
PHYSICAL REVIEW A VOLUME 12, NUMBER 5 NOVEMBER 1975

Photoionization of lithium
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The photoionization of lithium from threshold to 50 eV above threshold is calculated via the method of
polarized orbitals. The method is applied in as orthodox a manner as possible; this means that total wave

functions are constructed as by Temkin and Lamkin using only the static dipole part of the perturbation of
core electrons by the outer part of the external electron. According to other previously given prescriptions,
both initial (bound) and final (continuum) wave functions are so polarized, only the length form of the matrix

is calculated, and bilinear terms from the polarization contributions are retained (although their effect in this

calculation is small). The results themselves are essentially identical to those of a recent diagrammatic
calculation of Chang and Poe (in the region below 5 eV where they have calculated), and as such they differ

in certain significant components from exchange adiabatic and extended polarization results of Matese and

LaBahn (although their over-all result is similar). Discussion of these points is included. The s- and p-wave
e- Li phase shifts, which are derived as by-products of this calculation, are also presented and compared to
other phase-shift calculations.

I. INTRODUCTION

In addition to its importance in space physics,
photoionization is a significant probe of electron
interaction with atomic systems. For, in the final
state, the appropriate wave function is just that of
electron scattering from the residual ion; thus,
one learns about this scattering continuum from
it, and in particular one can compare different
methods for calculating it. Our interest here is
in the method of pol.arized orbitals" and especial. -
ly in those aspects which make the method partic-
ularly suitable for photoionization calculations.

The method of polarized orbitals, as we have
stressed in a recent review article, ' is not in-
tended as a brute-force technique to yield in prin-
ciple arbitrary precision. Rather, by putting the
essential physics in the ansatz for the wave func-
tion, one can improve the scattering, we maintain,
to better than first order over the simple exchange
approximation. This derives in the first instance
from the requirement of antisymmetrizing the total
wave function, a condition which then carries ad-
ditional information beyond what the polarized in-
crement would otherwise be expected to contain.
Additionally one has, in the case of photoioniza-
tion of a many-electron atomic target, the possi-
bility of similarly improving the accuracy of the
Hartree-Fock initial state of the target system by
including the polarization of the core electrons by
the outer electron (in the case of an alkali), which
in turn modifies the valence orbital in a completely
analogous fashion to what goes into the final- (scat-
tering) state wave function. Thus, in the compu-
tation of the photoionization matrix element, one
can expect a similar improvement in accuracy
coming from the bilinear cross terms as that

II. THEORY AND CALCULATION

The photoionization cross section (in units of
a', ; Rydberg units are used throughout) is given
by the well-known formula

o~ = 4m&k(I + k ') (4z ~ g z, ~ 0,. ) (2.1)

In (2.1) n& is the fine-structure constant, k' is the
energy of the outgoing electron, and I is the bind-
ing energy of that electron. Thus the incident-
photon energy is given by

(d =I+k (2.2)

As long as we are calculating the integrated (i.e. ,
total) cross section, as we shall exclusively do in
this paper, then 4f can be taken as an ordinary
scattering wave function of the electron incident
in the z (photon) direction, so that the matrix ele-

which one gets from the exchange polarization
terms in the scattering calculation for the phase
shifts.

Some of these ideas have been included in polar-
ized-orbital-like photoionization calculations by
LaBahn and collaborators. ' Unfortunately, the
general philosophy toward the polarized orbital in
these and other calculations is quite different from
our own. For example, the potentially important
bilinear term is simply dropped under the rubric
that polarization effects are first order and that
anything beyond that is inconsistent.

In view of the fact that diagrammatic calculations
of lithium photoionization have been carried out, '
in particular a very recent one by Chang and Poe, '
which we consider reasonably definitive, one is
afforded an opportunity to compare these different
polarization calculations.
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ment contains no reference to the direction of the
ionized electron. In addition, as long as one par-
tial wave is required, no special. provision need
be taken to account for the fact that 4& should be
a solution with ingoing radial-wave boundary con-
ditions.

