
PHYSICAL REVIE%' A VOLUME 12, NUMBER 1 JULY 1975

Electrohydrodynamics of a charge-separated plasma
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%'e derive and discuss the dispersion relation and polarization of waves in a one-component, cold,

homogeneous plasma moving at arbitrary speed. The relevance to wave propagation (both low fre-

quency and radio) through the pulsar magnetosphere is briefly discussed.

I. INTRODUCTION

Whereas most astrophysical and laboratory
plasmas are, on the average, charge neutral (due
to the long range and strength of electric forces),
the plasma in a pulsar magnetosphere is probably
charge sePavated to a very high degree' (due to the
strong homopolar induction field). An understand-
ing of the origin of pulsar radiation therefore
seems to necessitate an understanding of wave
propagation in a charge-separated plasma. We
will provide such an understanding within the
framework of electrohydrodynamics (EHD).

For a neutral, cold plasma, Ohm's law' j,
=g,~E, leads to a Hermitian, wave-vector-indepen-
dent dielectric tensor

velocities which can compensate the velocity of the
medium. More importantly, the diagram shows
no resonances, but shows three "cutoffs" (break-
offs) at the Larmor frequency to~, the plasma
frequency +~, and at the low-frequency to„-=&@2~/&o~

which roughly equals the rotation frequency Q of
the homopolar inductor (co„=2@'Q TT/B for corota-
tion where y is the Lorentz factor of the plasma).
We prove the completeness of our modes, and
evaluate their polarization and energy-flow
velocities.

with eigenvalues

~c 1 +n ~1 — +n n

for waves of angular frequency co in a local rest
system, where z numbers plasma. components,

-=to(4we„p„/m„) '~', and to„=—td(4wcp„/B) '. This
same relation can be shown to hold for a one-
component plasma, with just one term occurring
under the summation sign. However, a one-
component plasma, cannot be (globally) at rest in
any inertial system, and in view of the applications
one would hesitate to restrict the analysis to local
rest frames. We thus work in a general inertial
system, and start directly from the linearized
equation of motion plus Maxwell's equations.

Our main result is contained in Fig. 1 which
shows the dispersion relation of a cold one-compo-
nent plasma. Unfamiliar are three descending
branches ending in three zero-frequency (i.e.,
static) modes: They correspond to the fact that we
work in a global inertial system in which matter
must necessarily move (in order to be in station-
ary equilibrium), and that there are three phase

A

2 IIB

FIG. 1. Dispersion diagram w~(k) for fixed angles, in
double-logarithmic representation, for P «1, P&
=(cos(n, B)( ~, pz—- (pcos(tT, p)( 4. The dashed and dotted
branches correspond to cos(rT, B) {+&}0respectively.
n —= ck/~ grows versus the lower right-hand corner. The
approximate directions of b, E(k) are also marked; +&]3
means "dE normal to B, rotating around 8 in the Larmor
sense".
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II ~ DISPERSION RELATION

We will study waves in a plasma which satisfies
the following four conditions: (1) The plasma con-
sists of only one component (i.e. , is 100%%uc charge
separated); (2) only, electromagnetic forces are
acting (i.e., gravity is neglected); (3) the plasma
is cold (i.e. , peculiar motions of particles are
neglected); (4) the unperturbed plasma is homoge-
neous and stationary.

Condition (4) is not strictly compatible with con-
ditions (1) and (2); but we will show later in the
deduction that its necessary violation is negligibly
small.

In an inertial system, such a medium is de-
scribed by Maxwell's equations:

E"',=(4II/c)j", Ei„, l =0;

by the conduction law,

l=cpP )

(cP ~ + &,) yP = (e/m, c)(E + P xB) . (6)

V x5E -- c 18t 5B V eE=4~ap

and

Vx&B=4mc 'Oj+c 'et 5E, V 58=0,

5 i = c(5pP+ p5P),

(cP v+5, )[r5P+r'P(p 5P)]+c(5P v)yP

=(e/m, c)[5E+5PxB+P x5B].

