.6a)

(2.6b}

Following Feynman et al. ,"we define the quanti-
ties

%, =&8,8~» %'=8,8*, -828~» (2.7)

where 'N represents the difference in intensity
between the incident and Stokes waves. In terms of
these new variables, Eqs. (2.6a) and (2.6b) are

'JJ, =iÃg -e,
%l, = -~J'N —2ia~%, ,

m, = 2('u'JJ*+e«Q).

(2.8a)

(2.8b)

(2.8c)

These are the fundamental equations to be studied
in this paper. A corresponding development is
easily carried through when the scattering oscilla-
tors are coupled so their group velocity is not
zero." When & =0, Eqs. (2.8a)-(2.8c) are similar
to those discussed by Lamb" as a representation
of SIT.

III. INVERSE SCATTERING TRANSFORM EQUATIONS

q,. =(aP /2K')[(o2 —2(u, (&(u)+(&(u)'] j =1 2

where' b, u =-u3 —w„defines the difference between
the frequency of vibration of the oscillators w, and
the resonant frequency of the oscillators u~.

Under an independent variable transformation
defined by

x-?; =x, t 7'=t -x/u,

and the normalization of the dependent variables as

&, =(e,e.)'&„&=(~,a.)' &., &=(e.qi)' x,

8 ~g + t EK8 ~
='JJ( —l 82),

(- i8, )&
—ihK( i8,)-= -'JJ*(A,).

(3.3)

Comparing Eq. (3.3) with Eq. (3.1), it is seen that
these two sets of equations are identical if

8,=g„—i8, =—(„andAK = A.

Thus the L equation for the inverse scattering
transform method can be identified with the elec-
tromagnetic equations describing slow spatial
variation of incident and Stokes wave amplitudes
under the special condition b, ~ = A, , which makes the
denominators of the B operator [Eq. (3.2)] go to
zero. With this condition the determinant of the
B matrix reduces to

~B I
= (8,8*, +8,82«)'/16(X —b, K)2, (3.4)

which is indeterminate if the incident and Stokes
wave energies remain of order A. —E~ as A. »AI(:.
Such a decoupling seems necessary because Eq.
(3.2) does not give the variation of the electromag-
netic wave amplitudes with T.

IV. SOLITON SOLUTIONS

Having found the I and 8 equations we can com-
pute 'JJ (?, , 7) from "JJ($,0) using the three steps
outlined in the Sec. I. From AKNS, 4 it is given by

and Eq. (1.4} (the "B equation") as

g„=[,i—V7/(X—AK) + ,i 5] g—,+ —,i%/(A. —6K)g„

$2~ = pZ'lt /(A. —6K)$~ —[4t~/(A, —AK) + 21 5] $2.

(3 2)

Since most L and B equations have hitherto been
found by the "classical method" (i.e. , guessing),
Lambs's approach to the SIT problem is particu-
larly interesting. His inverse scattering transform
calculation was directly related to the physical
problem under study. Motivated by this, McLaugh-
lin and Corones" studied the propagation of mag-
netic flux along a Josephson transmission line
and again indicated how the L equation can be re-
lated to the underlying physical problem. This
relation may also be established in the case of
Raman scattering. To see this, consider Eq. (2.6b),
which describes the electromagnetic aspect of
Raman scattering. It can be rewritten as

Since the equations describing wave-wave scat-
tering [ Eqs. (2.8)] are similar to those for SIT,
linear operators L and B which satisfy (1.2)-(1.4)
can be found as a modification of results obtained
by AKNS' and Lamb. " Assuming that Eqs. (2.8a)-
(2.8c) correspond to Eq. (1.1), we can write Eq.
(1.3) ( the "L equation") as

&J(~, ~) = -2f~(~, ?;, ~),

where K(?, y, T) obeys the Marchenko equation

ff(?, y, ~) =&(?;.y, T)

E g+ Sl, 7 F* Sl+ S

(4.1)

g, &
+ i X(, ='JJ g„g,& —i A g, = —'JJ*g„ (3.1) xK(g, s„T)ds, ds„ (4.2)
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with

&*(~,T)
F(y, v)= —])

' e ' ' d]]
2m J~ „a(A., ~)

where N is the number of discrete eigenvalues of
Eq (3.1). If f and g are Jost functions which sat-
isfy Eq. (3.1) with boundary conditions