That photoionization cross sections should only
be calculated in the length form, when using po-
larized-orbital functions, is a central item in our
view of the method', it follows from the fact that
the wave functions (for a three-electron system of
total angular momentum l)

4', =8/U, (1)[4o(2, 3) + C ~" ) (1; 2, 3)]j (2.3a)

are such as to emphasize (through C ~~")) the static
polarization of the core el.ectrons, 2 and 3, by the
outer electron, labeled 1 in (2.3a). Therefore, a
transition operator which also emphasizes this
outer region of configuration space is clearly to
be preferred, and this is quite obviously the length
form.

The other item which makes polarized orbitals
particularly suitable to photoioniz3tion, and this
was appreciated by Laeahn and col.laborators, "
is the fact that the method can be used to calculate
an initial- (bound) state wave function as well as
the final- (scattering) state function, '» for which,
of course, the method was originally devised. '
Thus, the ansatz (2.3a) is to be used for both
states. The symbol 8 in (2.3a) is the antisym-
metrizer, which, assuming 4, and 4 "' are anti-
symmetric in their (last) two arguments, reduces
to the sum

8 -=(3N) i~~[(1; 2, 3) + (2; 3, 1)+ (3; 2, 1)] . (2.3b)

The factor 3 "' is necessary for quadratic normal-
izability, assuming each term is normalized to
unity for the bound state; the factor N '" includes
the effect of the cross terms in the quadratic nor-
malization. The 3 "' factor is also necessary for
the over-all normalization of the continuum func-
tion, in addition to the appropriate normalization

of tJ, as the partial-wave component of a plane
wave at infinity. (See below for further details
of the continuum normalization. ) Including spin
factors, U, in (2.3a) is

In the orthodox form of polarized orbitals, rad-
ial equations are derived from the projection'

4'.(2, 3) = V.(r., r.)X.(2, 3)

4 "" (1; 2, 3) = [Q
)'" (r„r,)vo(r, )

+ P~p" '(r„r,)vo(r, )]xo(2, 3),

where

(2.5)

(2.6)

~().) ),- -, «(r„r,) g„,&, , cosa„
(ryy r2) 2 e 2(2p 2+&2) j/2+1

(2.7)

rp, (r„r,) = v, (2)vo(3),

v (r) = (g'/rr)' 'e «
(2.8)

(2.9a)

and «(r„r, ) in (2.7) is a step function. Equation
(2.8) implies that we have used a separable form
of core wave function, and Eqs. (2.8) and (2.9) say
that we have used the simplest Slater form for
these orbitals. Within these approximations the
screening parameter which minimizes the ground-
state energy is related to the nuclear charge Z by

f=Z —— (2.9b)

The radial equations coming from (2.4) can be
worked out straightforwardly. We write them in
the general form [letting r, =r in (2.3)]

Y,*o 0, g~*/2 1 W 2, 3 8 —E 4',dr, =0. 2.4

Integrations in (2.4) include spin variables; in ad-
dition to the doublet spin function X,i, in (2.4), we
shall need the singlet spin function go associated
with the ground state and its polarized parts:

+ +4 f+— e '~" +0' u, (r)+rT»=2» u, (r) —r(T, +7,),d' l(t+ 1) 2(Z —2) 1,&„, n(rr)
dr2 r2 y' r„r ' (2.10a)

where T„T„and T, are given in the Appendix A,
and the function o.'(x) is the Callaway-Temkin form
of cutoff"

o. (x) =4.5[1 —e "(1+2x+2x'+-,'x'+-,'x'+ —,', x')].
(2.10b)

The polarizability of the I 1 is 2o.(~)/f», which
turns out to be 0.17 from (2.9b) and (2.10b). This
is to be compared with the vat. ue 0.191 used by

Matese and I.aBahn» (also McDowell. , cf. Ref. 11)
which comes from using the FCHF orbital.

For the case of el.ectron-hei. ium scattering
(Z= 2) these equations agree, although they are
written somewhat differently, with those derived
by Duxler et al." (with the Slater orbital replaced
by the FCHF orbital there), but the form for gen-
eral Z, (2.10a), given here may be useful for many
other applications.

In the photoionization application the equation
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for l = 0 will describe the 2s orbital of the valence
electron of Li, in which case the energy k' in

(2.10a) goes into an eigenvalue

where I is the binding energy of the 2s electron in
this approximation.