Weak waves are solutions of the first-order per-
turbed system (5), (6). Using 5& =y'P ~ 5P we get

j =pou";

and by the equation of motion,

moc u .su = eF us,

(2)

(3)

This linear system of first-order perturbations
is solved by Fourier analysis, i.e., by assuming
the vectors 5E, 5B, 5P to be (real parts of complex
vectors which are) proportional to exp[i (k x —Idt)];
we find, using (6) with E +Px B =0,

where four-current j ", four-velocity u", rest
charge density po, and field strength P"8 are re-
lated to their familiar three-vector equivalents
via:

j"=(l,cp) u"=cr(P, I), p=por,
P==v/c, r-=(1- P')-'",

nx 5E =5B, n 5E = -(4IIic/&u)5p,

nx5B = -5E+P(n 5E) —(4IIicp/e)5$,

r(P n —1)[5P+r P(P 5P)] —(ic/cu)(5P &)yP

= —(ie/mocI)I)[5K+5|i xB+n(P 5E) —(tj n)5E],

E"Bus =cy(E+P xB, P E) .
In three-vector language, Eqs. (1)-(3) read

(4) where

n = Ck/(d

and

VxE = —c ~t8, V E =4wp

Vx8=47tc 'j+c '8, E, V B=O,

is the dimensionless wave vector. Elimination of
5B and 5P results in one vector equation for 5E,
and explicit expressions for &B and 6P in terms of
QEo

or

5B =nx5E, (10)

5P =iIdB '[5E —n 5~K —P(n 5E)], (11)

[ v@2(1+y2p P ~ )+t&bx] [5E —n25~E —$(n. 5E)]+ (i cId/r&d&)[5E —n 5~E —P(n 5E)] Vrp=v5E+n(p 5E),
(12)

0 = (5„(1—5I') + v 'n, Pb+ Id'[n'h„+ (n' —1)y'P, 5,]- i v '&de„~b'(5, —n'h.",) —ic&u(vyI)I~) '(5', —n'h'. ~)(yP, ),] 5E',
where (13)

&3 —= e/ur„, &)I„—= 4IIpc/B- rotation frequency,

9 =—Id/Id„Id~ =- (4IIep/m)'~' = relativistic plasma frequency,

m =ym„v =—1 —n P, b = B/8, —

5~E =-n 'nx (5E xn) =projection of 5E normal to n,

h„=5,I,
—n '(n, —P,)n, = projection three-tensor normal to n for P « I,

5, -=P„+n, (v -y ')(n' - 1) ' = a vector of magnitude P for
~
n —1

~
not too small .

(14)
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Note that the I armor frequency &uz ——eB/m c and the
classical Alfven velocity cP~ are related to co~ and

v„by

where e„(e,n) can be shown to be related to the
(for P=0 wave-vector independent! ) dielectric ten-
sor e„(&u) of the plasma by

&r. ='da/~. I

p& = QP&/Id„= (dI /(d& = B(4lTIJ.C )

(15)

(16)
xs (n boa —n nn —eel) = (n'bar —n,n, —e,~)

with, for P=0:
(18a)

0 = (u'(n'5„—n, n, —C,b) bE (17)

where V,
—= mp/ eis the mass density; i.e., the

plasma frequency is the geometr ic mean of &~
and cu„. ~~ and ~„have the same sign as the charge
(according to our definition). Note further that the
last (inhomogeneity) term in (13) is of order
iP&/vP„because P varies on the length scale /c&u„.

It has negligible influence on all results discussed
below; we therefore drop it from now on, but give
explicit estimates in the Appendix.

Equation (13) has the form

x, ~ =b, b, +(1 —e ') '(~5,~+in 'e, ~,b'),

y
= 5 b

—b bb, (d = (d/(dz, . (18b)

e„ is Hermitian, and has the eigenvalues men-
tioned in the Introduction.