(1„„.)/0
lim f e ' ", limg-~ e' ", Areal

koi

and for A. complex

( g,*(g, A) )
I;g (&, *))

then a and b are defined by

f =bg+ag

when A. is real. a(X, v) and b(X, v) can be analyti-
cally continued to the upper half of the A. plane,

a(X, r) = a(X, 0),

and

c(X, , v) = V(A, , 0) exp[+—,'i [1/(A. —b, ]]) + 25] v }
= c(Z, , 0)exp(]z)„,v+ i &u], T),

where

+„~=+ A;, /(2[(X„~ -b,z)'+)P„])

~, =(g, -~~)/(2][(g, -~~)'+ z,', ]) +&,

(4.3b)

(4.3c)

Xg
——A.„,+ A,], . (4.3d)

The values b(X, O), a(X, O) and c(A, , O) are deter-
mined by the initial conditions.

If I)(A. , 0)=0, and N 1 in Eqs. (4.1) and (4.2),
the solution Q is of the form

and c is defined as

c -=+5+(&,~)/a„(X,r).
The time dependence of a, b, and c are calculated
to be

I)(X, r) = b(A. , 0) exp[ —i[1/(A—.rh ~)+2&]], (4.3a)

'g (&, v)= [2i c,(A.„O)/( c,(X» 0) ( ] A; ~ exp [i (u;, v —2 A„,g )] sech[ 2 A, ,f + &u„z v+ ln(
~ c,(A» 0)

~
/2X&, )] . (4 4)

This is a single-soliton solution. If R(A. , O) =0,
and there are N discrete eigenvalues, the solution
'g will consist of N such solitons and these sol-
itons will interact nonlinearly, but asymptotically
~g will consist of the superposition of N solitons
in the form of Eq. (4.4). The N-soliton formula
for 'g is

)) =-2$ ]8" &~[(l+ZZ") 'G]

where Z is an P%X matrix with elements defined
by

g„=c, e '& "~ '&] ]:-/(z,-—x+)

and 6 is a n&1 matrix with elements defined by

Q SC 8-2sXg g

One interesting type of solution is the "breather. "
These are real solutions of Eq. (3.1) formed by
two solitons whose associated eigenvalues A., and
A., are related by

8,= -2+i;+]z)] v —i ln c(~, 0) (~~
c(~, o)

with c,=-c,*=-c, and ~„=~„,and &, =~„where
u„and &u, & are defined by Eq. (4.3d). A sketch
of

~
'g

~
when b, z = 0.1, 6 = -0.1, A„=A, , = 1, and

c = X )]2 is shown in Fig. 2.
In its present state of development, this inverse

scattering transform method has two unsatisfactory
features:

(a) When b(A. , O) 00, the Marchenko equation (4.2a)
cannot be analytically solved. However, the con-
tribution to ']I(g, T) from the continuous eigenvalues
decays away, so asymptotically, at least, the
solution will consist only of solitons.

viB

Using Eqs. (4.1) and (4.2a), a breather solutit)n is)'

A.„cosh8,sin8, +A., sinh8, cos8,
i c(X, 0)i A, cosh'8, + (A.',/X„')cos'8,

(4 5)
where

8,= 2 A.;f+ ~„v'+1n
~c(z, 0)( x. FIG. 2. Evolution of a "breather" soliton indicated

in Eq, (4.5).
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(b) The inverse scattering operators have been
found only in the (P, v) coordinates. An initial
value calculation implies that

has to be specified. A more realistic initial value
problem with initial condition 'JJ(x, t =0) =p(&, 7

= —P/u) is yet to be solved.

V. CONCLUSIONS

scattering problem. (Note the double use of the
term "scattering". ) The main simplifying assump-
tions are a lossless scattering meduim, one-di-
mensional semi-infinite geometry, and equal group
velocities for the incident and scattered waves. If
the scattering medium is not infinite but long com-
pared with the width of a soliton, some soliton
structure should be expected to emerge. Our cal-
culations should then be useful for times less
than one transit of the initial pulse.

We have sketched the elements of an inverse
scattering transform method for calculating dy-
namic evolution of the scatterer in a wave-wave
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