Before discussing the actual results, we point
out that the usual orthogonality condition between
bound and continuum solutions does not hold for
s waves. This is because an exchange term con-
tains the energy explicitly (cf. T, of Appendix A).
Therefore the relationship between bound and con-
tinuum solutions becomes

u, (v)u, (r) dh

u, (x)xvo(x)dx u, (y)yv (y)dy .

(2.11)

This relationship is derived in Appendix B. It
holds for s-wave solutions where u, and u„are
continuum and bound solutions, respectively, of
the s-wave equation. It also is restricted to the
exchange and exchange-adiabatic approximations,
where the potentials are effectively Hermitian.
For the full polarized-orbital approximation a
more complicated relation can be derived and is
given in Appendix B also. Equation (2.11) was
used as a check of the numerical integration of
(2.10a) in the appropriate approximations and was
found to hold to about 0.5% in the worst case.

Table I compares binding energies in various
approximations. They are arranged in pairs in

increasing order of sophistication. Exchange cor-
responds to using only the left-hand side of (2.10a)
whereas fixed-core Hartree-Fock (FCHF) corre-
sponds to the same approximation with a Hartree-
Fock wave function for the Li' core. The differ-
ence in these results is very small, indicating
(but not proving) that a simple closed shell should
be adequate for this part of the wave function. In
the next category one adds to the static polariza-
bility of the core in the form of the first term on

the right-hand side of (2.10a) in exchange-adiabatic
approximation; AED corresponds to the same ap-
proximation but with the 2n/r ' potential replaced
by the Bethe-Reeh dipole' part of the static poten-
tial. This corresponds to including the dipole part
of static interaction (in second-order perturbation
theory) for all distances of the static electron from
the core electrons. The fact that the binding ener-
gy is too large in this approximation is not a sur-
prising consequence of the unphysical nature of the
static model for positions of the perturbing elec-
tron inside the core electrons. Finally, one adds

u, (r) =u, (r)/[1 + 2F(r)] '",
where

(2.12)

(r, ) = f [P~ ")((,2)]'d'|, . (2.(3a)

Substituting (2.7) into the right-hand side of (2.13a)
one can perform the integral to find

43 1F(r) =,—,[1—e '"(1+2x+2x'+ —,'x'+-', x'

(2.13b)

where again x =fr. This form of normalization is
the same as used by Matese and LaBahn except
that their F is the appropriate one to their form
of y(PO()

The calculation of the photoionization matrix
element in (2.1) is broken down into three parts.

TABLE I. Binding energy of the 2& orbital of the Li
ground state in various approximations.

Approximation Binding energy (Ry)

Exchange
Fixed core HF
Adiabatic exchange dipole (AED)
Exchange adiabatic
Extended polarization '
Polarized orbital
Experiment

0.3931
0.3936
0.4001
0.3979
0.3935
0.3972
0.3963

" This calculation.
Value quoted in Ref. 4.
Matese and LaBahn, Ref. 4.
B. Edlen and K. Linden, Phys. Rev. 75, 890(L)

(1949).

nonadiabatic and/or exchange-polarization terms.
The former is done in the manner of Call.away
et al. ,

' which is essentially a perturbation-theo-
retic inclusion of nonadiabaticity. We have recent-
ly made a comparison of these two methods for ex-
cited states of helium' and concluded that for
triplet states, where the electrons are kept apart
by spatial exchange, the extended polarization ap-
proximation can actually improve things, but
where such spatial exclusion is not implied, as
in the present case, the polarized-orbital approx-
imation does better, as is clear from Table I.

We now return to the calculation of the photoion-
ization matrix element. The continuum function
in (2.1) is assumed to be normalized as (the par-
tial-wave component of) a plane wave, but in ad-
dition one desires the flux of scattered electrons
to be constant for all. points in configuration space,
not only at infinity. Therefore one renormalizes
u, (~), the P-wave orbital which solves (2.10a) for
each positive energy k', to u, (r):
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If we call the dipole length operator L,
3

then we can write the matrix element

M = (4~ j L, i 4,.)
as the sum of three terms

M =M0+M~+M2,

where

(2.14a)

(2.14b)