The disPexsion relation is obtained by equating
to zero the determinant of ( } in (13). Either
by straightforward calculation, or by first
Lorentz transforming to the local rest system of
the plasma we obtain (ordered with respect to
magnetic, and nonmagnetic effects):

~'(n' —1)[n'~~(1 —P~) —v ~ —Co'(n' —1)v 'y'(1 —P~)] = v 'f 1+Id'[ 2(n' —1)—v'y'] + &u'(n2 —l)(n' —1 —2v 'y')
-6( 2 1)2 a 3}, (19)

with ~~, & referring to the magnetic field B, v~ -=1 —n P~ . The result (19) can be written in a manifestly
four-covariant form (after multiplication by +y'):

(k'/4m', ,c')[(k"*F Hu )' ,'F qF (k—~u)'(1+k')] =(k ~ u)'[1 —(k ~ u)'](1+k')', (20)

k =—(k, (tu/c)), u =—cy(P, 1); *F„s—= zeus&~F ~

k ~ u=-k"u„, k'=-k k; k"= co, 'k"; -sgn(g„8) =(+++, —).
(21)

We prefer the three-space form (19), and order it with respect to powers of ~:
x' —x'(P„(l —P~) —(n' —1) '2v'+y 2}+x(n' 1) 'y '(P„'[n'~~(1 —P~) — ]v2( +' n1) 'v'y' —2v'}

(n' —1) 'v'y '=0,

where x—= (v~)'. P„' is the ratio between magnetic
and plasma energy density, which should be large
for stationary charge separation:

p'„= B'/4m@. c' = eB/m, ce„y = 10"B~m,', u&„', y, ' » 1

(23)

holds for typical' values of a pulsar magnetosphere
near the stellar surface (at least in a negative,

corotating charge sector). We therefore assume
P„' »1 in what follows.

The dispersion diagram &u&(k) will be constructed
as follows: Unless

~

n' —1 j
S P„', the third-degree

polynomial (22) is well approximated by dropping
all terms in the curly brackets except the first
ones. This truncated polynominal has two large
coefficients; its zeros x; are approximately ob-
tained by equating consecutive terms; they give

» pg» ] P ~» j ~» y»» yP
(24)

For
~

n' —1
~ «P~ ', one finds analogously

Cv,.=+, , —
» vy (25)

though only positive x& lead to dispersion branches
(real k, arbitrary u). In the n interval defined by

&ln, n~~(1 —P ) —v~ +0

Note that all roots x,. of (22) turn out to be real, there is only one positive x, (i.e. , only one dis-



12 ELECTROHYDRODYNAMICS OF A CHARGE -SEPARATED PLASMA 20V

persion branch).
Figure 1 gives a dispersion diagram &u&(k) for

fixed angles. Such a diagram is determined by the
five parameters P„,P, P~, ( cos(n, B) (, ) cos(n, P) (,
one of which sets the scale. For p«1, only two
of them determine the shape of the branches,
which do not change vigorously when the parame-
ters vary. The most severe differences are ob-
tained when the straight line n'(((1-p~) = v~
"moves" towards n= 1, or approaches v=0 (cor-
responding to wave normals parallel to B, and
normal to B respectively). An exceptional case is
P = 0. The diagram is obtained by starting with the
limiting cases n «1 and n»1, and using (25) for
the immediate neighborhood of n =1 at cu) 1. Spe-
cial attention is needed for the possibility v- 0 for
which opposite signs of cos(n, P) give markedly
different branches drawn as broken and dotted
lines, respectively. Note that for fixed n, there
are one or three branches.

There are no complex branches (k =real,
(d = complex), as expected on physical grounds.
This can be proved by noting that our diagram is: .

.
complete'. A general initial disturbance
[5E(x),5B(x),5P(x)] at t =0 can be Fourier trans-

formed, and then expanded with respect to the
proper modes [&fE(k),&fB(k),&;j5(k)] to be ob-
tained (uniquely up to a common factor) for the
respective dispersion branches (numbered by j):

5E(k) = Qaf(k)5fE(k),
j

5B(k) = Qa, (k)&,B(k), (28)

5p(k) = Q af(k)6fp(k) .

There have to be as many free amplitudes af(k) as
independent equations in the system (28); the
latter number equals 8 (in our case) as there is
just one primary constraint k &B(k) =0. The
reader confirms that for each k, there are exactly
8 branches +v&(k).