MD=3 ~ (8{U~(1)40(2,3)}~ L(8{U„(1)4o(2,3)}),

Mi = (8(U~(1)4' '" (1; 2, 3)}I LI 8(&g(1)4,(2, 3)})+ (8(U,(1)4,(2, 3)}I LI 8(U, (1)4""'(I;2, 3)})

=, ~ «f&~(I)4""'(I;2,3)}ILI8(&(1)4,(2, 3)}),

(2.16)

(2.16a)

(2.16b)

M2= (8(UI(1)4~'"~(1;2, 3)}( L~ 8(U, (1)4~~"'(I; 2, 3)}) . (2.17)

In the above tJ, and U, are the full correctly nor-
malized (as discussed above) polarized orbitals
for the continuum and bound states, respectively.
If the radial functions are derived from a lesser
approximation, such as the exchange approxima-
tion, then the difference between using the polar-
ized-orbital or the lesser approximation consti-
tutes implicitly higher-order corrections, the
most important of which is

or

g M(poI orb) M (po) orb) M(exch)
0 0 0

g M (ex ad) M(ex ad) M(exch)
0 0 0

(2.18a)

(2.18b)

The reason for dividing ~ into components is
that essentially the same components have been
separately calculated in Refs. 4 and 7; thus an ef-
fective comparison can be made. This comparison
is given in Table II. The salient points of that
table are thefollowing: exchange (exch. ), extended
polarization (EP), and diagrammatic (diag. ) re-
sults should be the same for M0; differences in
our results from the other two reflect the differ-
ences in our core wave functions (closed shell vs
fixed-core HF). In principle EP and diagram-
matic (diag. ) results should be identical; we do
not understand why they are not, but the differ-
ences are very small, so that for practical pur-
poses we can consider them identical. First-order
results (M, ) are perhaps the most significant;
whereas polarized-orbital and diagr3mmatic re-
sults are very similar, the extended polarization
calculation shows a markedly different energy de-
pendence, changing sign at k=0.5. This dissimi-
larity was noted by Chang and Poe' and we simi-
larly have no explanation for it.

The AM0 results reflect in our own case strictly
the difference in the form of the outer orbital in

the initial and final wave functions in the various
approximations. They therefore can be obtained
by subtracting the appropriate columns under M0.
Although the magnitudes can vary significantly in
the different approximations, the k dependence in
all cases is similar.

The quantity M, only occurs in the polarized-
orbital approximation. Although its magnitude
here is quite small, we have no reason to think
that this will generally be the case. (We shall dis-
cuss this again in the conclusion of this paper. ) It
should also be pointed out that what we mean by
the exchange-adiabatic approximation to the final
matrix element M would be the ex. ad. column of
M0 whe reas AED re suits inc lude the AED contr i-
butions from I, in addition to M0. The final ma-
trix elements M are compared in the last columns
of Table II. Here the most perplexing feature of
the various results is the fact that EP and AED ap-
proach each other as k increases, whereas one
would expect exactly the opposite behavior since
EP contains nonadiabatic (i.e., velocity dependent)
effects whereas AED does not. (We are indebted
to Dr. Poe for this observation. ) On the other
hand, the agreement of polarized-orbital and dia-
grammatic results is noteworthy. Given the dif-
ferences in the various components, this virtual
identity might be considered coincidental and no
doubt the agreement to almost four significant
figures is. In a less exact sense, however, we
believe that the similarity reflects the fact that
each method is consistent within itself, but there
is not a one-to-one correspondence of component
parts. For example, M, is considered a short-
range correlation term by Poe and Chang, ' where-
Bs in our own case it definitely contains long-
range effects. From this point of view one would
then expect greater agreement in the sum than in
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TABLE II. Comparison of dipole length matrix-element components.

Approx.

Zeroth-order
matrix-element component

Mp
ex. ad.

exch. this calc. pol. orb.
EP

ML
diag,
CP'

pol. orb.
this calc.

Mg
FP

ML
diag
EP'

0.1
0.2
0.3
0.4
0.5
0.6

3.411
2.412
1.914
1.547
1.242
0.985

3.853
2.520
1.990
1.601
1.281
1.015

3.859
2.693
2.106
1.681
1.336
1.052

3.588
2.530
2.001
1.605
1.248
1.011

3.653
2.566
2.020
1.619
1.288
1.015

0.060
0.041
0.031
0.025
0.020
0.016

0.0729
0.0387
0.0105
0.0

-0.0244
-0.0298

0.0771
0.0527
0.0408
0.0328
0.0269
0.0222

Photoionization cross section of Li in the polarized-orbital approximation
~' (eV)
~ (eV)

&(Pol orb )( 0 g8
photo ion

0.136
5.540
1.601

0.544
5.948
1.672

1.225
6.629
1.709

1.667
7.071
1.697

2.177
7.581
1.660

3.401
8.805
1.521

3.980
9.384
1.427

4.898
10.302
1.324

Matese and LaBahn, Ref. 4.

the parts.
In the lower part of Table II we give the numeri-

cal values of the photoionization cross section (cf.
Fig. 1) vs the outgoing-electron energy km and the
appropriate photon energy from Eq. (2.2), for the
polarized orbital approximation.

Next we compare phase shifts obtained as a by-
product of the continuum calculation corresponding
to e-Li' scattering. In the matrix element only the
P-wave scattering solutions are required; however
we have also calculated s-wave scattering solu-
tions in order to check Eq. (2.11) as discussed
above.

In Table III we give the phase shifts (all relative

Chang and Poe, Ref. 7.

to pure Coulomb phases, of course) in various ap
proximations and calculations. McDowell" has
used almost the same approximation as the AED
approximation of Matese and LaBahn; the differ-
ences are that he includes both dipole and quadru-
pole parts of the Bethe-Reeh polarization potential
(for s waves) and he uses an open-shell form for
the Li' ground state. The differences from Ma-
tese and LaBahn are seen to be small and the
ground-state wave functions are presumably main-
ly responsible for what difference there is. Both
those results are in turn similar to our own ex-
change-adiabatic results, but here the differences
are mainly due to the greater attractiveness of the

2
k (ev)—

g@ ~g ~pl ~gb y% ~q% ~q% ~y% gb ob
I I I I l I I I I 1 I I I I I

2.0—

1.8—

1.6—
KP(

1.4—

c 1.2—

1.0

.8—

4—

02

I I I I I I I I I I I l I I I I I I

0 .1 .2 3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

FIG. 1. Photoionization
of Li in various approxima-
tions. The two exchange
calculations reflect differ-
ences in the Li+-target-state
wave function. The pres-
ent polarized-orbital result
is identical to the diagram-
matic results of Chang and
Poe, Ref. 7, up to the maxi-
mum energy of their calcu-
lation (k'=0.6 ~42 =4.9 eV).
The abscissa is given as a
function of momentum (and
energy) of the outgoing elec-
tron. To get the incident-
photon energy one must add
the appropriate binding en-
ergy from Table I, which
will be different for each
approximation. The experi-
mental results which are the
ones with the error bars
attached are from Hudson
and Carter, Ref. 17.



12 P HO TOION I Z A TION OF L IT HI UM

TABLE II, (Continued)

2049

ex. ad. pol. orb.
this calc.

&Mp
AED

ML
EP diag.

CPb

M2
pol. orb.
this calc.

pol. orb.
this calc.

diag.
CP'

EP
ML

AED

0.442
0.118
0.076
0.054
0.039
0.030

0.448
0.281
0.192
0.134
0.124
0.067

0.0821
0.0439
0.0296
0.0228
0.0220
0.0186

0.3138
0.1871
0.1247
0.0868
0.0620
0.0440

0.1819
0.1105
0.0747
0.0542
0.416
0.0326

-0.006
-0.004
-0.004
-0.003
-0.003
-0.002

3.912
2.729
2.134
1.703
1.353
1.065

3.9122
2.7292
2.1355
1.7061
1.3566
1.0704

3.974
2.756
2.136
1.692
1.286
1.025

3.743
2.613
2.041
1.628
1.246
0.9998

Photoionization cross section of Li in the polarized-orbital approximation

6.667
12.071
1.110

8.708
14.112
0.905

11.021
16.425
0.724

13.606
19.010
0.574

19.592
24.996
0.355

26.667
32.171
0.219

34.831
40.235
0.136

44.083
49.487
0.087

49.117
54.521
0.069

Bethe-Reeh dipole potential compared to our own

dipole form. A recent calculation of p-wave phase
shifts by Stewart" using a time-dependent Hartree-
Fock formalism yields results (given in graphical
form) similar to our exchange-adiabatic results.
They are therefore also similar to extended polar-
ization results discussed in the next paragraph.