The diagram shows that there are three break-
offs (cutoffs) at the frequencies

~f =f(di(1 P', )"-, ~([(1-P')/(1 P', )]-", ~,],
(2't)

no resonances, and three falling branches leading
to three static modes at the wave numbers k&

given by

(1 —P~)'~' 1 —P' 'i' [cos'(n, B)(1—P2~) —Pi cos'(n, P~)]' '
P ~

cos(n, P) ~

' ' 1 —P', plcos( n, p)I
pecos(n, p) (

"[cos'(n, B)(1—P', ) —P'„cos'(n, P,)]"'

Vg, = V], co (29)

as follows from the Fourier representation of an
arbitrary space-time function f(x, t):

f( o= f d (,f(k) ""*
&

(ko'x- Ot) d 3g k efbk(x-'7~ u) ~ t)

These static modes correspond to (phasewise)
counter moving disturbances at exactly the (nega-
tive) rotation speed, at wavelengths roughly of
order 2mc((dl ', (d~ ', &(f„'). We also observe that
electromagnetic waves with frequencies as low as
the rotation frequency can be propagated.

The group velocity of a perturbation is given by

essary because the approximation in the first line
gets bad when the denominator in f, vanishes; the
case n~~ =n was treated more carefully by starting
from the exact relation (19) [rather than (24)],
which is necessary if one wants to differentiate
the result once more (in order to get the frequen-
cy-dependent signal delay). Note that an energy
flow almost in the direction of the wave vector
occurs only along the velocity-of-light branches
4, 5, and 6. Along the neighboring branches 8 and

9, the energy propagates in some direction in the
(n, B) plane.

For branches 6 and 8 respectively, we find for
n

li
n

- &(&((o. x-o(o'~
( g„- . t) (30)

It gives the velocity of energy propagation when-
ever the latter can be reasonably defined.

From Eqs. (24), (25), or (19) we find for V«
=cP„, approximately for the (pieces of) branches
numbered 1, 2, . . . , the expressions of P, shown in
Table I. The case distinction for branch 6 is nec-

whence

(31)

1 v(1 —3n P) —P'/2 vyP~((f
QJ gf 2 Q)2 p 2y2

(32)
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TABLE I. pgr for various branches. An upper index "0"at a vector denotes unit norm,
()no) =1). For branches 5 and 6, "lin( ~ )"means a linear combination of the vectors in pa-
rentheses; the corresponding terms are lengthy, and of magnitude comparable to the small
term in braces, so that their contribution to the norm is in general small.

Branch

1, 10, 13

bp)) + nJ

-b(p)) -n))) + n

n'

1—P vi -nr[(1 —PgS/2

n [1—w f((n)]+~ li.n(p, pJ s b), ff
2

'f (n)l+" 'I (P, P, b), fq=—-[ q ~ 1 pt, ), f r )[ ~ .][+1
2 v,— ))(1-p, )

2

n 1 —— pi np v 1
4(1- [c™uvY]) 2~ 4 p 2u, for n)) =n

p .b(1 p2)i/2~n (ya)2(1-p2)i/2[(1-p2)1/2. p ]2

(p~[n p~+nII(1 —p~) ) +bf(1-p~) (n p +nII(j -pt) ~')w(nt —1)/'2n„]—

1/2nII)+n n [1-3/2nII) for p« jn

p+ tb™"(n-p)n))/(n -1)]vn))

p+ fb-(n-p)n /(n2-1)] vn-&

p+ I b-n n))n ] vn)) I 1-n2p2 n)) 2]-&

II) ""II [1—n p~/nII J

III. POLARIZATION OF PROPER MODES

So far we know the phase and group velocity of
all proper modes. An understanding of their prop-
erties needs a calculation of their amplitudes
5&E(k), 5&B(k), &&P(k) which follow from Eqs. (10),
(11), and (13) up to a common (scalar) factor.
More precisely, once we know ~&E, we get 6&B
from (10) (by left exterior multiplication with n),
and 5&P from (11) (in a transparent way). We
therefore concentrate on solving (13), which will
have to be done separately for each branch because
in each case, different terms in the matrix in (13)

are dominating.
For economy's sake we content ourselves with

the special case of nonrelativistic plasma veloc-
ities: p «I, but include correction terms of order
P. In each case, the matrix in (13) is simplified
first by row multiplication with factors, and then
by linear combination of rows. We express all
three-tensors in the following orthonormal triad:
) n —b(b n), b&& n, b), i.e., in orthonormal compo-
nents in which 8 points in the three direction, and
n is normal to t:he two direction. The matrix in