With regard to the polarized-orbital-vs-ex-
tended-polarization results, it should be noted that
the nature of the latter will always be to reduce
AED phase shifts, by virtue of the repulsive non-
adiabatic potential, whereas the exchange-polariza-
tion terms, which are the distinguishing feature of
the polarized-orbital approximation, do not act in
one set way in changing polarized-orbital results

from exchange approximate ones.
Finally in Fig. 1 we graph the photoionization

cross sections in some of the various (length) cal-
culations. Of those calculations not given in Fig.
1, we mention one due to Norcross, '4 who computed
a matrix element from continuum and bound (2s)
orbitals in a Thomas-Fermi plus polarization po-
tential field with parameters adjusted to fit the
bound-state energies of Li. His results are be-
tween our exchange-adiabatic and polarized-orbi-
tal results. A very similar physical idea but in a
somewhat more elaborate mathematical setting,
has also been used by Caves and J3algarno" with
very similar results. Stewart" also obtains simi-
lar results. The results of the diagrammatic cal-

TABLE III. Phase shifts (relative to pure Coulomb phase) for e-Li scattering.

1=0
approx. exch. AED ex. ad. pol. orb.
&/author present Mc D present present

exch.
present ML

I, =l
ex. ad. AED
present McD ML

pol. orb.
present

EP
MLb

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
1.6
1.8
1.9

1.2378
1.2348
1.2300
1.2233
1,2149
1.2047
1.1928
1.1793
1.1641
1.1476

1.258
1.255
1.248
1.241
1.230
1.221
1.209
1.194
1.178

1.2621
1.2593
1.2546
1.2481
1.2398
1.2297
1.2178
1.2043
1.1893
1.1729

1.2564
1.2535
1.2488
1.2422
1.2338
1.2235
1.2116
1.1979
1.1828
1.1662

0.0977
0.0997
0.1029
0.1073
0.1127
0.1189
0.1256
0.1327
0.1400
0.1474
0.1616
0.1746
0.1859
0.1953
0.1993

0.1107
0.1128
0.1162
0.1207
0.1263
0.1326
0.1395
0.1467

0.1443
0.1465
0.1501
0.1549
0.1607
0.1674
0.1746
0.1821
0.1896
0.1971
0.2113
0.2236
0.2338
0.2419
0.2451

0.173
0.177
0.182
0.189
0.195
0.202
0.210
0.217
0.224

0.1677
0.1700
0.1738
0.1789
0.1851
0.1921
0.1996
0.2073

0.1682
0.1706
0.1745
0.1798
0.1860
0.1930
0.2004
0.2080
0.2154
0.2226
0.2353
0.2454
0.2527
0.2575
0.2591

0.1470
0.1489
0.1522
0.1566
0.1619
0.1680
0.1744
0.1810

McDowell, Ref. 11. Matese and LaBahn, Ref. 4.
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culation of Chang and McDowell, with corrections
as stated in Ref. 4, are similar to the AED results
of Matese and LaBahn. 4

In the figure the two exchange-approximate re-
sults reflect differences in the Li' ground-state
approximation used in each. The remaining curves
compare extended polarization to the present po-
larized-orbital results. The latter as we have in-
dicated are identica, l to Chang and Poe' within the
accuracy of the drawing up to k'=4. 9 eV, which is
the maximum energy of their calculation. Our own
calculation has been taken to 50 eV, which is just
below the resonant region. The latter has been
mea. sured by a heat-pipe technique'6 using a vac-
uum-ultraviolet source of photons. The vacuum-
ultraviolet source plus newly developing laser
techniques should soon be able to cover the whole
nonresonant domain. Present experiments"' '"
cover a lower energy region. Although they are
consistent with polarized-orbital and diagramma-
tic results at the lowest energies, one notes, as
has been noted by others" (and for the case of
sodium also" ), that deviations develop at higher
energies. On the other hand, differences between
exchange and polarized-orbital (and presumably
most other) calculations tend to disappear at the
higher energies. Thus we find it difficult to be-
lieve that the error resides primarily in the cal-
culations. This lends renewed motivation for new
experiments and particularly to a definitive solu-

tion of the problem of removing or distinguishing
the contribution of molecular components and other
possible contaminants in the metal vapor or pho-
ton beam. (We are indebted to Dr. D. Ederer for
discussions on this point. )