(13) then reads, with n, =n, —P„and —with the
inhomogene ity term dropped:

1 —i (&/v)n, P, + &u'(n', —v, ) +n, P /v —(i Id/v)(n' 1)+ n,P, /v —(i v/v)n, P, —~'n, n, + n,P, /v

i(Id/v)(n', —v~) + to'n, p,
' ,on+nn, p, /v

1 + Ic'(n' —1)

n3 p2/v

—(i aI/v) n,n, + '
Icp,n

1+ Id'(rP, —1+n, P, ) +n, P, /v

(33)

From here we find the (arbitrarily normalized)
approximations for the electric-field amplitudes
5E(k) (see Table II). For branches 7 and 9, 5E
was not evaluated within order P, (hence the sign
-). Note that 5E )) n holds approximately for
branches 7, 10, 11, 13, 14, and 15, while 6E&n

I

holds for one of the two modes of branches 4 and

5, and 5E
N

B holds for branch 2. Circular proper
modes normal to B occur for branches 1 and 3,
and approximately for branch 9. For branch 8 and

n, - 0, 6E approaches the second transverse
mode (1,0, 0).
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Branch
Dispersion

relation

0 1

n2~]

n3
0

-n,
0

n2~1

TABLE Il. 6E for various branches. The (approxi-
mate) dispersion relation is given whenever it was used
to simplify matrix (33).

smaller by a factor «10 "than the differential
Faraday rotation' caused by the interstellar
medium.

As an outlook, let us mention that to follow the
pulsar radiation through the magnetosphere we
must —as a next step —take into account the cur-
vature of the magnetic field lines, and also possi-
bly the variation of field strength. At the velocity-
of-light cylinder and beyond, the plasma is likely
to become more and more neutral and sheared,
and the propagation of low-frequency waves
through this part of the magnetosphere poses addi-
tional difficulties. 4

9w

10, 11
12

13, 14, 15

n f

n,
i cu(n2-1)

n,
n(p2

0 n3

—.v .,/'l. ,i

1 0
V'

n3

n3P2

n3.

n3(1-P3 =~~

cu (n -1)(n~~-1)=0
p i~iv 0
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APPENDIX

In a pulsar magnetosphere, (d~ is believed' to be
of order

uP~= eB~„/mc= (10" sec ')B»&u, ,m,', ,

so that for typical radio pulses (in the range
~= 10'-10" sec '), ~ ranges from fractions of a
percent to unity or more (depending on the strength
of the magnetic field, the type of the charged par-
ticles, and their average y factor). For such re-
gimes branches 6, 8, and 5 are of special interest.
In particular for n- b, branch 8 approaches
branch 6, and the two polarization states (with
6E &8) can interfere to yield Faraday rotation of
the plane of polarization (spanned by n and &E).
The difference g in phase increment (for the 2
modes with wave vectors k, ) along a path of line
element dx is described by

ix'~'P„b, 6=—(c/yu)„)(b V)yP~~, (A 1)

where 6 is of order P. This leading correction,
and all the other imaginary ones vanish for
8 P=0.

Writing x-=x„, + b, x in (22), we find for the
leading first-order corrections to the dispersion
branches (24), due to (Al):

We promised to estimate the effect of the last
(inhomogeneity) term in Eq. (13) on the dispersion
relations. For 1 &~&p„', the leading correction to
the determinant (22) is obtained by keeping the last
two terms in (13); it adds to the right-hand side of
(22) the small imaginary term

dx(k, -k, ) .
path

For k,. ll B we get from Eq. (31):

(34)

whence

2iv 8iv' 4(1 —iv'v'V'))
(»)

P~(1 —P', )'"
1

'2p„'( va(i p', )

p 2y2 (n2 1)
1 /2

i. P~l. "'ii(1-C) —~;j'"

(A2)

4x P~ v
4(1--' ' ') (36) Acd=f X

and

c 2(a) 1 —(aP p 2y~ " 2

for the differential change of g with &u; which is

p 3y2

p~l. &'ii(1- 4) —&~]'

b,v/co and A&u are imaginary, hence correspond to
damping, or antidamping. They are, however,
small, of order p,~p„', where b varies between 1
and 3.
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