HI. CONCLUSIONS

To conclude, we feel that the agreement with
diagrammatic results of Chang and Poe' consti-
tutes the best argument for the validity of the po-
larized-orbital method for photoionization calcu-
lations in the form we have suggested. Since this
method of calculation differs significantly in de-
tail from LaBahn and collaborators, 4' we again
reiterate" the necessity for skepticism regarding
their negative conclusions about polarized orbitals
on the basis of their Na and K photoionization cal-
culations, ' pending a similar recalculation as has
been done here for Li. (The argument here con-
cerns the low-energy behavior, which will be much
more sensitive to precise methodology than the
high-energy behavior discussed in the previous
paragraph. )

APPENDIX A

We give here T„T„and T, appearing in Eq. (2.10).
The quantities P and Z are the same as defined in
the text; cf. Eq. (2.9b).

T=-4( e '
2, , 21 +E+ ~ 22(Z —1) ——[1 —e ' ((r+1e)]))(

2 Z —g 2

+2(Z —P —2)I() +2'(2) +2I(0) ——U(1, g)+2U(0, P)

—
( 1 (1 —())0) dxe ~"u((x) „,——, + r'I(, ) (A1)

T, = ——e "i ()„dx, ()((r. x)
4 &„( " u(x)

0

+(0r) [' z EK S st
3 (-z) 3~ (x) + (o) + 2 (-z) + +

2 2 (-i)2g g 2g )I'

and

f(r) 2Z&I(,)+2(Z —g —1)I( 2)+2)I( 2)+2I( 2)+EI(,)
4g 3& 30

(A2)

r
dx ', e e'[2Z(x+2(Z —1 —1)+2e '

( e+ )(xE(])x+
o X

f(r) —u, (r) -+e '~"
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.e-e 2(Z, 1).2(Z 21 ))r. (2f(r) —,r(2r. ) e2(',
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(AS)
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where

U(n, a) =

dxu, (x)x"e '",

dxu, (x)n" e '",

(A4)

(A5)

c
d d

u, (r) —u, (r) -u, (r) —u, (r)
0

and vanishes at the end points.
Using the definitions (2.9a) and (A4), we find that

the remaining terms can be written

f(r) =e "(', &y'-+~), (A6) u, (y) u„(r) dr

E = -2g'+k' (A7)

=4~ dxu, (x) xv, (x) dyu, (y)yv, (y) . (BS)

APPENDIX B

(
d2
d, + k'+ «(«l) «, (r) ««T, («) =0,

d
, -&+ «(r)) «, (r)+«r, («, ) =0,

(81)

(82)

In the exchange and exchange-adiabatic approxi-
mations, the scattering equations for u„and u, in
the s wave are given by

u, (r)u~(r) dr

=4m dxu~ x xvo x dpQy p Qvp
0 0

+—J +-gJ1 3 2) (84)

For the polarized-orbital approximation, there
are additional terms on the right-hand sides of
(81) and (82) giving an augmentation to the right-
hand side of (BS):

where v(r) is the appropriate local potential for
each approximation, and T, (u) = T4 from (Al).
Multiplying (81) by u, and (82) by u~, subtracting
and integrating, we get

QQ «(r), «(rl -«, (r), , «, (r)) d«

+ (ka +I) u„(r)u~(y) dy

where

dxu, (x) xe ~" dyu, (y)
0

dxu (x)xe ~" dy ' (85)ys0

dx xux x dy ',~ e&
0 g

dh[u, (r)rT, (u, ) -u„rT, (u„)j =0.

The first integral above becomes

ao OO e"
dx f(x)u„(x) x dyu, (y)

x

and f(x) is given by (A6).

(86)
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